1
|
McEwan J, Kritikos A, Zeljko M. Crossmodal correspondence of elevation/pitch and size/pitch is driven by real-world features. Atten Percept Psychophys 2024; 86:2821-2833. [PMID: 39461934 DOI: 10.3758/s13414-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Crossmodal correspondences are consistent associations between sensory features from different modalities, with some theories suggesting they may either reflect environmental correlations or stem from innate neural structures. This study investigates this question by examining whether retinotopic or representational features of stimuli induce crossmodal congruency effects. Participants completed an auditory pitch discrimination task paired with visual stimuli varying in their sensory (retinotopic) or representational (scene integrated) nature, for both the elevation/pitch and size/pitch correspondences. Results show that only representational visual stimuli produced crossmodal congruency effects on pitch discrimination. These results support an environmental statistics hypothesis, suggesting crossmodal correspondences rely on real-world features rather than on sensory representations.
Collapse
Affiliation(s)
- John McEwan
- School of Psychology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Ada Kritikos
- School of Psychology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mick Zeljko
- School of Psychology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
2
|
Alekhina M, Perkic G, Manson GA, Blouin J, Tremblay L. Using Neck Muscle Afferentation to Control an Ongoing Limb Movement? Individual Differences in the Influence of Brief Neck Vibration. Brain Sci 2023; 13:1407. [PMID: 37891776 PMCID: PMC10605713 DOI: 10.3390/brainsci13101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
When preparing and executing goal-directed actions, neck proprioceptive information is critical to determining the relative positions of the body and target in space. While the contribution of neck proprioception for upper-limb movements has been previously investigated, we could not find evidence discerning its impact on the planning vs. online control of upper-limb trajectories. To investigate these distinct sensorimotor processes, participants performed discrete reaches towards a virtual target. On some trials, neck vibration was randomly applied before and/or during the movement, or not at all. The main dependent variable was the medio-lateral/directional bias of the reaching finger. The neck vibration conditions induced early leftward trajectory biases in some participants and late rightward trajectory biases in others. These different patterns of trajectory biases were explained by individual differences in the use of body-centered and head-centered frames of reference. Importantly, the current study provides direct evidence that sensory cues from the neck muscles contribute to the online control of goal-directed arm movements, likely accompanied by significant individual differences.
Collapse
Affiliation(s)
- Maria Alekhina
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada (G.P.)
| | - Goran Perkic
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada (G.P.)
| | - Gerome Aleandro Manson
- School of Kinesiology and Health Studies, Queens University, 28 Division Street, Kingston, ON K7L 3N6, Canada
| | - Jean Blouin
- Centre National de Recherche Scientifique and Aix-Marseille University, 3 Place Victor-Hugo, 13331 Marseille CEDEX 3, France;
| | - Luc Tremblay
- Faculty of Kinesiology & Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada (G.P.)
| |
Collapse
|
3
|
Martin CZ, Lapierre P, Haché S, Lucien D, Green AM. Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics. J Neurophysiol 2021; 125:1022-1045. [PMID: 33502952 DOI: 10.1152/jn.00688.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of reach control with the body stationary have shown that proprioceptive and visual feedback signals contributing to rapid corrections during reaching are processed by neural circuits that incorporate knowledge about the physical properties of the limb (an internal model). However, among the most common spatial and mechanical perturbations to the limb are those caused by our body's own motion, suggesting that processing of vestibular signals for online reach control may reflect a similar level of sophistication. We investigated this hypothesis using galvanic vestibular stimulation (GVS) to selectively activate the vestibular sensors, simulating body rotation, as human subjects reached to remembered targets in different directions (forward, leftward, rightward). If vestibular signals contribute to purely kinematic/spatial corrections for body motion, GVS should evoke reach trajectory deviations of similar size in all directions. In contrast, biomechanical modeling predicts that if vestibular processing for online reach control takes into account knowledge of the physical properties of the limb and the forces applied on it by body motion, then GVS should evoke trajectory deviations that are significantly larger during forward and leftward reaches as compared with rightward reaches. When GVS was applied during reaching, the observed deviations were on average consistent with this prediction. In contrast, when GVS was instead applied before reaching, evoked deviations were similar across directions, as predicted for a purely spatial correction mechanism. These results suggest that vestibular signals, like proprioceptive and visual feedback, are processed for online reach control via sophisticated neural mechanisms that incorporate knowledge of limb biomechanics.NEW & NOTEWORTHY Studies examining proprioceptive and visual contributions to rapid corrections for externally applied mechanical and spatial perturbations during reaching have provided evidence for flexible processing of sensory feedback that accounts for musculoskeletal system dynamics. Notably, however, such perturbations commonly arise from our body's own motion. In line with this, we provide compelling evidence that, similar to proprioceptive and visual signals, vestibular signals are processed for online reach control via sophisticated mechanisms that incorporate knowledge of limb biomechanics.
Collapse
Affiliation(s)
- Christophe Z Martin
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Lapierre
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Haché
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Diderot Lucien
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Andrea M Green
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Lajoie K, Marigold DS, Valdés BA, Menon C. The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 2021; 152:107751. [PMID: 33434573 DOI: 10.1016/j.neuropsychologia.2021.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Noisy galvanic vestibular stimulation (nGVS) is an emerging non-invasive brain stimulation technique. It involves applying alternating currents of different frequencies and amplitudes presented in a random, or noisy, manner through electrodes on the mastoid bones behind the ears. Because it directly activates vestibular hair cells and afferents and has an indirect effect on a variety of brain regions, it has the potential to impact many different functions. The objective of this review is twofold: (1) to review how nGVS affects motor, sensory, and cognitive performance in healthy adults; and (2) to discuss potential clinical applications of nGVS. First, we introduce the technique. We then describe the regions receiving and processing vestibular information. Next, we discuss the effects of nGVS on motor, sensory, and cognitive function in healthy adults. Subsequently, we outline its potential clinical applications. Finally, we highlight other electrical stimulation technologies and discuss why nGVS offers an alternative or complementary approach. Overall, nGVS appears promising for optimizing human performance and as an assistive technology, though further research is required.
Collapse
Affiliation(s)
- Kim Lajoie
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Daniel S Marigold
- Sensorimotor Neuroscience Lab, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Bulmaro A Valdés
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.
| |
Collapse
|
5
|
Chen PY, Chou LW, Jheng YC, Huang SE, Li LPH, Yu CH, Kao CL. Development of a Computerized Device for Evaluating Vestibular Function in Locomotion: A New Evaluation Tool of Vestibular Hypofunction. Front Neurol 2020; 11:485. [PMID: 32595589 PMCID: PMC7303327 DOI: 10.3389/fneur.2020.00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
To evaluate vestibular function in the clinic, current assessments are applied under static conditions, such as with the subject in a sitting or supine position. Considering the complexities of daily activities, the combination of dynamic activities, dynamic visual acuity (DVA) and postural control could produce an evaluation that better reflects vestibular function in daily activities. Objective: To develop a novel sensor-based system to investigate DVA, walking trajectory, head and trunk movements and the chest-pelvis rotation ratio during forward and backward overground walking in both healthy individuals and patients with vestibular hypofunction. Methods: Fifteen healthy subjects and 7 patients with bilateral vestibular hypofunction (BVH) were recruited for this study. Inertial measurement units were placed on each subject's head and torso. Each subject walked forward and backward for 5 m twice with 2 Hz head yaw. Our experiment comprised 2 stages. In stage 1, we measured forward (FW), backward (BW), and medial-lateral (MLW) walking trajectories; head and trunk movements; and the chest-pelvis rotation ratio. In stage 2, we measured standing and locomotion DVA (loDVA). Using Mann–Whitney U-test, we compared the abovementioned parameters between the 2 groups. Results: Patients exhibited an in-phase chest/pelvis reciprocal rotation ratio only in FW. The walking trajectory deviation, calculated by normalizing the summation of medial-lateral swaying with 1/2 body height (%), was significantly larger (FW mean ± standard deviation: 20.4 ± 7.1% (median (M)/interquartile range (IQR): 19.3/14.4–25.2)in healthy vs. 43.9 ± 27. 3% (M/IQR: 36.9/21.3–56.9) in patients, p = 0.020)/(BW mean ± standard deviation: 19.2 ± 11.5% (M/IQR: 13.6/10.4–25.3) in healthy vs. 29.3 ± 6.4% (M/IQR: 27.7/26.5–34.4) in patients, p = 0.026), and the walking DVA was also significantly higher (LogMAR score in the patient group [FW LogMAR: rightDVA: mean ± standard deviation:0.127 ± 0.081 (M/IQR: 0.127/0.036–0.159) in healthy vs. 0.243 ± 0.101 (M/IQR: 0.247/0.143–0.337) in patients (p = 0.013) and leftDVA: 0.136 ± 0.096 (M/IQR: 0.127/0.036–0.176) in healthy vs. 0.258 ± 0.092 (M/IQR: 0.247/0.176–0.301) in patients (p = 0.016); BW LogMAR: rightDVA: mean ± standard deviation: 0.162 ± 0.097 (M/IQR: 0.159/0.097–0.273) in healthy vs. 0.281 ± 0.130 (M/IQR: 0.273/0.176–0.418) in patients(p = 0.047) and leftDVA: 0.156 ± 0.101 (M/IQR: 0.159/0.097–0.198) in healthy vs. 0.298 ± 0.153 (M/IQR: 0.2730/0.159–0.484) in patients (p = 0.038)]. Conclusions: Our sensor-based vestibular evaluation system provided a more functionally relevant assessment for the identification of BVH patients.
Collapse
Affiliation(s)
- Po-Yin Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Chun Jheng
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-En Huang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lieber Po-Hung Li
- Department of Otolaryngology, Cheng Hsin General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Brain Science, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chung-Huang Yu
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
6
|
Guillaud E, Faure C, Doat E, Bouyer LJ, Guehl D, Cazalets JR. Ancestral persistence of vestibulospinal reflexes in axial muscles in humans. J Neurophysiol 2020; 123:2010-2023. [PMID: 32319843 DOI: 10.1152/jn.00421.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Most studies addressing the role of vestibulospinal reflexes in balance maintenance have mainly focused on responses in the lower limbs, while limited attention has been paid to the output in trunk and back muscles. To address this issue, we tested whether electromyographic (EMG) responses to galvanic vestibular stimulations (GVS) were modulated similarly in back and leg muscles, in situations where the leg muscle responses to GVS are known to be attenuated. Body sway and surface EMG signals were recorded in the paraspinal and limb muscles of humans (n = 19) under three complementary conditions. During treadmill locomotion, EMG responses in the lower limbs were observed only during stance, whereas responses in trunk muscles were observed during all phases of the locomotor cycle. During upright standing, a slight head contact abolished the responses in the lower limbs, while the responses remained present in back muscles. Similarly, during parabolic flight-induced microgravity, EMG responses in lower limb muscles were suppressed but remained in axial muscles despite the abolished gravitational otolithic drive. Our results suggest a differentiated control of axial and appendicular muscles when a perturbation is detected by vestibular inputs. The persistence and low modulation of axial muscle responses suggests that a hard-wired reflex is functionally efficient to maintain posture. By contrast, the ankle responses to GVS occur only in balance tasks when proprioceptive feedback is congruent. This study using GVS in microgravity is the first to present an approach delineating feedforward vestibular control in unconstrained environment.NEW & NOTEWORTHY This study addresses the extent of conservation of trunk muscle control in humans. Results show that galvanic vestibular stimulation-evoked vestibular responses in trunk muscles remain strong in conditions where leg muscle responses are downmodulated (walking, standing, microgravity). This suggests a phylogenetically conserved blueprint of sensorimotor organization, with strongly hardwired vestibulospinal inputs to axial motoneurons and a higher degree of flexibility in the later emerging limb control system.
Collapse
Affiliation(s)
- Etienne Guillaud
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
| | - Céline Faure
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS UMR 5287, Bordeaux, France.,Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Emilie Doat
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
| | - Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (CIRRIS), Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Dominique Guehl
- CHU de Bordeaux, Service d'explorations fonctionnelles du système nerveux, Bordeaux, France
| | - Jean-René Cazalets
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, CNRS UMR 5287, Bordeaux, France
| |
Collapse
|
7
|
Blouin J, Saradjian AH, Pialasse JP, Manson GA, Mouchnino L, Simoneau M. Two Neural Circuits to Point Towards Home Position After Passive Body Displacements. Front Neural Circuits 2019; 13:70. [PMID: 31736717 PMCID: PMC6831616 DOI: 10.3389/fncir.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
A challenge in motor control research is to understand the mechanisms underlying the transformation of sensory information into arm motor commands. Here, we investigated these transformation mechanisms for movements whose targets were defined by information issued from body rotations in the dark (i.e., idiothetic information). Immediately after being rotated, participants reproduced the amplitude of their perceived rotation using their arm (Experiment 1). The cortical activation during movement planning was analyzed using electroencephalography and source analyses. Task-related activities were found in regions of interest (ROIs) located in the prefrontal cortex (PFC), dorsal premotor cortex, dorsal region of the anterior cingulate cortex (ACC) and the sensorimotor cortex. Importantly, critical regions for the cognitive encoding of space did not show significant task-related activities. These results suggest that arm movements were planned using a sensorimotor-type of spatial representation. However, when a 8 s delay was introduced between body rotation and the arm movement (Experiment 2), we found that areas involved in the cognitive encoding of space [e.g., ventral premotor cortex (vPM), rostral ACC, inferior and superior posterior parietal cortex (PPC)] showed task-related activities. Overall, our results suggest that the use of a cognitive-type of representation for planning arm movement after body motion is necessary when relevant spatial information must be stored before triggering the movement.
Collapse
Affiliation(s)
- Jean Blouin
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Anahid H Saradjian
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | | | - Gerome A Manson
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France.,Centre for Motor Control, University of Toronto, Toronto, ON, Canada
| | - Laurence Mouchnino
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Martin Simoneau
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Québec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Québec, QC, Canada
| |
Collapse
|
8
|
Oostwoud Wijdenes L, van Beers RJ, Medendorp WP. Vestibular modulation of visuomotor feedback gains in reaching. J Neurophysiol 2019; 122:947-957. [DOI: 10.1152/jn.00616.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Humans quickly and sophisticatedly correct their movements in response to changes in the world, such as when reaching to a target that abruptly changes its location. The vigor of these movement corrections is time-dependent, increasing if the time left to make the correction decreases, which can be explained by optimal feedback control (OFC) theory as an increase of optimal feedback gains. It is unknown whether corrections for changes in the world are as sophisticated under full-body motion. For successful visually probed motor corrections during full-body motion, not only the motion of the hand relative to the body needs to be taken into account, but also the motion of the hand in the world should be considered, because their relative positions are changing. Here, in two experiments, we show that visuomotor feedback corrections in response to target jumps are more vigorous for faster passive full-body translational acceleration than for slower acceleration, suggesting that vestibular information modulates visuomotor feedback gains. Interestingly, these corrections do not demonstrate the time-dependent characteristics that body-stationary visuomotor feedback gains typically show, such that an optimal feedback control model fell short to explain them. We further show that the vigor of corrections generally decreased over the course of trials within the experiment, suggesting that the sensorimotor system adjusted its gains when learning to integrate the vestibular input into hand motor control. NEW & NOTEWORTHY Vestibular information is used in the control of reaching movements to world-stationary visual targets, while the body moves. Here, we show that vestibular information also modulates the corrective reach responses when the target changes position during the body motion: visuomotor feedback gains increase for faster body acceleration. Our results suggest that vestibular information is integrated into fast visuomotor control of reaching movements.
Collapse
Affiliation(s)
- Leonie Oostwoud Wijdenes
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Robert J. van Beers
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W. Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Bakker RS, Selen LPJ, Medendorp WP. Transformation of vestibular signals for the decisions of hand choice during whole body motion. J Neurophysiol 2019; 121:2392-2400. [PMID: 31017838 DOI: 10.1152/jn.00470.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In daily life, we frequently reach toward objects while our body is in motion. We have recently shown that body accelerations influence the decision of which hand to use for the reach, possibly by modulating the body-centered computations of the expected reach costs. However, head orientation relative to the body was not manipulated, and hence it remains unclear whether vestibular signals contribute in their head-based sensory frame or in a transformed body-centered reference frame to these cost calculations. To test this, subjects performed a preferential reaching task to targets at various directions while they were sinusoidally translated along the lateral body axis, with their head either aligned with the body (straight ahead) or rotated 18° to the left. As a measure of hand preference, we determined the target direction that resulted in equiprobable right/left-hand choices. Results show that head orientation affects this balanced target angle when the body is stationary but does not further modulate hand preference when the body is in motion. Furthermore, reaction and movement times were larger for reaches to the balanced target angle, resembling a competitive selection process, and were modulated by head orientation when the body was stationary. During body translation, reaction and movement times depended on the phase of the motion, but this phase-dependent modulation had no interaction with head orientation. We conclude that the brain transforms vestibular signals to body-centered coordinates at the early stage of reach planning, when the decision of hand choice is computed. NEW & NOTEWORTHY The brain takes inertial acceleration into account in computing the anticipated biomechanical costs that guide hand selection during whole body motion. Whereas these costs are defined in a body-centered, muscle-based reference frame, the otoliths detect the inertial acceleration in head-centered coordinates. By systematically manipulating head position relative to the body, we show that the brain transforms otolith signals into body-centered coordinates at an early stage of reach planning, i.e., before the decision of hand choice is computed.
Collapse
Affiliation(s)
- Romy S Bakker
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - Luc P J Selen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| |
Collapse
|
10
|
Kennefick M, Burma JS, van Donkelaar P, McNeil CJ. The Time Course of Motoneuronal Excitability during the Preparation of Complex Movements. J Cogn Neurosci 2019; 31:781-790. [PMID: 30883285 DOI: 10.1162/jocn_a_01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For a simple RT task, movement complexity increases RT and also corticospinal excitability, as measured by the motor evoked potential (MEP) elicited by TMS of the motor cortex. However, it is unknown if complexity-related increases in corticospinal excitability during the preparation of movement are mediated at the cortical or spinal level. The purposes of this study were to establish a time course of motoneuronal excitability before prime mover activation and to assess task-dependent effects of complex movements on motoneuronal and cortical excitability in a simple RT paradigm. It was hypothesized that motoneuronal and cortical excitability would increase before prime mover activation and in response to movement complexity. In a seated position, participants completed ballistic elbow extension/flexion movements with their dominant arm to one, two, or three targets. TMS and transmastoid stimulation (TS) were delivered at 0%, 70%, 80% or 90% of mean premotor RT for each complexity level. Stimulus intensities were set to elicit MEPs and cervicomedullary MEPs (CMEPs) of ∼10% of the maximal M-wave in the triceps brachii. Compared with 0% RT, motoneuronal excitability (CMEP amplitude) was already 10% greater at 70% RT. CMEP amplitude also increased with movement complexity as both the two- and three-movement conditions had greater motoneuronal excitability than the one-movement condition (p < .038). Importantly, when normalized to the CMEP, there was no increase in MEP amplitude. This suggests that complexity-related increases in corticospinal excitability are likely to be mediated more by increased excitability at a motoneuronal than cortical level.
Collapse
|
11
|
Oostwoud Wijdenes L, Medendorp WP. State Estimation for Early Feedback Responses in Reaching: Intramodal or Multimodal? Front Integr Neurosci 2017; 11:38. [PMID: 29311860 PMCID: PMC5742230 DOI: 10.3389/fnint.2017.00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Humans are highly skilled in controlling their reaching movements, making fast and task-dependent movement corrections to unforeseen perturbations. To guide these corrections, the neural control system requires a continuous, instantaneous estimate of the current state of the arm and body in the world. According to Optimal Feedback Control theory, this estimate is multimodal and constructed based on the integration of forward motor predictions and sensory feedback, such as proprioceptive, visual and vestibular information, modulated by context, and shaped by past experience. But how can a multimodal estimate drive fast movement corrections, given that the involved sensory modalities have different processing delays, different coordinate representations, and different noise levels? We develop the hypothesis that the earliest online movement corrections are based on multiple single modality state estimates rather than one combined multimodal estimate. We review studies that have investigated online multimodal integration for reach control and offer suggestions for experiments to test for the existence of intramodal state estimates. If proven true, the framework of Optimal Feedback Control needs to be extended with a stage of intramodal state estimation, serving to drive short-latency movement corrections.
Collapse
Affiliation(s)
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
12
|
Smith CP, Allsop JE, Mistry M, Reynolds RF. Co-ordination of the upper and lower limbs for vestibular control of balance. J Physiol 2017; 595:6771-6782. [PMID: 28833167 PMCID: PMC5663825 DOI: 10.1113/jp274272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022] Open
Abstract
Key points When standing and holding an earth‐fixed object, galvanic vestibular stimulation (GVS) can evoke upper limb responses to maintain balance. In the present study, we determined how these responses are affected by grip context (no contact, light grip and firm grip), as well as how they are co‐ordinated with the lower limbs to maintain balance. When GVS was applied during firm grip, hand and ground reaction forces were generated. The directions of these force vectors were co‐ordinated such that the overall body sway response was always aligned with the inter‐aural axis (i.e. craniocentric). When GVS was applied during light grip (< 1 N), hand forces were secondary to body movement, suggesting that the arm performed a mostly passive role. These results demonstrate that a minimum level of grip is required before the upper limb becomes active in balance control and also that the upper and lower limbs co‐ordinate for an appropriate whole‐body sway response.
Abstract Vestibular stimulation can evoke responses in the arm when it is used for balance. In the present study, we determined how these responses are affected by grip context, as well as how they are co‐ordinated with the rest of the body. Galvanic vestibular stimulation (GVS) was used to evoke balance responses under three conditions of manual contact with an earth‐fixed object: no contact, light grip (< 1 N) (LG) and firm grip (FG). As grip progressed along this continuum, we observed an increase in GVS‐evoked hand force, with a simultaneous reduction in ground reaction force (GRF) through the feet. During LG, hand force was secondary to the GVS‐evoked body sway response, indicating that the arm performed a mostly passive role. By contrast, during FG, the arm became actively involved in driving body sway, as revealed by an early force impulse in the opposite direction to that seen in LG. We then examined how the direction of this active hand vector was co‐ordinated with the lower limbs. Consistent with previous findings on sway anisotropy, FG skewed the direction of the GVS‐evoked GRF vector towards the axis of baseline postural instability. However, this was effectively cancelled by the hand force vector, such that the whole‐body sway response remained aligned with the inter‐aural axis, maintaining the craniocentric principle. These results show that a minimum level of grip is necessary before the upper limb plays an active role in vestibular‐evoked balance responses. Furthermore, they demonstrate that upper and lower‐limb forces are co‐ordinated to produce an appropriate whole‐body sway response. When standing and holding an earth‐fixed object, galvanic vestibular stimulation (GVS) can evoke upper limb responses to maintain balance. In the present study, we determined how these responses are affected by grip context (no contact, light grip and firm grip), as well as how they are co‐ordinated with the lower limbs to maintain balance. When GVS was applied during firm grip, hand and ground reaction forces were generated. The directions of these force vectors were co‐ordinated such that the overall body sway response was always aligned with the inter‐aural axis (i.e. craniocentric). When GVS was applied during light grip (< 1 N), hand forces were secondary to body movement, suggesting that the arm performed a mostly passive role. These results demonstrate that a minimum level of grip is required before the upper limb becomes active in balance control and also that the upper and lower limbs co‐ordinate for an appropriate whole‐body sway response.
Collapse
Affiliation(s)
- Craig P Smith
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jonathan E Allsop
- Vision and Eye Research Unit, Postgraduate Medical Institute, Anglia Ruskin University, Cambridge, UK
| | - Michael Mistry
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Raymond F Reynolds
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Keyser J, Medendorp WP, Selen LPJ. Task-dependent vestibular feedback responses in reaching. J Neurophysiol 2017; 118:84-92. [PMID: 28356472 DOI: 10.1152/jn.00112.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb.NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory.
Collapse
Affiliation(s)
- Johannes Keyser
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Luc P J Selen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|