1
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Lemery R. Historical Perspective of the Cardiac Autonomic Nervous System. Card Electrophysiol Clin 2024; 16:219-227. [PMID: 39084715 DOI: 10.1016/j.ccep.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The contemporary history of the cardiac autonomic nervous system includes early descriptions of neuroanatomy in the 19th century, followed by an understanding of the physiologic determinants of neurocardiology in the 20th century. Neurology and cardiology preceded the arrival of clinical cardiac electrophysiology, a specialized field in medicine devoted to the diagnosis and treatment of cardiac arrhythmias. The rapid growth in pharmacology, ablation, pacing and defibrillation, associated with significant technological breakthroughs, have resulted in new opportunities for neuromodulation in the 21st century. Small changes in autonomic tone can potentially provide important therapeutic benefits for patients with cardiac and arrhythmia disorders.
Collapse
Affiliation(s)
- Robert Lemery
- Cardiology and Medical History, 835 René-Lévesque E, Montréal, Québec, Canada, H2L 4V5.
| |
Collapse
|
3
|
Valenti VE, Vanderlei LCM, Godoy MF. Editorial: Understanding the role of the autonomic nervous system in health and disease. Front Neurosci 2024; 18:1446832. [PMID: 38988771 PMCID: PMC11233752 DOI: 10.3389/fnins.2024.1446832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Vitor E Valenti
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília, Brazil
| | - Luiz Carlos M Vanderlei
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, Brazil
| | - Moacir F Godoy
- Transdisciplinary Nucleus for the Study of Chaos and Complexity, NUTECC, São José do Rio Preto Medical School, FAMERP, São José do Rio Preto, Brazil
| |
Collapse
|
4
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Messina G, Monda A, Messina A, Di Maio G, Monda V, Limone P, Dipace A, Monda M, Polito R, Moscatelli F. Relationship between Non-Invasive Brain Stimulation and Autonomic Nervous System. Biomedicines 2024; 12:972. [PMID: 38790934 PMCID: PMC11117478 DOI: 10.3390/biomedicines12050972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) approaches have seen a rise in utilization in both clinical and basic neuroscience in recent years. Here, we concentrate on the two methods that have received the greatest research: transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS). Both approaches have yielded pertinent data regarding the cortical excitability in subjects in good health as well as pertinent advancements in the management of various clinical disorders. NIBS is a helpful method for comprehending the cortical control of the ANS. Previous research has shown that there are notable changes in muscular sympathetic nerve activity when the motor cortex is modulated. Furthermore, in NIBS investigations, the ANS has been employed more frequently as an outcome measure to comprehend the overall impacts of these methods, including their safety profile. Though there is ample proof that brain stimulation has autonomic effects on animals, new research on the connection between NIBS and the ANS has produced contradictory findings. In order to better understand NIBS processes and ANS function, it is crucial to take into account the reciprocal relationship that exists between central modulation and ANS function.
Collapse
Affiliation(s)
- Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (A.M.); (G.D.M.); (M.M.)
| | - Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Telematic University, 00166 Rome, Italy;
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (A.M.); (G.D.M.); (M.M.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (A.M.); (G.D.M.); (M.M.)
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Pierpaolo Limone
- Department of Psychology and Education, Pegaso Telematic University, 80143 Naples, Italy; (P.L.); (A.D.)
| | - Anna Dipace
- Department of Psychology and Education, Pegaso Telematic University, 80143 Naples, Italy; (P.L.); (A.D.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (A.M.); (G.D.M.); (M.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, 80143 Naples, Italy;
| |
Collapse
|
6
|
Jiang W, Yin Y, Gu X, Zhang Z, Ma H. Opportunities and challenges of pain-related myocardial ischemia-reperfusion injury. Front Physiol 2022; 13:900664. [PMID: 36117689 PMCID: PMC9481353 DOI: 10.3389/fphys.2022.900664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pain is one of the most serious problems plaguing human health today. Pain is not an independent pathophysiological condition and is associated with a high impact on elevated disability and organ dysfunction. Several lines of evidence suggested the associations of pain with cardiovascular diseases, especially myocardial ischemia-reperfusion (I/R) injury, while the role of pain in I/R injury and related mechanisms are not yet comprehensively assessed. In this review, we attempted to explore the role of pain in myocardial I/R injury, and we concluded that acute pain protects myocardial ischemia-reperfusion injury and chronic pain aggravates cardiac ischemia-reperfusion injury. In addition, the construction of different pain models and animal models commonly used to study the role of pain in myocardial I/R injury were discussed in detail, and the potential mechanism of pain-related myocardial I/R injury was summarized. Finally, the future research direction was prospected. That is, the remote regulation of pain to cardiac function requires peripheral pain signals to be transmitted from the peripheral to the cardiac autonomic nervous system, which then affects autonomic innervation during cardiac ischemia-reperfusion injury and finally affects the cardiac function.
Collapse
Affiliation(s)
- Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| | - Heng Ma
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| |
Collapse
|
7
|
Aras K, Gams A, Faye R, Brennan J, Goldrick K, Li J, Zhong Y, Chiang CH, Smith EH, Poston MD, Chivers J, Hanna P, Mori S, Ajijola OA, Shivkumar K, Hoover DB, Viventi J, Rogers JA, Bernus O, Efimov IR. Electrophysiology and Arrhythmogenesis in the Human Right Ventricular Outflow Tract. Circ Arrhythm Electrophysiol 2022; 15:e010630. [PMID: 35238622 PMCID: PMC9052172 DOI: 10.1161/circep.121.010630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Right ventricular outflow tract (RVOT) is a common source of ventricular tachycardia, which often requires ablation. However, the mechanisms underlying the RVOT's unique arrhythmia susceptibility remain poorly understood due to lack of detailed electrophysiological and molecular studies of the human RVOT. METHODS We conducted optical mapping studies in 16 nondiseased donor human RVOT preparations subjected to pharmacologically induced adrenergic and cholinergic stimulation to evaluate susceptibility to arrhythmias and characterize arrhythmia dynamics. RESULTS We found that under control conditions, RVOT has shorter action potential duration at 80% repolarization relative to the right ventricular apical region. Treatment with isoproterenol (100 nM) shortened action potential duration at 80% repolarization and increased incidence of premature ventricular contractions (P=0.003), whereas acetylcholine (100 μM) stimulation alone had no effect on action potential duration at 80% repolarization or premature ventricular contractions. However, acetylcholine treatment after isoproterenol stimulation reduced the incidence of premature ventricular contractions (P=0.034) and partially reversed action potential duration at 80% repolarization shortening (P=0.029). Immunolabeling of RVOT (n=4) confirmed the presence of cholinergic marker VAChT (vesicular acetylcholine transporter) in the region. Rapid pacing revealed RVOT susceptibility to both concordant and discordant alternans. Investigation into transmural arrhythmia dynamics showed that arrhythmia wave fronts and phase singularities (rotors) were relatively more organized in the endocardium than in the epicardium (P=0.006). Moreover, there was a weak but positive spatiotemporal autocorrelation between epicardial and endocardial arrhythmic wave fronts and rotors. Transcriptome analysis (n=10 hearts) suggests a trend that MAPK (mitogen-activated protein kinase) signaling, calcium signaling, and cGMP-PKG (protein kinase G) signaling are among the pathways that may be enriched in the male RVOT, whereas pathways of neurodegeneration may be enriched in the female RVOT. CONCLUSIONS Human RVOT electrophysiology is characterized by shorter action potential duration relative to the right ventricular apical region. Cholinergic right ventricular stimulation attenuates the arrhythmogenic effects of adrenergic stimulation, including increase in frequency of premature ventricular contractions and shortening of wavelength. Right ventricular arrhythmia is characterized by positive spatial-temporal autocorrelation between epicardial-endocardial arrhythmic wave fronts and rotors that are relatively more organized in the endocardium.
Collapse
Affiliation(s)
- Kedar Aras
- Department of Biomedical Engineering, the George Washington University, Washington, DC
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH
| | - Anna Gams
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Rokhaya Faye
- Department of Biomedical Engineering, the George Washington University, Washington, DC
- LIRYC Institute, Bordeaux University, France
| | - Jaclyn Brennan
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Katherine Goldrick
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| | - Jinghua Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH
| | - Yishan Zhong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Megan D. Poston
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Jacqueline Chivers
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA
| | - Donald B. Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - John A. Rogers
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | | | - Igor R. Efimov
- Department of Biomedical Engineering, the George Washington University, Washington, DC
| |
Collapse
|
8
|
McIntosh RC, Lobo JD, Yang A, Schneiderman N. Brainstem network connectivity with mid-anterior insula predicts lower systolic blood pressure at rest in older adults with hypertension. J Hum Hypertens 2021; 35:1098-1108. [PMID: 33462388 PMCID: PMC8919345 DOI: 10.1038/s41371-020-00476-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Central regulation of heart rate and blood pressure provides the bases for a neurogenic mechanism of hypertension (HTN). Post menopause (PM) age coincides with changes in resting state functional brain connectivity (rsFC) as well as increased risk for HTN. Whether the neural networks underpinning cardioautonomic control differ between PM women with and without HTN is unclear. Phenotypic and functional neuroimaging data from the Nathan Kline Institute was first evaluated for group differences in intrinsic network connectivity between 22 HTN post menopausal women and 22 normotensive controls. Intrinsic rsFC of the midbrain-brainstem-cerebellar network with bilateral mid-anterior insula was lower in women with HTN (FWE-corrected, p < 0.05). Z-scores indicating rsFC of these regions were extracted from the 44 PM women and a cohort of 111 adults, not presenting with metabolic or neurodegenerative disease, and compared to in-office systolic and diastolic blood pressure. Lower rsFC of the left (r = -0.17, p = 0.019) and right (r = -0.14, p = 0.048) mid-anterior insula with brainstem nuclei was associated with higher systolic blood pressure in the combined sample. The magnitude of this effect in men and women of post menopausal age supports a neurogenic mechanism for blood pressure regulation in older adults with HTN.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | - Judith D Lobo
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Anting Yang
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
9
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
10
|
Cao LL, Marshall JM, Fabritz L, Brain KL. Resting cardiac sympathetic firing frequencies suppress terminal norepinephrine transporter uptake. Auton Neurosci 2021; 232:102794. [PMID: 33714751 DOI: 10.1016/j.autneu.2021.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The prejunctional norepinephrine transporter (NET) is responsible for the clearance of released norepinephrine (NE) back into the sympathetic nerve terminal. NET regulation must be tightly controlled as variations could have important implications for neurotransmission. Thus far, the effects of sympathetic neuronal activity on NET function have been unclear. Here, we optically monitor single-terminal cardiac NET activity ex vivo in response to a broad range of sympathetic postganglionic action potential (AP) firing frequencies. Isolated murine left atrial appendages were loaded with a fluorescent NET substrate [Neurotransmitter Transporter Uptake Assay (NTUA)] and imaged with confocal microscopy. Sympathetic APs were induced with electrical field stimulation at 0.2-10 Hz (0.1-0.2 ms pulse width). Exogenous NE was applied during the NTUA uptake- and washout phases to investigate substrate competition and displacement, respectively, on transport. Single-terminal NET reuptake rate was rapidly suppressed in a frequency-dependent manner with an inhibitory EF50 of 0.9 Hz. At 2 Hz, the effect was reversed by the α2-adrenoceptor antagonist yohimbine (1 μM) (p < 0.01) with no further effect imposed by the muscarinic receptor antagonist atropine (1 μM). Additionally, high exogenous NE concentrations abolished NET reuptake (1 μM NE; p < 0.0001) and displaced terminal specific NTUA during washout (1-100 μM NE; p < 0.0001). We have also identified α2-adrenoceptor-induced suppression of NET reuptake rate during resting stimulation frequencies, which could oppose the effect of autoinhibition-mediated suppression of exocytosis and thus amplify the effects of sympathetic drive on cardiac function.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Dissanayake HU, Bin YS, Ucak S, de Chazal P, Sutherland K, Cistulli PA. Association between autonomic function and obstructive sleep apnea: A systematic review. Sleep Med Rev 2021; 57:101470. [PMID: 33839505 DOI: 10.1016/j.smrv.2021.101470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/31/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea (OSA) is an independent risk factor for hypertension and cardiovascular disease. Effects of OSA on the autonomic nervous system may mediate this association. We performed a systematic literature review to determine the profile of autonomic function associated with OSA. Three electronic databases were searched for studies of OSA patients aged ≥18 years in which autonomic function was assessed. Studies comparing patients with and without OSA, or examining the association of OSA severity with changes in autonomic function were included. Seventy-one studies met the inclusion criteria and autonomic function has been assessed using a range of techniques. The profile of autonomic function found in OSA include increased sympathetic activity, reduced parasympathetic activity and less consistently found low heart rate variability. Altered autonomic function in OSA may explain the pathophysiology of increased cardiovascular risk. Evidence from intervention studies is required to determine if treatment improves autonomic function associated with OSA.
Collapse
Affiliation(s)
- Hasthi U Dissanayake
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia.
| | - Yu S Bin
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Seren Ucak
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia
| | - Philip de Chazal
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kate Sutherland
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia; Centre for Sleep Health & Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| | - Peter A Cistulli
- Sleep Research Group, Charles Perkins Centre, The University of Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Australia; Centre for Sleep Health & Research, Department of Respiratory Medicine, Royal North Shore Hospital, Australia
| |
Collapse
|
12
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
13
|
Cardiac Autonomic Control in Women with Rheumatoid Arthritis During the Glittre Activities of Daily Living Test. Asian J Sports Med 2020. [DOI: 10.5812/asjsm.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cardiovascular autonomic dysfunction is one of the most common complications in rheumatoid arthritis (RA), which can be assessed by heart rate variability (HRV) analysis. Because the autonomic nervous system plays an important role in orchestrating the cardiovascular response to stressors, assessing HRV during exercise is critical. The Glittre Activities of Daily Living test (GA-T) was recently proposed as a multitask field test that requires the performance of the upper and lower limbs, both of which are affected in individuals with RA. Objectives: This study was conducted to evaluate autonomic impairment by HRV in women with RA using the GA-T and to correlate these changes with physical functioning and muscle strength. Methods: This cross-sectional study enrolled 20 women (median [interquartile range]: age 55 [47.5 - 68.8] years) with RA (time since diagnosis: 15 [6.50 - 23.5] years) who underwent HRV assessment during GA-T. They also underwent physical functioning assessment through the Health Assessment Questionnaire Disability Index (HAQ-DI) and handgrip strength (HGS) and quadriceps strength (QS) measures. Results: The GA-T time exhibited significant correlations with the following HRV indices: root mean square of successive differences (RMSSD, rs = -0.451, P = 0.041), proportion of iRR differing by > 50 ms from previous intervals (pNN50, rs = -0.697, P = 0.0006), high frequency (HF, rs = -0.693, P = 0.0007), standard deviation of the points perpendicular to the line-of-identity (SD1, rs = -0.476, P = 0.034), and approximate entropy (ApEn, rs = 0.545, P = 0.013). In addition, the HAQ-DI exhibited significant correlations with the following HRV indices: pNN50 (rs = -0.467, P = 0.038) and HF (rs = -0.444, P = 0.049). We did not observe significant correlation between the HRV indices during the GA-T and the muscle strength measures (HGS and QS). Conclusions: In women with RA, the longer the required to perform the GA-T the worse their parasympathetic modulation, sympathetic-vagal imbalance, and complexity of the autonomic nervous system (i.e., increased index of ApEn) were. Physical functioning level was also related to vagal modulation.
Collapse
|
14
|
McIntosh RC, Hoshi RA, Timpano KR. Take my breath away: Neural activation at breath-hold differentiates individuals with panic disorder from healthy controls. Respir Physiol Neurobiol 2020; 277:103427. [PMID: 32120012 DOI: 10.1016/j.resp.2020.103427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
There is neuroanatomical evidence of an "extended fear network" of brain structures involved in the etiology of panic disorder (PD). Although ventilatory distrubance is a primary symptom of PD these sensations may also trigger onset of a panic attack (PA). Here, a voluntary breath-holding paradigm was used to mimic the hypercapnia state in order to compare blood oxygen level-dependent (BOLD) response, at the peak of a series of 18 s breath-holds, of 21 individuals with PD to 21 low anxiety matched controls. Compared to the rest condition, BOLD activity at the peak (12 - 18 s) of the breath-hold was greater for PD versus controls within a number of structures implicated in the extended fear network, including hippocampus, thalamus, and brainstem. Activation was also observed in cortical structures that are shown to be involved in interoceptive and self-referential processing, such as right insula, middle frontal gyrus, and precuneus/posterior cingulate. In lieu of amygdala activation, our findings show elevated activity throughout an extended network of cortical and subcortical structures involved in contextual, interoceptive and self-referential processing when individuals with PD engage in voluntary breath-holding.
Collapse
Affiliation(s)
- R C McIntosh
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States.
| | - R A Hoshi
- Clinical and Epidemiological Research Center, Sao Paulo University. 2565 Professor Lineu Prestes Ave, Sao Paulo, 05508-000, Brazil
| | - K R Timpano
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States
| |
Collapse
|
15
|
Cao LL, Holmes AP, Marshall JM, Fabritz L, Brain KL. Dynamic monitoring of single-terminal norepinephrine transporter rate in the rodent cardiovascular system: A novel fluorescence imaging method. Auton Neurosci 2020; 223:102611. [PMID: 31901784 PMCID: PMC6977090 DOI: 10.1016/j.autneu.2019.102611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Here, we validate the use of a novel fluorescent norepinephrine transporter (NET) substrate for dynamic measurements of transporter function in rodent cardiovascular tissue; this technique avoids the use of radiotracers and provides single-terminal resolution. Rodent (Wistar rats and C57BL/6 mice) hearts and mesenteric arteries (MA) were isolated, loaded with NET substrate Neurotransmitter Transporter Uptake Assay (NTUA) ex vivo and imaged with confocal microscopy. NTUA labelled noradrenergic nerve terminals in all four chambers of the heart and on the surface of MA. In all tissues, a temperature-dependent, stable linear increase in intra-terminal fluorescence upon NTUA exposure was observed; this was abolished by NET inhibitor desipramine (1 μM) and reversed by indirectly-acting sympathomimetic amine tyramine (10 μM). NET reuptake rates were similar across the mouse cardiac chambers. In both species, cardiac NET activity was significantly greater than in MA (by 62 ± 29% (mouse) and 21 ± 16% (rat)). We also show that mouse NET reuptake rate was twice as fast as that in the rat (for example, in the heart, by 94 ± 30%). Finally, NET reuptake rate in the mouse heart was attenuated with muscarinic agonist carbachol (10 μM) thus demonstrating the potential for parasympathetic regulation of norepinephrine clearance. Our data provide the first demonstration of monitoring intra-terminal NET function in rodent cardiovascular tissue. This straightforward method allows dynamic measurements of transporter rate in response to varying physiological conditions and drug treatments; this offers the potential to study new mechanisms of sympathetic dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Andrew P Holmes
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
16
|
Duyn JH, Ozbay PS, Chang C, Picchioni D. Physiological changes in sleep that affect fMRI inference. Curr Opin Behav Sci 2019; 33:42-50. [PMID: 32613032 DOI: 10.1016/j.cobeha.2019.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
fMRI relies on a localized cerebral blood flow (CBF) response to changes in cortical neuronal activity. An underappreciated aspect however is its sensitivity to contributions from autonomic physiology that may affect CBF through changes in vascular resistance and blood pressure. As is reviewed here, this is crucial to consider in fMRI studies of sleep, given the close linkage between the regulation of arousal state and autonomic physiology. Typical methods for separating these effects are based on the use of reference signals that may include physiological parameters such as heart rate and respiration; however, the use of time-invariant models may not be adequate due to the possibly changing relationship between reference and fMRI signals with arousal state. In addition, recent research indicates that additional physiological reference signals may be needed to accurately describe changes in systemic physiology, including sympathetic indicators such as finger skin vascular tone and blood pressure.
Collapse
Affiliation(s)
- Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Pinar S Ozbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University
| | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
17
|
Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 2018; 595:3919-3930. [PMID: 28240352 DOI: 10.1113/jp273120] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The audience of basic and clinical scientists is familiar with the notion that the sympathetic nervous system controls heart function during stresses. However, evidence indicates that the neurogenic control of the heart spans from the maintenance of housekeeping functions in resting conditions to the recruitment of maximal performance, in the fight-or-flight responses, across a whole range of intermediate states. To perform such sophisticated functions, sympathetic ganglia integrate both peripheral and central inputs, and transmit information to the heart via 'motor' neurons, directly interacting with target cardiomyocytes. To date, the dynamics and mode of communication between these two cell types, which determine how neuronal information is adequately translated into the wide spectrum of cardiac responses, are still blurry. By combining the anatomical and structural information brought to light by recent imaging technologies and the functional evidence in cellular systems, we focus on the interface between neurons and cardiomyocytes, and advocate the existence of a specific 'neuro-cardiac junction', where sympathetic neurotransmission occurs in a 'quasi-synaptic' way. The properties of such junctional-type communication fit well with those of the physiological responses elicited by the cardiac sympathetic nervous system, and explain its ability to tune heart function with precision, specificity and elevated temporal resolution.
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Cardiac, Thoracic and Vascular Sciences, via Giustiniani 2, 35128, University of Padova, Padova, Italy.,Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy.,CNR institute of Neurosciences, viale Colombo 3, 35133, Padova, Italy
| |
Collapse
|
18
|
Kingma JG, Simard D, Rouleau JR. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. World J Cardiol 2017; 9:508-520. [PMID: 28706586 PMCID: PMC5491468 DOI: 10.4330/wjc.v9.i6.508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies.
Collapse
|
19
|
Mesquita TRR, de Jesus ICG, Dos Santos JF, de Almeida GKM, de Vasconcelos CML, Guatimosim S, Macedo FN, Dos Santos RV, de Menezes-Filho JER, Miguel-Dos-Santos R, Matos PTD, Scalzo S, Santana-Filho VJ, Albuquerque-Júnior RLC, Pereira-Filho RN, Lauton-Santos S. Cardioprotective Action of Ginkgo biloba Extract against Sustained β-Adrenergic Stimulation Occurs via Activation of M 2/NO Pathway. Front Pharmacol 2017; 8:220. [PMID: 28553225 PMCID: PMC5426084 DOI: 10.3389/fphar.2017.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
Ginkgo biloba is the most popular phytotherapic agent used worldwide for treatment of several human disorders. However, the mechanisms involved in the protective actions of Ginkgo biloba on cardiovascular diseases remain poorly elucidated. Taking into account recent studies showing beneficial actions of cholinergic signaling in the heart and the cholinergic hypothesis of Ginkgo biloba-mediated neuroprotection, we aimed to investigate whether Ginkgo biloba extract (GBE) promotes cardioprotection via activation of cholinergic signaling in a model of isoproterenol-induced cardiac hypertrophy. Here, we show that GBE treatment (100 mg/kg/day for 8 days, v.o.) reestablished the autonomic imbalance and baroreflex dysfunction caused by chronic β-adrenergic receptor stimulation (β-AR, 4.5 mg/kg/day for 8 days, i.p.). Moreover, GBE prevented the upregulation of muscarinic receptors (M2) and downregulation of β1-AR in isoproterenol treated-hearts. Additionally, we demonstrated that GBE prevents the impaired endothelial nitric oxide synthase activity in the heart. GBE also prevented the pathological cardiac remodeling, electrocardiographic changes and impaired left ventricular contractility that are typical of cardiac hypertrophy. To further investigate the mechanisms involved in GBE cardioprotection in vivo, we performed in vitro studies. By using neonatal cardiomyocyte culture we demonstrated that the antihypertrophic action of GBE was fully abolished by muscarinic receptor antagonist or NOS inhibition. Altogether, our data support the notion that antihypertrophic effect of GBE occurs via activation of M2/NO pathway uncovering a new mechanism involved in the cardioprotective action of Ginkgo biloba.
Collapse
Affiliation(s)
| | - Itamar C G de Jesus
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | - Fabrício N Macedo
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | | | | | | | - Paulo T D Matos
- Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil
| | - Sérgio Scalzo
- Departments of Physiology and Biophysics, Federal University of Minas GeraisBelo Horizonte, Brazil
| | | | | | | | | |
Collapse
|