1
|
McCullough M, Joshi IV, Pereira NL, Fuentes N, Krishnan R, Druey KM. Targeting cytoskeletal biomechanics to modulate airway smooth muscle contraction in asthma. J Biol Chem 2024; 301:108028. [PMID: 39615690 DOI: 10.1016/j.jbc.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
To contract, to deform, and remodel, the airway smooth muscle cell relies on dynamic changes in the structure of its mechanical force-bearing cytoskeleton. These alternate between a "fluid-like" (relaxed) state characterized by weak contractile protein-protein interactions within the cytoskeletal apparatus and a "solid-like" (contractile) state promoted by strong and highly organized molecular interactions. In this review, we discuss the roles for actin, myosin, factors promoting actin polymerization and depolymerization, adhesome complexes, and cell-cell junctions in these dynamic processes. We describe the relationship between these cytoskeletal factors, extracellular matrix components of bronchial tissue, and mechanical stretch and other changes within the airway wall in the context of the physical mechanisms of cytoskeletal fluidization-resolidification. We also highlight studies that emphasize the distinct processes of cell shortening and force transmission in airway smooth muscle and previously unrecognized roles for actin in cytoskeletal dynamics. Finally, we discuss the implications of these discoveries for understanding and treating airway obstruction in asthma.
Collapse
Affiliation(s)
- Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ilin V Joshi
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nicolas L Pereira
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center; Boston, Massachusetts, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Viou L, Atkins M, Rousseau V, Launay P, Masson J, Pace C, Murakami F, Barnier JV, Métin C. PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity. Mol Psychiatry 2024; 29:2296-2307. [PMID: 38454080 PMCID: PMC11412908 DOI: 10.1038/s41380-024-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Mutations of PAK3, a p21-activated kinase, are associated in humans with cognitive deficits suggestive of defective cortical circuits and with frequent brain structural abnormalities. Most human variants no longer exhibit kinase activity. Since GABAergic interneurons express PAK3 as they migrate within the cortex, we here examined the role of PAK3 kinase activity in the regulation of cortical interneuron migration. During the embryonic development, cortical interneurons migrate a long distance tangentially and then re-orient radially to settle in the cortical plate, where they contribute to cortical circuits. We showed that interneurons expressing a constitutively kinase active PAK3 variant (PAK3-ca) extended shorter leading processes and exhibited unstable polarity. In the upper cortical layers, they entered the cortical plate and extended radially oriented processes. In the deep cortical layers, they exhibited erratic non-processive migration movements and accumulated in the deep pathway. Pharmacological inhibition of PAK3 kinase inhibited the radial migration switch of interneurons to the cortical plate and reduced their accumulation in the deep cortical layers. Interneurons expressing a kinase dead PAK3 variant (PAK3-kd) developed branched leading processes, maintained the same polarity during migration and exhibited processive and tangentially oriented movements in the cortex. These results reveal that PAK3 kinase activity, by promoting leading process shortening and cell polarity changes, inhibits the tangential processive migration of interneurons and favors their radial re- orientation and targeting to the cortical plate. They suggest that patients expressing PAK3 variants with impaired kinase activity likely present alterations in the cortical targeting of their GABAergic interneurons.
Collapse
Affiliation(s)
- Lucie Viou
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Pierre Launay
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Justine Masson
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Clarisse Pace
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
3
|
Yasuda Y, Wang L, Chitano P, Seow CY. Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. BIOLOGY 2024; 13:115. [PMID: 38392332 PMCID: PMC10886476 DOI: 10.3390/biology13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Rho-kinase inhibitors have been identified as a class of potential drugs for treating asthma because of their ability to reduce airway inflammation and active force in airway smooth muscle (ASM). Past research has revealed that, besides the effect on the ASM's force generation, rho-kinase (ROCK) also regulates actin filament formation and filament network architecture and integrity, thus affecting ASM's cytoskeletal stiffness. The present review is not a comprehensive examination of the roles played by ROCK in regulating ASM function but is specifically focused on passive tension, which is partially determined by the cytoskeletal stiffness of ASM. Understanding the molecular basis for maintaining active force and passive tension in ASM by ROCK will allow us to determine the suitability of ROCK inhibitors and its downstream enzymes as a class of drugs in treating airway hyperresponsiveness seen in asthma. Because clinical trials using ROCK inhibitors in the treatment of asthma have yet to be conducted, the present review focuses on the in vitro effects of ROCK inhibitors on ASM's mechanical properties which include active force generation, relaxation, and passive stiffness. The review provides justification for future clinical trials in the treatment of asthma using ROCK inhibitors alone and in combination with other pharmacological and mechanical interventions.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
4
|
Wang R, Huang R, Liu Y, Tamalunas A, Stief CG, Hennenberg M. Silencing of CDC42 inhibits contraction and growth-related functions in prostate stromal cells, which is mimicked by ML141. Life Sci 2023; 329:121928. [PMID: 37437651 DOI: 10.1016/j.lfs.2023.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141. METHODS WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing. RESULTS CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing. CONCLUSIONS CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.
Collapse
Affiliation(s)
- Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
6
|
Lubomirov LT, Mantke R, Enzmann T, Metzler D, Korotkova T, Hescheler J, Pfitzer G, Grisk O. ROK and RSK2-kinase pathways differ between senescent human renal and mesenteric arteries. J Hypertens 2023; 41:1201-1214. [PMID: 37115907 DOI: 10.1097/hjh.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
OBJECTIVE Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS Renal and mesenteric tissues were obtained from patients (mean age 71 ± 9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.
Collapse
Affiliation(s)
- Lubomir T Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin
- Institute of Vegetative Physiology
- Research cluster, Molecular Mechanisms of Cardiovascular Diseases
| | - René Mantke
- General and Visceral Surgery Clinic
- Faculty of Health Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Thomas Enzmann
- Urology and Children Urology Clinic, University Clinics Brandenburg an der Havel
| | | | | | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, University of Cologne, Cologne
| | | | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin
- Research cluster, Molecular Mechanisms of Cardiovascular Diseases
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Lubomirov LT, Schroeter MM, Hasse V, Frohn M, Metzler D, Bust M, Pryymachuk G, Hescheler J, Grisk O, Chalovich JM, Smyth NR, Pfitzer G, Papadopoulos S. Dual thick and thin filament linked regulation of stretch- and L-NAME-induced tone in young and senescent murine basilar artery. Front Physiol 2023; 14:1099278. [PMID: 37057180 PMCID: PMC10088910 DOI: 10.3389/fphys.2023.1099278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 μmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/− mice generated stretch-induced tone already at an age of 20–21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/− o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2−/−) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.
Collapse
Affiliation(s)
- Lubomir T. Lubomirov
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- *Correspondence: Lubomir T. Lubomirov,
| | - Mechthild M. Schroeter
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Veronika Hasse
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Maria Bust
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy, University of Cologne, Cologne, Germany
- Institute of Anatomy, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Jürgen Hescheler
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Joseph M. Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Neil R. Smyth
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Gabriele Pfitzer
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Inka2 expression in smooth muscle cells and its involvement in cell migration. Biochem Biophys Res Commun 2023; 643:55-60. [PMID: 36586159 DOI: 10.1016/j.bbrc.2022.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The cell motility of smooth muscle cells (SMCs) is essential for vascular and internal organ development and tissue regeneration in response to damage. Cell migration requires dynamic changes in the actin-cytoskeleton via the p-21 activated kinase (Pak)-Cofilin signaling cascade, which is the central axis of the actin filaments. We previously identified that the Inka2 gene was preferentially expressed in the central nervous system (CNS) and revealed that Inka2 directly binds Pak4 to suppress its kinase activity, thereby regulating actin de-polymerization in dendritic spine formation of the forebrain neurons. However, its physiological significance outside the CNS remains unclear. Here we determined the Inka2 expression profile in various organs using in situ hybridization analysis and lacZ staining on Inka2flox/+ mice. Robust Inka2 expression was consistently detected in the SMCs of many peripheral organs, including the arteries, esophagus, stomach, intestine, and bladder. The scratch assay was used on primary cultured SMCs and revealed that Inka2-/- SMC exhibits accelerated cell migration ability without a change in the cell proliferation rate. Inka2-/- SMCs displayed Cofilin activation/phosphorylation, a downstream molecule of Pak4 signal cascade. These results suggest that Inka2 regulates SMC motility through modulating actin reorganization as the endogenous inhibitor of Pak4.
Collapse
|
10
|
Smit LCM, Wang L, Chitano P, Seow CY. Sustained contractile force regulated by rho-kinase and protein kinase C in sheep carotid arterial smooth muscle. J Appl Physiol (1985) 2023; 134:152-159. [PMID: 36519569 DOI: 10.1152/japplphysiol.00592.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The time course of smooth muscle contraction can be divided into two phases, the initial phase is associated with force development, whereas the sustained phase is associated with force maintenance. Cumulative evidence suggests that the two phases are regulated by different signaling pathways and that ρ-kinase (ROCK) and protein kinase C (PKC) play an important role in regulating isometric force in sustained contractions. Since the maintenance of sustained force is critical to the function of vascular smooth muscle, unraveling the complex mechanism of force maintenance is crucial for understanding the cell biology of the muscle. The present study examined the effects of ROCK and PKC on the level of phosphorylation of the 20-kD myosin light chain (MLC20) and isometric force during a sustained contraction. We used partial activation and inhibition of ROCK and PKC to reduce the isometric force by 50% of the maximal isometric force in fully activated muscle, Fmax. We then examined the level of MLC20 phosphorylation in each case. We found that in partially activated muscle the level of MLC20 phosphorylation required to maintain 50% Fmax was much lower than that required in muscles where 50% reduction in Fmax was achieved by partial inhibition of ROCK and PKC. The results can be explained by a model containing a contractile apparatus and a cytoskeletal scaffold where force generated by the contractile apparatus is transmitted to the extracellular domain through the cytoskeleton. The results indicate that ROCK and PKC play an important role in force transmission through the cytoskeleton.NEW & NOTEWORTHY The study supports a model that the maintenance of sustained force during a contraction of arterial smooth muscle is dependent on the intracellular transmission of force through the cytoskeleton and that ρ-kinase and protein kinase C plays an important role in the regulation of cytoskeletal integrity and its efficiency in force transmission.
Collapse
Affiliation(s)
- Leanne C M Smit
- UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,Graduate School of Life Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lu Wang
- UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Pasquale Chitano
- UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Chun Y Seow
- UBC Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
12
|
Nayak AP, Lim JM, Arbel E, Wang R, Villalba DR, Nguyen TL, Schaible N, Krishnan R, Tang DD, Penn RB. Cooperativity between β-agonists and c-Abl inhibitors in regulating airway smooth muscle relaxation. FASEB J 2021; 35:e21674. [PMID: 34115899 DOI: 10.1096/fj.202100154r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023]
Abstract
Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on β2 adrenoceptor agonists (β-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with β-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of β-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and β-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and β-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by β-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both β-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - John M Lim
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eylon Arbel
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dominic R Villalba
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tahn L Nguyen
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Raymond B Penn
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Dufour-Mailhot A, Boucher M, Henry C, Khadangi F, Tremblay-Pitre S, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Flexibility of microstructural adaptations in airway smooth muscle. J Appl Physiol (1985) 2021; 130:1555-1561. [PMID: 33856257 DOI: 10.1152/japplphysiol.00894.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The airway smooth muscle undergoes an elastic transition during a sustained contraction, characterized by a gradual decrease in hysteresivity caused by a relatively greater rate of increase in elastance than resistance. We recently demonstrated that these mechanical changes are more likely to persist after a large strain when they are acquired in dynamic versus static conditions; as if the microstructural adaptations liable for the elastic transition are more flexible when they evolve in dynamic conditions. The extent of this flexibility is undefined. Herein, contracted ovine tracheal smooth muscle strips were kept in dynamic conditions simulating tidal breathing (sinusoidal length oscillations at 5% amplitude) and then subjected to simulated deep inspirations (DI). Each DI was straining the muscle by either 10%, 20%, or 30% and was imposed at either 2, 5, 10, or 30 min after the preceding DI. The goal was to assess whether and the extent by which the time-dependent decrease in hysteresivity is preserved following the DI. The results show that the time-dependent decrease in hysteresivity seen pre-DI was preserved after a strain of 10%, but not after a strain of 20% or 30%. This suggests that the microstructural adaptations liable for the elastic transition withstood a strain at least twofold greater than the oscillating strain that pertained during their evolution (10% vs. 5%). We propose that a muscle adapting in dynamic conditions forges microstructures exhibiting a substantial degree of flexibility.NEW & NOTEWORTHY This study confirms that airway smooth muscle undergoes an elastic transition during a sustained contraction even when it operates in dynamic conditions simulating breathing at tidal volume. It also demonstrates that the microstructural adaptations liable for this elastic transition withstand a strain that is at least twice as large as the oscillating strain that pertains during their evolution. This degree of flexibility might be an asset with major significant impact for a tissue such as the airway smooth muscle that displays an everchanging shape due to breathing.
Collapse
Affiliation(s)
- Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Marine Clisson
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| |
Collapse
|
14
|
Zhang W, Gunst SJ. S100A4 is activated by RhoA and catalyses the polymerization of non-muscle myosin, adhesion complex assembly and contraction in airway smooth muscle. J Physiol 2020; 598:4573-4590. [PMID: 32767681 DOI: 10.1113/jp280111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS S100A4 is expressed in many tissues, including smooth muscle (SM), but its physiologic function is unknown. S100A4 regulates the motility of metastatic cancer cells by binding to non-muscle (NM) myosin II. Contractile stimulation causes the polymerization of NM myosin in airway SM, which is necessary for tension development. NM myosin regulates the assembly of adhesion junction signalling complexes (adhesomes) that catalyse actin polymerization. In airway SM, ACh (acetylcholine) stimulated the binding of S100A4 to the NM myosin heavy chain, which was catalysed by RhoA GTPase via the RhoA-binding protein, rhotekin. The binding of S100A4 to NM myosin was required for NM myosin polymerization, adhesome assembly and actin polymerization. S100A4 plays a critical function in the regulation of airway SM contraction by catalysing NM myosin filament assembly. The interaction of S100A4 with NM myosin may also play an important role in the physiologic function of other tissues. ABSTRACT S100A4 binds to the heavy chain of non-muscle (NM) myosin II and can regulate the motility of crawling cells. S100A4 is widely expressed in many tissues including smooth muscle (SM), although its role in the regulation of their physiologic function is not known. We hypothesized that S100A4 contributes to the regulation of contraction in airway SM by regulating a pool of NM myosin II at the cell cortex. NM myosin II undergoes polymerization in airway SM and regulates contraction by catalysing the assembly of integrin-associated adhesome complexes that activate pathways that catalyse actin polymerization. ACh stimulated the interaction of S100A4 with NM myosin II in airway SM at the cell cortex and catalysed NM myosin filament assembly. RhoA GTPase regulated the activation of S100A4 via rhotekin, which facilitated the formation of a complex between RhoA, S100A4 and NM myosin II. The depletion of S100A4, RhoA or rhotekin from airway SM tissues using short hairpin RNA or small interfering RNA prevented NM myosin II polymerization as well as the recruitment of vinculin and paxillin to adhesome signalling complexes in response to ACh, and inhibited actin polymerization and tension development. S100A4 depletion did not affect ACh-stimulated SM myosin regulatory light chain phosphorylation. The results show that S100A4 plays a critical role in tension development in airway SM tissue by catalysing NM myosin filament assembly, and that the interaction of S100A4 with NM myosin in response to contractile stimulation is activated by RhoA GTPase. These results may be broadly relevant to the physiologic function of S100A4 in other cell and tissue types.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Li B, Wang R, Wang Y, Stief CG, Hennenberg M. Regulation of smooth muscle contraction by monomeric non-RhoA GTPases. Br J Pharmacol 2020; 177:3865-3877. [PMID: 32579705 PMCID: PMC7429483 DOI: 10.1111/bph.15172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Smooth muscle contraction in the cardiovascular system, airways, prostate and lower urinary tract is involved in the pathophysiology of many diseases, including cardiovascular and obstructive lung disease plus lower urinary tract symptoms, which are associated with high prevalence of morbidity and mortality. This prominent clinical role of smooth muscle tone has led to the molecular mechanisms involved being subjected to extensive research. In general smooth muscle contraction is promoted by three major signalling pathways, including the monomeric GTPase RhoA pathway. However, emerging evidence suggests that monomeric GTPases other than RhoA may be involved in signal transduction in smooth muscle contraction, including Rac GTPases, cell division control protein 42 homologue, adenosine ribosylation factor 6, Ras, Rap1b and Rab GTPases. Here, we review these emerging functions of non-RhoA GTPases in smooth muscle contraction, which has now become increasingly more evident and constitutes an emerging and innovative research area of high clinical relevance.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yiming Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Seow CY, An SS. The Force Awakens in the Cytoskeleton: The Saga of a Shape-Shifter. Am J Respir Cell Mol Biol 2020; 62:550-551. [PMID: 31940442 PMCID: PMC7193797 DOI: 10.1165/rcmb.2019-0462ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouver, British Columbia, Canada
| | - Steven S An
- Rutgers-Robert Wood Johnson Medical SchoolThe State University of New JerseyPiscataway, New Jerseyand.,Rutgers Institute for Translational Medicine and ScienceNew Brunswick, New Jersey
| |
Collapse
|
17
|
Álvarez-Santos MD, Álvarez-González M, Estrada-Soto S, Bazán-Perkins B. Regulation of Myosin Light-Chain Phosphatase Activity to Generate Airway Smooth Muscle Hypercontractility. Front Physiol 2020; 11:701. [PMID: 32676037 PMCID: PMC7333668 DOI: 10.3389/fphys.2020.00701] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Smooth muscle is a central structure involved in the regulation of airway tone. In addition, it plays an important role in the development of some pathologies generated by alterations in contraction, such as hypercontractility and the airway hyperresponsiveness observed in asthma. The molecular processes associated with smooth muscle contraction are centered around myosin light chain (MLC) phosphorylation, which is controlled by a balance in the activity of myosin light-chain kinase (MLCK) and myosin light-chain phosphatase (MLCP). MLCK activation depends on increasing concentrations of intracellular Ca2+, while MLCP activation is independent of Ca2+. MLCP contains a phosphatase subunit (PP1c) that is regulated through myosin phosphatase target subunit 1 (MYPT1) and other subunits, such as glycogen-associated regulatory subunit and myosin-binding subunit 85 kDa. Interestingly, MLCP inhibition may contribute to exacerbation of smooth muscle contraction by increasing MLC phosphorylation to induce hypercontractility. Many pathways inhibiting MLCP activity in airway smooth muscle have been proposed and are focused on inhibition of PP1c, inhibitory phosphorylation of MYPT1 and dissociation of the PP1c-MYPT1 complex.
Collapse
Affiliation(s)
- Mayra D Álvarez-Santos
- Biology Area, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol Álvarez-González
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Blanca Bazán-Perkins
- Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
18
|
Wang Y, Wang R, Tang DD. Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2020; 62:645-656. [PMID: 31913659 PMCID: PMC7193783 DOI: 10.1165/rcmb.2019-0310oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
19
|
Gazzola M, Henry C, Lortie K, Khadangi F, Park CY, Fredberg JJ, Bossé Y. Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. Am J Physiol Lung Cell Mol Physiol 2020; 318:L442-L451. [PMID: 31850799 DOI: 10.1152/ajplung.00205.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Force adaptation of airway smooth muscle (ASM) is a process whereby the presence of tone (i.e., a sustained contraction) increases the contractile capacity. For example, tone has been shown to increase airway responsiveness in both healthy mice and humans. The goal of the present study is to elucidate the underlying molecular mechanisms. The maximal force generated by mouse tracheas was measured in response to 10-4 M of methacholine following a 30-min period with or without tone elicited by the EC30 of methacholine. To confirm the occurrence of force adaptation at the cellular level, traction force generated by cultured human ASM cells was also measured following a similar protocol. Different pharmacological inhibitors were used to investigate the role of Rho-associated coiled-coil containing protein kinase (ROCK), protein kinase C (PKC), myosin light chain kinase (MLCK), and actin polymerization in force adaptation. The phosphorylation level of the regulatory light chain (RLC) of myosin, the amount of actin filaments, and the activation level of the actin-severing protein cofilin were also quantified. Although ROCK, PKC, MLCK, and RLC phosphorylation was not implicated, force adaptation was prevented by inhibiting actin polymerization. Interestingly, the presence of tone blocked the activation of cofilin in addition to increasing the amount of actin filaments to a maximal level. We conclude that actin filamentogenesis induced by tone, resulting from both actin polymerization and the prevention of cofilin-mediated actin cleavage, is the main molecular mechanism underlying force adaptation.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Chan Young Park
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Jeffrey J Fredberg
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Shortening of airway smooth muscle is modulated by prolonging the time without simulated deep inspirations in ovine tracheal strips. J Appl Physiol (1985) 2019; 127:1528-1538. [PMID: 31545157 DOI: 10.1152/japplphysiol.00423.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The shortening of airway smooth muscle (ASM) is greatly affected by time. This is because stimuli affecting ASM shortening, such as bronchoactive molecules or the strain inflicted by breathing maneuvers, not only alter quick biochemical processes regulating contraction but also slower processes that allow ASM to adapt to an ever-changing length. Little attention has been given to the effect of time on ASM shortening. The present study investigates the effect of changing the time interval between simulated deep inspirations (DIs) on ASM shortening and its responsiveness to simulated DIs. Excised tracheal strips from sheep were mounted in organ baths and either activated with methacholine or relaxed with isoproterenol. They were then subjected to simulated DIs by imposing swings in distending stress, emulating a transmural pressure from 5 to 30 cmH2O. The simulated DIs were intercalated by 2, 5, 10, or 30 min. In between simulated DIs, the distending stress was either fixed or oscillating to simulate tidal breathing. The results show that although shortening was increased by prolonging the interval between simulated DIs, the bronchodilator effect of simulated DIs (i.e., the elongation of the strip post- vs. pre-DI) was not affected, and the rate of re-shortening post-simulated DIs was decreased. As the frequency with which DIs are taken increases upon bronchoconstriction, our results may be relevant to typical alterations observed in asthma, such as an increased rate of re-narrowing post-DI.NEW & NOTEWORTHY The frequency with which patients with asthma take deep inspirations (DIs) increases during bronchoconstriction. This in vitro study investigated the effect of changing the time interval between simulated DIs on airway smooth muscle shortening. The results demonstrated that decreasing the interval between simulated DIs not only decreases shortening, which may be protective against excessive airway narrowing, but also increases the rate of re-shortening post-simulated DIs, which may contribute to the increased rate of re-narrowing post-DI observed in asthma.
Collapse
|
21
|
Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and βPIX. Sci Rep 2019; 9:11430. [PMID: 31391572 PMCID: PMC6686007 DOI: 10.1038/s41598-019-47722-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an important biological phenomenon involved in many homeostatic and aberrant physiological processes. Phosphorylation of the focal adhesion adaptor protein, paxillin, on serine 273 (S273) has been implicated as a key regulator of cell migration. Here, it is shown that phosphorylation on paxillin S273 leads to highly migratory cells with small dynamic adhesions. Adhesions at protrusive edges of the cell were more dynamic than adhesions at retracting edges. Temporal image correlation microscopy revealed that these dynamic adhesions undergo rapid binding of paxillin, PAK1 and βPIX. We identified membrane proximal adhesion subdomains in protrusive regions of the cell that show rapid protein binding that is dependent on paxillin S273 phosphorylation, PAK1 kinase activity and phosphatases. These dynamic adhesion subdomains corresponded to regions of the adhesion that also show co-binding of paxillin/PAK1 and paxillin/βPIX complexes. It is likely that parts of individual adhesions are more dynamic while others are less dynamic due to their association with the actin cytoskeleton. Variable adhesion and binding dynamics are regulated via differential paxillin S273 phosphorylation across the cell and within adhesions and are required for regulated cell migration. Dysregulation through phosphomutants, PAK1-KD or βPIX mutants resulted in large stable adhesions, long protein binding times and slow cell migration. Dysregulation through phosphomimics or PAK1-CA led to small dynamic adhesions and rapid cell migration reminiscent of highly migratory cancer cells. Thus, phosphorylation of paxillin S273 is a key regulator of cell migration through recruitment of βPIX and PAK1 to sites of adhesion.
Collapse
|
22
|
Luo L, Wang L, Paré PD, Seow CY, Chitano P. The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol 2019; 317:L235-L246. [PMID: 31116578 PMCID: PMC6734385 DOI: 10.1152/ajplung.00051.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 05/12/2019] [Indexed: 02/04/2023] Open
Abstract
The cyclic interaction between myosin crossbridges and actin filaments underlies smooth muscle contraction. Phosphorylation of the 20-kDa myosin light chain (MLC20) is a crucial step in activating the crossbridge cycle. Our current understanding of smooth muscle contraction is based on observed correlations among MLC20 phosphorylation, maximal shortening velocity (Vmax), and isometric force over the time course of contraction. However, during contraction there are changes in the extent of phosphorylation of many additional proteins as well as changes in activation of enzymes associated with the signaling pathways. As a consequence, the mechanical manifestation of muscle contraction is likely to change with time. To simplify the study of these relationships, we measured the mechanical properties of airway smooth muscle at different levels of MLC20 phosphorylation at a fixed time during contraction. A simple correlation emerged when time-dependent variables were fixed. MLC20 phosphorylation was found to be directly and linearly correlated with the active stress, stiffness, and power of the muscle; the observed weak dependence of Vmax on MLC20 phosphorylation could be explained by the presence of an internal load in the muscle preparation. These results can be entirely explained by the Huxley crossbridge model. We conclude that when the influence of time-dependent events during contraction is held constant, the basic crossbridge mechanism in smooth muscle is the same as that in striated muscle.
Collapse
Affiliation(s)
- Ling Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing, China
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Khadangi F, Bossé Y. Extracellular regulation of airway smooth muscle contraction. Int J Biochem Cell Biol 2019; 112:1-7. [PMID: 31042549 DOI: 10.1016/j.biocel.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms governing the contraction of airway smooth muscle have always been at the forefront of asthma research. New extracellular molecules affecting the contraction of airway smooth muscle are steadily being discovered. Although interesting, this is disconcerting for researchers trying to find a mend for the significant part of asthma symptoms caused by contraction. Additional efforts are being deployed to understand the intracellular signaling pathways leading to contraction. The goal being to find common pathways that are essential to convey the contractile signal emanating from any single or combination of extracellular molecules. Not only these pathways exist and their details are being slowly unveiled, but some carry the signal inside-out to interact back with extracellular molecules. These latter represent targets with promising therapeutic potential, not only because they are molecules downstream of pathways essential for contraction but also because their extracellular location makes them readily accessible by inhaled drugs.
Collapse
|
24
|
Xie Y, Perrino BA. Quantitative in situ proximity ligation assays examining protein interactions and phosphorylation during smooth muscle contractions. Anal Biochem 2019; 577:1-13. [PMID: 30981700 DOI: 10.1016/j.ab.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Antibody-based in situ proximity ligation assays (isPLA) have the potential to study protein phosphorylation and protein interactions with spatial resolution in intact tissues. However, the application of isPLA at the tissue level is limited by a lack of appropriate positive and negative controls and the difficulty in accounting for changes in tissue shape. Here we demonstrate a set of experimental and computational approaches using gastric fundus smooth muscles to improve the validity of quantitative isPLA. Appropriate positive and negative biological controls and PLA technical controls were selected to ensure experimental rigor. To account for changes in morphology between relaxed and contracted smooth muscles, target PLA spots were normalized to smooth muscle myosin light chain 20 PLA spots or the cellular cross-sectional areas. We describe the computational steps necessary to filter out false-positive improperly sized spots and set the thresholds for counting true positive PLA spots to quantify the PLA signals. We tested our approach by examining protein phosphorylation and protein interactions in smooth muscle myofilament Ca2+ sensitization pathways from resting and contracted gastric fundus smooth muscles. In conclusion, our tissue-level isPLA method enables unbiased quantitation of protein phosphorylation and protein-protein interactions in intact smooth muscle tissues, suggesting the potential for quantitative isPLA applications in other types of intact tissues.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
25
|
Zhang W, Gunst SJ. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness. ACTA ACUST UNITED AC 2019; 2. [PMID: 32270135 PMCID: PMC7141576 DOI: 10.1115/1.4042775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The smooth muscle of the airways is exposed to continuously changing mechanical
forces during normal breathing. The mechanical oscillations that occur during
breathing have profound effects on airway tone and airway responsiveness both in
experimental animals and humans in vivo and in isolated airway tissues in vitro.
Experimental evidence suggests that alterations in the contractile and
mechanical properties of airway smooth muscle tissues caused by mechanical
perturbations result from adaptive changes in the organization of the
cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a
dynamic structure that undergoes rapid reorganization in response to external
mechanical and pharmacologic stimuli. Contractile stimulation initiates the
assembly of cytoskeletal/extracellular matrix adhesion complex proteins into
large macromolecular signaling complexes (adhesomes) that undergo activation to
mediate the polymerization and reorganization of a submembranous network of
actin filaments at the cortex of the cell. Cortical actin polymerization is
catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the
Arp2/3 complex, which are activated by pathways regulated by paxillin and the
small GTPase, cdc42. These processes create a strong and rigid cytoskeletal
framework that may serve to strengthen the membrane for the transmission of
force generated by the contractile apparatus to the extracellular matrix, and to
enable the adaptation of smooth muscle cells to mechanical stresses. This model
for the regulation of airway smooth muscle function can provide novel
perspectives to explain the normal physiologic behavior of the airways and
pathophysiologic properties of the airways in asthma.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
26
|
Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, Afford S, Gaston K, Jayaraman PS, Satayavivad J. CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism. Cancers (Basel) 2018; 10:E283. [PMID: 30142881 PMCID: PMC6162756 DOI: 10.3390/cancers10090283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α' catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings.
Collapse
Affiliation(s)
- Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Philip Kitchen
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|
27
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Zhang W, Gunst SJ. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction. J Physiol 2017; 595:4279-4300. [PMID: 28303576 DOI: 10.1113/jp273906] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. ABSTRACT The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. RhoA inactivation selectively inhibited phosphorylation of the NM myosin regulatory light chain (RLC), NM myosin filament assembly and contraction, although it did not inhibit SM RLC phosphorylation. We conclude that the assembly and activation of NM myosin II is regulated during contractile stimulation of airway SM tissues by RhoA-mediated NM myosin RLC phosphorylation and by NM myosin heavy chain Ser1943 phosphorylation. NM myosin II actomyosin cross-bridge cycling regulates the assembly of membrane adhesome complexes that mediate the cytoskeletal processes required for tension generation. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
29
|
Jacob AE, Amack JD, Turner CE. Paxillin genes and actomyosin contractility regulate myotome morphogenesis in zebrafish. Dev Biol 2017; 425:70-84. [PMID: 28315297 DOI: 10.1016/j.ydbio.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023]
Abstract
Paxillin (Pxn) is a key adapter protein and signaling regulator at sites of cell-extracellular matrix (ECM) adhesion. Here, we investigated the role of Pxn during vertebrate development using the zebrafish embryo as a model system. We have characterized two Pxn genes, pxna and pxnb, in zebrafish that are maternally supplied and expressed in multiple tissues. Gene editing and antisense gene knockdown approaches were used to uncover Pxn functions during zebrafish development. While mutation of either pxna or pxnb alone did not cause gross embryonic phenotypes, double mutants lacking maternally supplied pxna or pxnb displayed defects in cardiovascular, axial, and skeletal muscle development. Transient knockdown of Pxn proteins resulted in similar defects. Irregular myotome shape and ECM composition were observed, suggesting an "inside-out" signaling role for Paxillin genes in the development of myotendinous junctions. Inhibiting non-muscle Myosin-II during somitogenesis altered the subcellular localization of Pxn protein and phenocopied pxn gene loss-of-function. This indicates that Paxillin genes are effectors of actomyosin contractility-driven morphogenesis of trunk musculature in zebrafish. Together, these results reveal new functions for Pxn during muscle development and provide novel genetic models to elucidate Pxn functions.
Collapse
Affiliation(s)
- Andrew E Jacob
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, United States.
| |
Collapse
|