1
|
Vilca Coaquira KM, Rojas Chambilla RA, Tejada Flores J, Tintaya Ramos HO, Quispe Trujillo MM, Quispe Humpiri SA, Calisaya Huacasi ÁG, Pino Vanegas YM, Peña Vicuña GF, Salazar Granara AA, Tacuna Calderon AL, Garcia Bedoya NM, Yang M, Hancco Zirena I. Lower glycemia levels in subjects with excessive erythrocytosis during the oral glucose tolerance test living in conditions of severe hypoxia. Front Physiol 2024; 15:1387132. [PMID: 38655033 PMCID: PMC11035787 DOI: 10.3389/fphys.2024.1387132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Background Previous studies showed that residents of higher elevations have lower glucose levels. Our objective in this study is to determine the basal and postprandial glucose levels in apparently healthy permanent residents of the miner population center of La Rinconada located 5100 meters (m) above sea level. Method Forty male permanent residents of the Rinconada miner population center were studied. The oral glucose tolerance test was used to evaluate basal and postprandial glycemia levels at 1, 2, and 3 h. Results The individuals had a mean age of 43.95 ± 8.54 years. Basal glycemia in subjects without excessive erythrocytosis (EE) was 73.3 ± 7.9 mg/dL, while levels in patients with EE were 57.98 ± 7.38 mg/dL. In the postprandial period, at 1 h after oral glucose overload, a mean value of 76.35 ± 13.53 mg/dL was observed in subjects with EE compared to 94.68 ± 9.98 mg/dL in subjects without EE. After 2 h, subjects with EE had a glycemia level of 72.91 ± 9.17 mg/dL EE compared to 90.73 ± 13.86 mg/dL without EE. At 3 h, the average glycemia level in subjects with EE was 70.77 ± 8.73 mg/dL compared to 87.79 ± 14.16 mg/dL in those without EE. Conclusion These findings suggest that under hypoxic conditions, glycemia levels are lower in both subjects with and without EE, having obtained lower levels in subjects with EE in relation to those with normal values of Hb and Hct. The results of this study indicate that in the conditions of severe hypoxia, blood glucose levels are below the values considered normal for sea level.
Collapse
Affiliation(s)
| | | | - Jeancarlo Tejada Flores
- Facultad de Medicina Humana, Universidad Nacional Del Altiplano, Puno, Perú
- ACEM UNA, Puno, Perú
| | | | | | | | | | - Yony M. Pino Vanegas
- Facultad De Educación, Escuela Profesional De Educación Física, UNA Puno, Puno, Perú
| | | | | | - Ana Lucia Tacuna Calderon
- Instituto De Investigación en Medicina De Altura (CIMA), Facultad De Medicina Humana, Universidad De San Martín De Porres, Lima, Perú
| | | | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ivan Hancco Zirena
- Instituto De Investigación en Medicina De Altura (CIMA), Facultad De Medicina Humana, Universidad De San Martín De Porres, Lima, Perú
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Gentilin A, Cevese A, Tam E. Postexercise cardiovascular hemodynamics assessment before and after a 30-minute standing still recovery. J Sports Med Phys Fitness 2024; 64:201-210. [PMID: 37791829 DOI: 10.23736/s0022-4707.23.15330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
BACKGROUND Although postexercise syncope usually occurs shortly after physical exercise conclusion, athletes commonly reveal symptoms of postexercise hypotension several tens of minutes after exercise completion. Currently, no studies have investigated central hemodynamic regulation during posture changes occurring several tens of minutes after exercise compared to immediately after cessation. METHODS This study examined changes in mean arterial pressure (MAP), heart rate (HR), systemic vascular conductance (SVC), cardiac output, and stroke volume during two sets of tilt tests performed before vs. after a 30-minute standing still recovery, respectively. Tilt tests were performed after a short-lasting supramaximal test (WNG) and long-lasting maximal incremental test (INC) in 12 young endurance-trained individuals. RESULTS The key findings were that, regardless of the exercise type, the 30-minute recovery augmented (P<0.01) the increase in HR and the drop in SVC during the transition from supine to upright, although the MAP drop was similar (P=0.99) after vs. before recovery. INC led to greater increases (P<0.01) in HR and drops (P<0.01) in SVC compared to WNG during postural transitions both before and after the recovery. CONCLUSIONS These findings suggest that, in a population that tolerates postexercise hypotension, MAP neural control is more challenged after a 30-minute standing still recovery than before, as evidenced by an augmented vasodilation capacity along with an increased HR buffering response during posture changes. Moreover, our data suggest that effective MAP control is resulting from an equally effective HR buffering response on MAP. Therefore, exercises that induce greater systemic vasodilation lead to greater HR buffering responses.
Collapse
Affiliation(s)
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Enrico Tam
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Fermoyle CC, La Salle DT, Alpenglow JK, Craig JC, Jarrett CL, Broxterman RM, McKenzie AI, Morgan DE, Birgenheier NM, Wray DW, Richardson RS, Trinity JD. Pharmacological modulation of adrenergic tone alters the vasodilatory response to passive leg movement in young but not in old adults. J Appl Physiol (1985) 2023; 134:1124-1134. [PMID: 36927146 PMCID: PMC10125034 DOI: 10.1152/japplphysiol.00682.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The age-related increase in α-adrenergic tone may contribute to decreased leg vascular conductance (LVC) both at rest and during exercise in the old. However, the effect on passive leg movement (PLM)-induced LVC, a measure of vascular function, which is markedly attenuated in this population, is unknown. Thus, in eight young (25 ± 5 yr) and seven old (65 ± 7 yr) subjects, this investigation examined the impact of systemic β-adrenergic blockade (propanalol, PROP) alone, and PROP combined with either α1-adrenergic stimulation (phenylephrine, PE) or α-adrenergic inhibition (phentolamine, PHEN), on PLM-induced vasodilation. LVC, calculated from femoral artery blood flow and pressure, was determined and PLM-induced Δ peak (LVCΔpeak) and total vasodilation (LVCAUC, area under curve) were documented. PROP decreased LVCΔpeak (PROP: 4.8 ± 1.8, Saline: 7.7 ± 2.7 mL·mmHg-1, P < 0.001) and LVCAUC (PROP: 1.1 ± 0.7, Saline: 2.4 ± 1.6 mL·mmHg-1, P = 0.002) in the young, but not in the old (LVCΔpeak, P = 0.931; LVCAUC, P = 0.999). PE reduced baseline LVC (PE: 1.6 ± 0.4, PROP: 2.3 ± 0.4 mL·min-1·mmHg-1, P < 0.01), LVCΔpeak (PE: 3.2 ± 1.3, PROP: 4.8 ± 1.8 mL·min-1·mmHg-1, P = 0.004), and LVCAUC (PE: 0.5 ± 0.4, PROP: 1.1 ± 0.7 mL·mmHg-1, P = 0.011) in the young, but not in the old (baseline LVC, P = 0.199; LVCΔpeak, P = 0.904; LVCAUC, P = 0.823). PHEN increased LVC at rest and throughout PLM in both groups (drug effect: P < 0.05), however LVCΔpeak was only improved in the young (PHEN: 6.4 ± 3.1, PROP: 4.4 ± 1.5 mL·min-1·mmHg-1, P = 0.004), and not in the old (P = 0.904). Furthermore, the magnitude of α-adrenergic modulation (PHEN - PE) of LVCΔpeak was greater in the young compared with the old (Young: 3.35 ± 2.32, Old: 0.40 ± 1.59 mL·min-1·mmHg-1, P = 0.019). Therefore, elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.NEW & NOTEWORTHY Stimulation of α1-adrenergic receptors eliminated age-related differences in passive leg movement (PLM) by decreasing PLM-induced vasodilation in the young. Systemic β-blockade attenuated the central hemodynamic component of the PLM response in young individuals. Inhibition of α-adrenergic receptors did not improve the PLM response in older individuals, though withdrawal of α-adrenergic modulation augmented baseline and maximal vasodilation in both groups. Accordingly, α-adrenergic signaling plays a role in modulating the PLM vasodilatory response in young but not in old adults, and elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.
Collapse
Affiliation(s)
- Caitlin C Fermoyle
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Catherine L Jarrett
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Ryan M Broxterman
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - David E Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Nathaniel M Birgenheier
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Vizcardo-Galindo GA, Howe CA, Hoiland RL, Carter HH, Willie CK, Ainslie PN, Tremblay JC. Impact of Oxygen Supplementation on Brachial Artery Hemodynamics and Vascular Function During Ascent to 5,050 m. High Alt Med Biol 2023; 24:27-36. [PMID: 36940101 DOI: 10.1089/ham.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Vizcardo-Galindo, Gustavo A., Connor A. Howe, Ryan L. Hoiland, Howard H. Carter, Christopher K. Willie, Philip N. Ainslie, and Joshua C. Tremblay. Impact of oxygen supplementation on brachial artery hemodynamics and vascular function during ascent to 5,050 m. High Alt Med Biol. 24:27-36, 2023.-High-altitude trekking alters upper limb hemodynamics and reduces brachial artery vascular function in lowlanders. Whether these changes are reversible with the removal of hypoxia is unknown. We investigated the impact of 20 minutes of oxygen supplementation (O2) on brachial artery hemodynamics, reactive hyperemia (RH; microvascular function), and flow-mediated dilation (FMD; endothelial function). Participants (aged 21-42 years) were examined before and with O2 at 3,440 m (n = 7), 4,371 m (n = 7), and 5,050 m (n = 12) using Duplex ultrasound (days 4, 7, and 10 respectively). At 3,440 m, O2 decreased brachial artery diameter (-5% ± 5%; p = 0.04), baseline blood flow (-44% ± 15%; p < 0.001), oxygen delivery (-39 ± 16; p < 0.001), and peak RH (-8% ± 8%; p = 0.02), but not RH normalized for baseline blood flow. Elevated FMD (p = 0.04) with O2 at 3,440 m was attributed to the reduction in baseline diameter. At 5,050 m, a reduction in brachial artery blood flow (-17% ± 22%; p = 0.03), but not oxygen delivery, diameter, RH, or FMD occurred with O2. These findings suggest that during early trekking at high altitude, O2 causes vasoconstriction in the upper limb along the arterial tree (conduit and resistance arteries). With incremental high-altitude exposure, O2 reduces blood flow without compromising oxygen delivery, RH, or FMD, suggesting a differential impact on vascular function modulated by the duration and severity of high-altitude exposure.
Collapse
Affiliation(s)
- Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Connor A Howe
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, Vancouver, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Christopher K Willie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung & Vascular Health, Faculty of Health and Social Development, University of British Columbia-Okanagan, Kelowna, Canada
| |
Collapse
|
5
|
Ogoh S, Washio T, Stacey BS, Tsukamoto H, Iannetelli A, Owens TS, Calverley TA, Fall L, Marley CJ, Bailey DM. Effects of continuous hypoxia on flow-mediated dilation in the cerebral and systemic circulation: on the regulatory significance of shear rate phenotype. J Physiol Sci 2022; 72:16. [PMID: 35858836 DOI: 10.1186/s12576-022-00841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Emergent evidence suggests that cyclic intermittent hypoxia increases cerebral arterial shear rate and endothelial function, whereas continuous exposure decreases anterior cerebral oxygen (O2) delivery. To examine to what extent continuous hypoxia impacts cerebral shear rate, cerebral endothelial function, and consequent cerebral O2 delivery (CDO2), eight healthy males were randomly assigned single-blind to 7 h passive exposure to both normoxia (21% O2) and hypoxia (12% O2). Blood flow in the brachial and internal carotid arteries were determined using Duplex ultrasound and included the combined assessment of systemic and cerebral endothelium-dependent flow-mediated dilatation. Systemic (brachial artery) flow-mediated dilatation was consistently lower during hypoxia (P = 0.013 vs. normoxia), whereas cerebral flow-mediated dilation remained preserved (P = 0.927 vs. normoxia) despite a reduction in internal carotid artery antegrade shear rate (P = 0.002 vs. normoxia) and CDO2 (P < 0.001 vs. normoxia). Collectively, these findings indicate that the reduction in CDO2 appears to be independent of cerebral endothelial function and contrasts with that observed during cyclic intermittent hypoxia, highlighting the regulatory importance of (hypoxia) dose duration and flow/shear rate phenotype.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Hayato Tsukamoto
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK.,Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Thomas S Owens
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Thomas A Calverley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Lewis Fall
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, CF37 4AT, UK. .,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| |
Collapse
|
6
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
7
|
Effects of acute sympathetic activation on the central artery stiffness after strenuous endurance exercise. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00941-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
Augmented central arterial stiffness (CAS) increases cardiovascular risk. CAS can be augmented by physical exercise and sympathetic activation (SYMP) induced by stressful stimuli. Interestingly, sympathetic vasoconstriction triggered by a sympathetic stimulant is augmented immediately after a strenuous half-marathon compared to at rest. This study assessed whether CAS also augments more post- than pre-half-marathon in response to SYMP. Such assessment takes on relevance considering the growing popularity of strenuous, long-distance endurance exercises.
Methods
13 healthy recreational runners (age 46.1 ± 6.5 years; $$V^{\prime}{\text{O}}_{2} \max$$
V
′
O
2
max
54.23 ± 9.31 mlO2/min/kg) provided the following measurements prior to and within 10 min following a strenuous half-marathon: beat-by-beat aortic pulse wave velocity (aPWV; index of CAS), mean blood pressure, and heart rate assessment. Measures were performed at rest and during a 2 min handgrip-mediated SYMP. The effects of the half-marathon and SYMP were assessed by two-way repeated-measures ANOVA.
Results
Measurements of the aPWV pre- and post-race were not significantly different (7.5 ± 0.8 vs 7.8 ± 0.8 m/s, p = 0.34; pre- vs post-race). 2 min of SYMP increased the baseline aPWV post-race (7.8 ± 0.8 vs 8.4 ± 0.8, p = 0.003; rest vs SYMP) but not pre-race (7.5 ± 0.8 vs 7.9 ± 0.9, p = 0.21).
Conclusion
The baseline aPWV assessed 7 to 8 min after a strenuous half-marathon is similar to that pre-race in healthy runners. This agrees with previous studies suggesting CAS being at or below resting values > 5 min following completion of aerobic exercises. The same sympathetic stressor augments CAS to a greater extent 8–10 min post-race than pre-race, suggesting a greater post-exercise stiffening of central artery segments triggered by the same task.
Collapse
|
8
|
Gentilin A, Tarperi C, Skroce K, Cevese A, Schena F. Effect of acute sympathetic activation on leg vasodilation before and after endurance exercise. J Smooth Muscle Res 2021. [PMID: 34789634 DOI: 10.1540/jsmr.57.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vascular conductance (VC) regulation involves a continuous balance between metabolic vasodilation and sympathetic vasoconstriction. Endurance exercise challenges the sympathetic control on VC due to attenuated sympathetic receptor responsiveness and persistence of muscle vasodilation, especially in endurance athletes, predisposing them to blood pressure control dysfunctions. This study assessed whether acute handgrip-mediated sympathetic activation (SYMP) restrains sudden leg vasodilation before and after a half-marathon. Prior to, and within the 20 min following the race, 11 well-trained runners underwent two single passive leg movement (SPLM) tests to suddenly induce leg vasodilation, one without and the other during SYMP. Leg blood flow and mean arterial pressure were measured to assess changes in leg VC. Undertaking 60 sec of SYMP reduced the baseline leg VC both before (4.0 ± 1.0 vs. 3.3 ± 0.7 ml/min/mmHg; P=0.01; NO SYMP vs. SYMP, respectively) and after the race (4.6 ± 0.8 vs. 3.9 ± 0.8 ml/min/mmHg; P=0.01). However, SYMP did not reduce leg peak vasodilation immediately after the SPLM either before (11.5 ± 4.0 vs. 12.2 ± 3.8 ml/min/mmHg; P=0.35) or after the race (7.2 ± 2.0 vs. 7.3 ± 2.6 ml/min/mmHg; P=0.96). Furthermore, SYMP did not blunt the mean leg vasodilation over the 60 sec after the SPLM before (5.1 ± 1.7 vs. 5.9 ± 2.5 ml/min/mmHg; P=0.14) or after the race (4.8 ± 1.3 vs. 4.2 ± 1.5 ml/min/mmHg; P=0.26). This data suggest that the release of local vasoactive agents effectively opposes any preceding handgrip-mediated augmented vasoconstriction in endurance athletes before and after a half-marathon. Handgrip-mediated SYMP might improve normal vasoconstriction while athletes are still, but not necessarily while they move, as movements can induce a release of vasoactive molecules.
Collapse
Affiliation(s)
- Alessandro Gentilin
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kristina Skroce
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| |
Collapse
|
9
|
Gentilin A, Tarperi C, Skroce K, Cevese A, Schena F. Effect of acute sympathetic activation on leg vasodilation before and after endurance exercise. J Smooth Muscle Res 2021; 57:53-67. [PMID: 34789634 PMCID: PMC8592823 DOI: 10.1540/jsmr.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vascular conductance (VC) regulation involves a continuous balance between metabolic
vasodilation and sympathetic vasoconstriction. Endurance exercise challenges the
sympathetic control on VC due to attenuated sympathetic receptor responsiveness and
persistence of muscle vasodilation, especially in endurance athletes, predisposing them to
blood pressure control dysfunctions. This study assessed whether acute handgrip-mediated
sympathetic activation (SYMP) restrains sudden leg vasodilation before and after a
half-marathon. Prior to, and within the 20 min following the race, 11 well-trained runners
underwent two single passive leg movement (SPLM) tests to suddenly induce leg
vasodilation, one without and the other during SYMP. Leg blood flow and mean arterial
pressure were measured to assess changes in leg VC. Undertaking 60 sec of SYMP reduced the
baseline leg VC both before (4.0 ± 1.0 vs. 3.3 ± 0.7 ml/min/mmHg; P=0.01;
NO SYMP vs. SYMP, respectively) and after the race (4.6 ± 0.8 vs. 3.9 ± 0.8 ml/min/mmHg;
P=0.01). However, SYMP did not reduce leg peak vasodilation immediately
after the SPLM either before (11.5 ± 4.0 vs. 12.2 ± 3.8 ml/min/mmHg;
P=0.35) or after the race (7.2 ± 2.0 vs. 7.3 ± 2.6 ml/min/mmHg;
P=0.96). Furthermore, SYMP did not blunt the mean leg vasodilation over
the 60 sec after the SPLM before (5.1 ± 1.7 vs. 5.9 ± 2.5 ml/min/mmHg;
P=0.14) or after the race (4.8 ± 1.3 vs. 4.2 ± 1.5 ml/min/mmHg;
P=0.26). This data suggest that the release of local vasoactive agents
effectively opposes any preceding handgrip-mediated augmented vasoconstriction in
endurance athletes before and after a half-marathon. Handgrip-mediated SYMP might improve
normal vasoconstriction while athletes are still, but not necessarily while they move, as
movements can induce a release of vasoactive molecules.
Collapse
Affiliation(s)
- Alessandro Gentilin
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Cantor Tarperi
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Kristina Skroce
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy.,Department of Medicine, University of Rijeka, Rijeka, Croatia
| | - Antonio Cevese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Via Casorati 43, 37131, Verona, Italy
| |
Collapse
|
10
|
Stone RM, Ainslie PN, Tremblay JC, Akins JD, MacLeod DB, Tymko MM, DeSouza CA, Bain AR. GLOBAL REACH 2018: intra-arterial vitamin C improves endothelial-dependent vasodilatory function in humans at high altitude. J Physiol 2021; 600:1373-1383. [PMID: 34743333 DOI: 10.1113/jp282281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.
Collapse
Affiliation(s)
- Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | - Philip N Ainslie
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | - Joshua C Tremblay
- Kelowna, Centre for Heart Lung and Vascular Health, University of British Columbia, Vancouver, Canada
| | | | - David B MacLeod
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| |
Collapse
|
11
|
Prodel E, Cavalcanti T, Rocha HNM, Gondim ML, Mira PAC, Fisher JP, Nobrega ACL. Sympathetic regulation of coronary circulation during handgrip exercise and isolated muscle metaboreflex activation in men. Exp Physiol 2021; 106:2400-2411. [PMID: 34719804 DOI: 10.1113/ep089954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the role of β- and α-adrenergic receptors in the control of the coronary circulation during handgrip exercise and isolated muscle metaboreflex activation in humans? What is the main finding and its importance? β-Adrenergic receptor, but not α-adrenergic receptor, blockade significantly blunted the increases in coronary blood velocity observed during handgrip. Coronary blood velocity was unchanged from baseline during isolated muscle metaboreflex activation. This highlights the important role of β-adrenergic receptors in the coronary circulation during handgrip in humans, and the more limited involvement of the α-adrenergic receptors. ABSTRACT We sought to investigate the role of β- and α-adrenergic receptors in coronary circulation during static handgrip exercise and isolated muscle metaboreflex activation in humans. Seventeen healthy young men underwent two experimental sessions, consisting of 3 min of static handgrip exercise at a target force of 40% maximum voluntary force (not achieved for the full 3 min), and 3 min of metaboreflex activation (post-exercise ischaemia) in two conditions: (1) control and β-blockade (oral propranolol), and (2) control and α-blockade (oral prazosin). In both sessions, coronary blood velocity (CBV, echocardiography) was increased during handgrip (Δ8.0 ± 7.4 cm s-1 ) but unchanged with metaboreflex activation (Δ2.5 ± 3.2 cm s-1 ) under control conditions. β-Blockade abolished the increase in CBV during handgrip, while CBV was unchanged from control with α-blockade. Cardiac work, estimated from rate pressure product (RPP; systolic blood pressure multiplied by heart rate), increased during handgrip and metaboreflex in control conditions in both sessions. β-Blockade reduced RPP responses to handgrip and metaboreflex, whereas α-blockade increased RPP, but the responses to handgrip and metaboreflex were unchanged. CBV and RPP were only significantly correlated during handgrip under control (r = 0.71, P < 0.01) and β-blockade (r = 0.54, P = 0.03) conditions, and the slope of this relationship was unaltered with β-blockade. Collectively, these findings indicate that β-adrenergic receptors play the primary role to the increase of coronary circulation during handgrip exercise, but CBV is unchanged with metaboreflex activation, while α-adrenergic receptor stimulation seems to exert no effect in the control of the coronary circulation during handgrip exercise and isolated muscle metaboreflex activation in humans.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| | - Thiago Cavalcanti
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| | - Maitê L Gondim
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| | - Pedro A C Mira
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| | - James P Fisher
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Antonio C L Nobrega
- Laboratory of Exercise Science, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, Brazil
| |
Collapse
|
12
|
Tremblay JC, Ainslie PN, Turner R, Gatterer H, Schlittler M, Woyke S, Regli IB, Strapazzon G, Rauch S, Siebenmann C. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. Am J Physiol Heart Circ Physiol 2020; 319:H980-H994. [PMID: 32886005 DOI: 10.1152/ajpheart.00597.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-altitude exposure typically reduces endothelial function, and this is modulated by hemoconcentration resulting from plasma volume contraction. However, the specific impact of hypobaric hypoxia independent of external factors (e.g., cold, varying altitudes, exercise, diet, and dehydration) on endothelial function is unknown. We examined the temporal changes in blood viscosity, shear stress, and endothelial function and the impact of plasma volume expansion (PVX) during exposure to hypobaric hypoxia while controlling for external factors. Eleven healthy men (25 ± 4 yr, mean ± SD) completed two 4-day chamber visits [normoxia (NX) and hypobaric hypoxia (HH; equivalent altitude, 3,500 m)] in a crossover design. Endothelial function was assessed via flow-mediated dilation in response to transient (reactive hyperemia; RH-FMD) and sustained (progressive handgrip exercise; SS-FMD) increases in shear stress before entering and after 1, 6, 12, 48, and 96 h in the chamber. During HH, endothelial function was also measured on the last day after PVX to preexposure levels (1,140 ± 320 mL balanced crystalloid solution). Blood viscosity and arterial shear stress increased on the first day during HH compared with NX and remained elevated at 48 and 96 h (P < 0.005). RH-FMD did not differ during HH compared with NX and was unaffected by PVX despite reductions in blood viscosity (P < 0.05). The stimulus-response slope of increases in shear stress to vasodilation during SS-FMD was preserved in HH and increased by 44 ± 73% following PVX (P = 0.023). These findings suggest that endothelial function is maintained in HH when other stressors are absent and that PVX improves endothelial function in a shear-stress stimulus-specific manner.NEW & NOTEWORTHY Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, Canada
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | | |
Collapse
|
13
|
Tymko MM, Hoiland RL, Tremblay JC, Stembridge M, Dawkins TG, Coombs GB, Patrician A, Howe CA, Gibbons TD, Moore JP, Simpson LL, Steinback CD, Meah VL, Stacey BS, Bailey DM, MacLeod DB, Gasho C, Anholm JD, Bain AR, Lawley JS, Villafuerte FC, Vizcardo-Galindo G, Ainslie PN. The 2018 Global Research Expedition on Altitude Related Chronic Health (Global REACH) to Cerro de Pasco, Peru: an Experimental Overview. Exp Physiol 2020; 106:86-103. [PMID: 32237245 DOI: 10.1113/ep088350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, New Zealand
| | - Jonathan P Moore
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Lydia L Simpson
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Meah
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Duke University Medical Center, Durham, NC, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anthony R Bain
- Department of Integrative Physiology, University of Colorado, Boulder, NC, USA.,Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
14
|
Tymko MM, Lawley JS, Ainslie PN, Hansen AB, Hofstaetter F, Rainer S, Amin S, Moralez G, Gasho C, Vizcardo-Galindo G, Bermudez D, Villafuerte FC, Hearon CM. Global Reach 2018 Heightened α-Adrenergic Signaling Impairs Endothelial Function During Chronic Exposure to Hypobaric Hypoxia. Circ Res 2020; 127:e1-e13. [PMID: 32268833 DOI: 10.1161/circresaha.119.316053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined. OBJECTIVE To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE. METHODS AND RESULTS We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude. Vascular function was assessed using intraarterial infusions (3 progressive doses) of acetylcholine (ACh; EDD) and sodium nitroprusside (endothelial-independent dilation) before and after local α+β adrenergic receptor blockade (phentolamine and propranolol). Intraarterial blood pressure, heart rate, and simultaneous brachial artery diameter and blood velocity were recorded at rest and during drug infusion. Changes in forearm vascular conductance were calculated. The main findings were (1) chronic hypoxia reduced EDD in lowlanders (changes in forearm vascular conductance from sea level: ACh1: -52.7±19.6%, ACh2: -25.4±38.7%, ACh3: -35.1±34.7%, all P≤0.02); and in Andeans with EE compared with non-EE (changes in forearm vascular conductance at ACh3: -36.4%, P=0.007). Adrenergic blockade fully restored EDD in lowlanders at high altitude, and normalized EDD between EE and non-EE Andeans. (2) Chronic hypoxia had no effect on endothelial-independent dilation in lowlanders, and no differences were detected between EE and non-EE Andeans; however, EID was increased in the non-EE Andeans after adrenergic blockade (P=0.012), but this effect was not observed in the EE Andeans. CONCLUSIONS These data indicate that chronic hypoxia reduces EDD via heightened α-adrenergic signaling in lowlanders and in Andeans with EE. These vascular mechanisms have important implications for understanding the physiological consequences of acute and chronic high altitude adaptation.
Collapse
Affiliation(s)
- Michael M Tymko
- From the Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada (M.M.T., P.N.A.).,Neurovascular Health Lab, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Canada (M.M.T.)
| | - Justin S Lawley
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Philip N Ainslie
- From the Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada (M.M.T., P.N.A.)
| | | | | | - Simon Rainer
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Sachin Amin
- University of Innsbruck, Austria (J.S.L., A.B.H., F.H., S.R., S.A.)
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX (G.M.)
| | | | | | | | | | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas (C.M.H.).,Department of Internal Medicine, University of Texas Southwestern Medical Center (C.M.H.)
| |
Collapse
|
15
|
Tymko MM, Tremblay JC, Bailey DM, Green DJ, Ainslie PN. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations. J Physiol 2019; 597:5759-5776. [PMID: 31677355 DOI: 10.1113/jp277191] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure to hypoxia elicits widespread physiological responses that are critical for successful acclimatization; however, these responses may induce apparent maladaptive consequences. For example, recent studies conducted in both the laboratory and the field (e.g. at high altitude) have demonstrated that endothelial function is reduced in hypoxia. Herein, we review the several proposed mechanism(s) pertaining to the observed reduction in endothelial function in hypoxia including: (i) changes in blood flow patterns (i.e. shear stress), (ii) increased inflammation and production of reactive oxygen species (i.e. oxidative stress), (iii) heightened sympathetic nerve activity, and (iv) increased red blood cell concentration and mass leading to elevated nitric oxide scavenging. Although some of these mechanism(s) have been examined in lowlanders, less in known about endothelial function in indigenous populations that have chronically adapted to environmental hypoxia for millennia (e.g. the Peruvian, Tibetan and Ethiopian highlanders). There is some evidence indicating that healthy Tibetan and Peruvian (i.e. Andean) highlanders have preserved endothelial function at high altitude, but less is known about the Ethiopian highlanders. However, Andean highlanders suffering from chronic mountain sickness, which is characterized by an excessive production of red blood cells, have markedly reduced endothelial function. This review will provide a framework and mechanistic model for vascular endothelial adaptation to hypoxia in lowlanders and highlanders. Elucidating the pathways responsible for vascular adaption/maladaptation to hypoxia has potential clinical implications for disease featuring low oxygen delivery (e.g. heart failure, pulmonary disease). In addition, a greater understanding of vascular function at high altitude will clinically benefit the global estimated 85 million high altitude residents.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
16
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel) 2019; 10:genes10020150. [PMID: 30781443 PMCID: PMC6410003 DOI: 10.3390/genes10020150] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Whether Andean populations are genetically adapted to high altitudes has long been of interest. Initial studies focused on physiological changes in the O₂ transport system that occur with acclimatization in newcomers and their comparison with those of long-resident Andeans. These as well as more recent studies indicate that Andeans have somewhat larger lung volumes, narrower alveolar to arterial O₂ gradients, slightly less hypoxic pulmonary vasoconstrictor response, greater uterine artery blood flow during pregnancy, and increased cardiac O2 utilization, which overall suggests greater efficiency of O₂ transfer and utilization. More recent single nucleotide polymorphism and whole-genome sequencing studies indicate that multiple gene regions have undergone recent positive selection in Andeans. These include genes involved in the regulation of vascular control, metabolic hemostasis, and erythropoiesis. However, fundamental questions remain regarding the functional links between these adaptive genomic signals and the unique physiological attributes of highland Andeans. Well-designed physiological and genome association studies are needed to address such questions. It will be especially important to incorporate the role of epigenetic processes (i.e.; non-sequence-based features of the genome) that are vital for transcriptional responses to hypoxia and are potentially heritable across generations. In short, further exploration of the interaction among genetic, epigenetic, and environmental factors in shaping patterns of adaptation to high altitude promises to improve the understanding of the mechanisms underlying human adaptive potential and clarify its implications for human health.
Collapse
|
18
|
Tremblay JC, Hoiland RL, Carter HH, Howe CA, Stembridge M, Willie CK, Gasho C, MacLeod DB, Pyke KE, Ainslie PN. UBC-Nepal expedition: upper and lower limb conduit artery shear stress and flow-mediated dilation on ascent to 5,050 m in lowlanders and Sherpa. Am J Physiol Heart Circ Physiol 2018; 315:H1532-H1543. [PMID: 30168724 DOI: 10.1152/ajpheart.00345.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Howard H Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Christopher K Willie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Christopher Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - David B MacLeod
- Human Pharmacology and Physiology Laboratory, Department of Anesthesiology, Duke University Medical Center , Durham, North Carolina
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
19
|
Stembridge M, Ainslie PN, Boulet LM, Anholm J, Subedi P, Tymko MM, Willie CK, Cooper SM, Shave R. The independent effects of hypovolaemia and pulmonary vasoconstriction on ventricular function and exercise capacity during acclimatisation to 3800 m. J Physiol 2018; 597:1059-1072. [PMID: 29808473 DOI: 10.1113/jp275278] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We sought to determine the isolated and combined influence of hypovolaemia and hypoxic pulmonary vasoconstriction on the decrease in left ventricular (LV) function and maximal exercise capacity observed under hypobaric hypoxia. We performed echocardiography and maximal exercise tests at sea level (344 m), and following 5-10 days at the Barcroft Laboratory (3800 m; White Mountain, California) with and without (i) plasma volume expansion to sea level values and (ii) administration of the pulmonary vasodilatator sildenafil in a double-blinded and placebo-controlled trial. The high altitude-induced reduction in LV filling and ejection was abolished by plasma volume expansion but to a lesser extent by sildenafil administration; however, neither intervention had a positive effect on maximal exercise capacity. Both hypovolaemia and hypoxic pulmonary vasoconstriction play a role in the reduction of LV filling at 3800 m, but the increase in LV filling does not influence exercise capacity at this moderate altitude. ABSTRACT We aimed to determine the isolated and combined contribution of hypovolaemia and hypoxic pulmonary vasoconstriction in limiting left ventricular (LV) function and exercise capacity under chronic hypoxaemia at high altitude. In a double-blinded, randomised and placebo-controlled design, 12 healthy participants underwent echocardiography at rest and during submaximal exercise before completing a maximal test to exhaustion at sea level (SL; 344 m) and after 5-10 days at 3800 m. Plasma volume was normalised to SL values, and hypoxic pulmonary vasoconstriction was reversed by administration of sildenafil (50 mg) to create four unique experimental conditions that were compared with SL values: high altitude (HA), Plasma Volume Expansion (HA-PVX), Sildenafil (HA-SIL) and Plasma Volume Expansion with Sildenafil (HA-PVX-SIL). High altitude exposure reduced plasma volume by 11% (P < 0.01) and increased pulmonary artery systolic pressure (19.6 ± 4.3 vs. 26.0 ± 5.4, P < 0.001); these differences were abolished by PVX and SIL respectively. LV end-diastolic volume (EDV) and stroke volume (SV) were decreased upon ascent to high altitude, but were comparable to sea level in the HA-PVX trial. LV EDV and SV were also elevated in the HA-SIL and HA-PVX-SIL trials compared to HA, but to a lesser extent. Neither PVX nor SIL had a significant effect on the LV EDV and SV response to exercise, or the maximal oxygen consumption or peak power output. In summary, at 3800 m both hypovolaemia and hypoxic pulmonary vasoconstriction contribute to the decrease in LV filling, but restoring LV filling does not confer an improvement in maximal exercise performance.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Lindsey M Boulet
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - James Anholm
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prajan Subedi
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Christopher K Willie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Stephen-Mark Cooper
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK
| | - Rob Shave
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff, UK.,Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
20
|
Reduced vasorin enhances angiotensin II signaling within the aging arterial wall. Oncotarget 2018; 9:27117-27132. [PMID: 29930755 PMCID: PMC6007470 DOI: 10.18632/oncotarget.25499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/10/2018] [Indexed: 12/03/2022] Open
Abstract
The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging. The current study shows that vasorin mRNA and protein expression were significantly decreased both in aortic wall and VSMCs from old (30 mo) vs. young (8 mo) FXBN rats. Exposing young VSMCs to Ang II reduced vasorin protein expression to the levels of old untreated cells while treating old VSMCs with the Ang II type AT1 receptor antagonist Losartan upregulated vasorin protein expression up to the levels of young. The physical interaction between vasorin and TGF-β1 was significantly decreased in old vs. young VSMCs. Further, exposing young VSMCs to Ang II increased the levels of matrix metalloproteinase type II (MMP-2) activation and TGF-β1 downstream molecules p-SMAD-2/3 and collagen type I production up to the levels of old untreated VSMCs, and these effects were substantially inhibited by overexpressing vasorin. Administration of Ang II to young rats (8 mo) for 28 days via an osmotic minipump markedly reduced the expression of vasorin. Importantly, vasorin protein was effectively cleaved by activated MMP-2 both in vitro and in vivo. Administration of the MMP inhibitor, PD 166793, for 6 mo to young adult (18 mo) via a daily gavage markedly increased levels of vasorin in the aortic wall. Thus, reduced vasorin amplifies Ang II profibrotic signaling via an activation of MMP-2 in VSMCs within the aging arterial wall.
Collapse
|
21
|
Tremblay JC, Howe CA, Ainslie PN, Pyke KE. UBC-Nepal Expedition: imposed oscillatory shear stress does not further attenuate flow-mediated dilation during acute and sustained hypoxia. Am J Physiol Heart Circ Physiol 2018. [PMID: 29522371 DOI: 10.1152/ajpheart.00717.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Experimentally induced oscillatory shear stress (OSS) and hypoxia reduce endothelial function in humans. Acute and sustained hypoxia may cause increases in resting OSS; however, whether this influences endothelial susceptibility to further increases in OSS is unknown. Healthy lowlanders ( n = 15, 30 ± 6 yr; means ± SD) participated in three OSS interventions: two interventions at sea level [normoxia and after 20 min of normobaric hypoxia (acute hypoxia, 11% O2)] and one intervention 5-7 days after a 9-day ascent to 5,050 m (sustained hypoxia). OSS was provoked in the brachial artery using a 30-min distal cuff inflation (75 mmHg). Endothelial function was assessed before and after each intervention by reactive hyperemia flow-mediated dilation (FMD). Shear stress magnitude and patterns were obtained via Duplex ultrasound. Baseline retrograde shear stress and OSS were greater in acute hypoxia versus normoxia ( P < 0.001), and OSS was elevated in sustained hypoxia versus normoxia ( P = 0.011). The intervention further augmented OSS during each condition. Preintervention FMD was decreased by 29 ± 48% in acute hypoxia and by 25 ± 31% in sustained hypoxia compared with normoxia ( P = 0.001 and 0.026); these changes correlated with changes in baseline mean and antegrade shear stress. After the intervention, FMD decreased during normoxia (-41 ± 26%, P < 0.001) and was unaltered during acute or sustained hypoxia. Therefore, a 30-min exposure to OSS reduced FMD during normoxia, a condition with an unchallenged, healthy endothelium; however, imposed OSS did not appear to worsen endothelial function during acute or sustained hypoxia. Exposure to an altered magnitude and pattern of shear stress at baseline in hypoxia may contribute to the insensitivity to further acute augmentation of OSS. NEW & NOTEWORTHY We investigated whether the endothelium remains sensitive to experimental increases in oscillatory shear stress in acute (11% O2) and sustained (2 wk at 5,050 m) hypoxia. Hypoxia altered baseline shear stress and decreased endothelial function (flow-mediated dilation); however, exposure to experimentally induced oscillatory shear stress only impaired flow-mediated dilation in normoxia.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Kyra E Pyke
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
22
|
Tymko MM, Tremblay JC, Steinback CD, Moore JP, Hansen AB, Patrician A, Howe CA, Hoiland RL, Green DJ, Ainslie PN. UBC-Nepal Expedition: acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea level and high altitude. J Appl Physiol (1985) 2017; 123:1386-1396. [PMID: 28860174 DOI: 10.1152/japplphysiol.00583.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g., shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that 1) at rest, SNA would be elevated and FMD would be reduced at HA compared with sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344 m) and HA (5,050 m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n = 5). Our findings were 1) at rest, SNA was elevated (P < 0.01), and absolute FMD was reduced (P = 0.024), but relative FMD remained unaltered (P = 0.061), at HA compared with SL; and 2) despite significantly altering SNA with LBNP (+60.3 ± 25.5%) and LBPP (-37.2 ± 12.7%) (P < 0.01), FMD was unaltered at SL (P = 0.448) and HA (P = 0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA.NEW & NOTEWORTHY The role of the sympathetic nervous system on endothelial function remains unclear. We used lower-body negative and positive pressure to manipulate sympathetic nervous activity at sea level and high altitude and measured brachial endothelial function via flow-mediated dilation. We found that acutely altering sympathetic nervous activity had no effect on endothelial function.
Collapse
Affiliation(s)
- Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada;
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Craig D Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, United Kingdom
| | - Alex B Hansen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | | | - Connor A Howe
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Daniel J Green
- School of Sports Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia, Australia; and.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| |
Collapse
|
23
|
Moore LG. Measuring high-altitude adaptation. J Appl Physiol (1985) 2017; 123:1371-1385. [PMID: 28860167 DOI: 10.1152/japplphysiol.00321.2017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
High altitudes (>8,000 ft or 2,500 m) provide an experiment of nature for measuring adaptation and the physiological processes involved. Studies conducted over the past ~25 years in Andeans, Tibetans, and, less often, Ethiopians show varied but distinct O2 transport traits from those of acclimatized newcomers, providing indirect evidence for genetic adaptation to high altitude. Short-term (acclimatization, developmental) and long-term (genetic) responses to high altitude exhibit a temporal gradient such that, although all influence O2 content, the latter also improve O2 delivery and metabolism. Much has been learned concerning the underlying physiological processes, but additional studies are needed on the regulation of blood flow and O2 utilization. Direct evidence of genetic adaptation comes from single-nucleotide polymorphism (SNP)-based genome scans and whole genome sequencing studies that have identified gene regions acted upon by natural selection. Efforts have begun to understand the connections between the two with Andean studies on the genetic factors raising uterine blood flow, fetal growth, and susceptibility to Chronic Mountain Sickness and Tibetan studies on genes serving to lower hemoglobin and pulmonary arterial pressure. Critical for future studies will be the selection of phenotypes with demonstrable effects on reproductive success, the calculation of actual fitness costs, and greater inclusion of women among the subjects being studied. The well-characterized nature of the O2 transport system, the presence of multiple long-resident populations, and relevance for understanding hypoxic disorders in all persons underscore the importance of understanding how evolutionary adaptation to high altitude has occurred.NEW & NOTEWORTHY Variation in O2 transport characteristics among Andean, Tibetan, and, when available, Ethiopian high-altitude residents supports the existence of genetic adaptations that improve the distribution of blood flow to vital organs and the efficiency of O2 utilization. Genome scans and whole genome sequencing studies implicate a broad range of gene regions. Future studies are needed using phenotypes of clear relevance for reproductive success for determining the mechanisms by which naturally selected genes are acting.
Collapse
Affiliation(s)
- Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
24
|
Rieger MG, Hoiland RL, Tremblay JC, Stembridge M, Bain AR, Flück D, Subedi P, Anholm JD, Ainslie PN. One session of remote ischemic preconditioning does not improve vascular function in acute normobaric and chronic hypobaric hypoxia. Exp Physiol 2017; 102:1143-1157. [PMID: 28699679 DOI: 10.1113/ep086441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? It is suggested that remote ischemic preconditioning (RIPC) might offer protection against ischaemia-reperfusion injuries, but the utility of RIPC in high-altitude settings remains unclear. What is the main finding and its importance? We found that RIPC offers no vascular protection relative to pulmonary artery pressure or peripheral endothelial function during acute, normobaric hypoxia and at high altitude in young, healthy adults. However, peripheral chemosensitivity was heightened 24 h after RIPC at high altitude. Application of repeated short-duration bouts of ischaemia to the limbs, termed remote ischemic preconditioning (RIPC), is a novel technique that might have protective effects on vascular function during hypoxic exposures. In separate parallel-design studies, at sea level (SL; n = 16) and after 8-12 days at high altitude (HA; n = 12; White Mountain, 3800 m), participants underwent either a sham protocol or one session of four bouts of 5 min of dual-thigh-cuff occlusion with 5 min recovery. Brachial artery flow-mediated dilatation (FMD; ultrasound), pulmonary artery systolic pressure (PASP; echocardiography) and internal carotid artery (ICA) flow (ultrasound) were measured at SL in normoxia and isocapnic hypoxia (end-tidal PO2 maintained at 50 mmHg) and during normal breathing at HA. The hypoxic ventilatory response (HVR) was measured at each location. All measures at SL and HA were obtained at baseline (BL) and at 1, 24 and 48 h post-RIPC or sham. At SL, RIPC produced no changes in FMD, PASP, ICA flow, end-tidal gases or HVR in normoxia or hypoxia. At HA, although HVR increased 24 h post-RIPC compared with BL [2.05 ± 1.4 versus 3.21 ± 1.2 l min-1 (% arterial O2 saturation)-1 , P < 0.01], there were no significant differences in FMD, PASP, ICA flow and resting end-tidal gases. Accordingly, a single session of RIPC is insufficient to evoke changes in peripheral, pulmonary and cerebral vascular function in healthy adults. Although chemosensitivity might increase after RIPC at HA, this did not confer any vascular changes. The utility of a single RIPC session seems unremarkable during acute and chronic hypoxia.
Collapse
Affiliation(s)
- Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada.,University of Colorado, Boulder, Department of Integrative Physiology, Integrative Vascular Biology Laboratory, Boulder, CO, USA
| | - Daniela Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - James D Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|