1
|
Mickus R, Raškevičius V, Sarapinienė I, Mikalayeva V, Prekeris R, Skeberdis VA. Phosphorylation-dependent allosteric regulation of Cx43 gap junction inhibitor potency. Biomed Pharmacother 2024; 174:116550. [PMID: 38593702 DOI: 10.1016/j.biopha.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca2+, Mg2+, and phosphorylation. Chemical modulators of GJIC are being used in cases of various intercellular communication-dependent diseases. In this study, we used molecular docking, dual whole-cell patch-clamp, and Western blotting to investigate the impact of connexin phosphorylation on GJ chemical gating by α-pinene and other GJ inhibitors (octanol, carbenoxolone, mefloquine, intracellular pH, glycyrrhetinic acid, and sevoflurane) in HeLa cells expressing exogenous Cx43 (full length and truncated at amino acid 258) and other connexins typical of heart and/or nervous system (Cx36, Cx40, Cx45, and Cx47), and in cells expressing endogenous Cx43 (Novikoff and U-87). We found that Ca2+-regulated kinases, such as Ca2+/calmodulin-dependent kinase II, atypical protein kinase C, cyclin-dependent kinase, and Pyk2 kinase may allosterically modulate the potency of α-pinene through phosphorylation of Cx43 C-terminus. The identified new phenomenon was Cx isoform-, inhibitor-, and cell type-dependent. Overall, these results suggest that compounds, the potency of which depends on receptor phosphorylation, might be of particular interest in developing targeted therapies for diseases accompanied by high kinase activity, such as cardiac arrhythmias, epilepsy, stroke, essential tremor, inflammation, and cancer.
Collapse
Affiliation(s)
- Rokas Mickus
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Vytautas Raškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Ieva Sarapinienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas LT-50162, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015, USA
| | | |
Collapse
|
2
|
Bothe MS, Kohl T, Felmy F, Gallant J, Chagnaud BP. Timing and precision of rattlesnake spinal motoneurons are determined by the KV7 2/3 potassium channel. Curr Biol 2024; 34:286-297.e5. [PMID: 38157862 DOI: 10.1016/j.cub.2023.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Tobias Kohl
- TUM School of Life Science, Technical University of Munich, 85354 Munich, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jason Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Boris P Chagnaud
- Institute of Biology, University of Graz, 8010 Graz, Austria; Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Tiwari MN, Hall BE, Terse A, Amin N, Chung MK, Kulkarni AB. ACTIVATION OF CYCLIN-DEPENDENT KINASE 5 BROADENS ACTION POTENTIALS IN HUMAN SENSORY NEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543017. [PMID: 37398398 PMCID: PMC10312556 DOI: 10.1101/2023.05.31.543017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological conditions. Tissue or nerve injuries induce comprehensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation-dependent manner under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons are not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential and reduced the rheobase currents as compared to the uninfected neurons. CDK5 activation evidently changed the shape of the action potential (AP) by increasing AP rise time, AP fall time, and AP half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in uninfected hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any further significant changes in addition to the aforementioned changes of the membrane properties and AP parameters in the p35-overexpressing group. We conclude that CDK5 activation through the overexpression of p35 in dissociated hDRG neurons broadens AP in hDRG neurons and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under pathological conditions, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Bradford E. Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, Maryland 21201
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| |
Collapse
|
4
|
Okamura Y, Yoshioka D. What voltage-sensing phosphatases can reveal about the mechanisms of ion channel regulation by phosphoinositides. Biochem Soc Trans 2023; 51:827-839. [PMID: 37052219 DOI: 10.1042/bst20221065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Many membrane proteins including ion channels and ion transporters are regulated by membrane phospholipids such as phosphoinositides in cell membranes and organelles. Voltage-sensing phosphatase, VSP, is a voltage-sensitive phosphoinositide phosphatase which dephosphorylates PI(4,5)P2 into PI(4)P. VSP rapidly reduces the level of PI(4,5)P2 upon membrane depolarization, thus serving as a useful tool to quantitatively study phosphoinositide-regulation of ion channels and ion transporters using a cellular electrophysiology system. In this review, we focus on the application of VSPs to Kv7 family potassium channels, which have been important research targets in biophysics, pharmacology and medicine.
Collapse
Affiliation(s)
- Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Yamada Oka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Yoshioka
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Yamada Oka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Tiwari MN, Hall BE, Ton AT, Ghetti R, Terse A, Amin N, Chung MK, Kulkarni AB. Activation of cyclin-dependent kinase 5 broadens action potentials in human sensory neurons. Mol Pain 2023; 19:17448069231218353. [PMID: 37982142 PMCID: PMC10687939 DOI: 10.1177/17448069231218353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
Chronic pain is one of the most devastating and unpleasant conditions, associated with many pathological states. Tissue or nerve injuries induce extensive neurobiological plasticity in nociceptive neurons, which leads to chronic pain. Recent studies suggest that cyclin-dependent kinase 5 (CDK5) in primary afferents is a key neuronal kinase that modulates nociception through phosphorylation under pathological conditions. However, the impact of the CDK5 on nociceptor activity especially in human sensory neurons is not known. To determine the CDK5-mediated regulation of human dorsal root ganglia (hDRG) neuronal properties, we have performed the whole-cell patch clamp recordings in neurons dissociated from hDRG. CDK5 activation induced by overexpression of p35 depolarized the resting membrane potential (RMP) and reduced the rheobase currents as compared to the control neurons. CDK5 activation changed the shape of the action potential (AP) by increasing AP -rise time, -fall time, and -half width. The application of a prostaglandin E2 (PG) and bradykinin (BK) cocktail in control hDRG neurons induced the depolarization of RMP and the reduction of rheobase currents along with increased AP rise time. However, PG and BK applications failed to induce any significant changes in the p35-overexpressing group. We conclude that, in dissociated hDRGs neurons, CDK5 activation through the overexpression of p35 broadens the AP and that CDK5 may play important roles in the modulation of AP properties in human primary afferents under the condition in which CDK5 is upregulated, contributing to chronic pain.
Collapse
Affiliation(s)
- Manindra Nath Tiwari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | | | - Re Ghetti
- AnaBios, San Diego, CA, United States
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, The University of Maryland, Baltimore, MD, United States
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Tsuboi D, Otsuka T, Shimomura T, Faruk MO, Yamahashi Y, Amano M, Funahashi Y, Kuroda K, Nishioka T, Kobayashi K, Sano H, Nagai T, Yamada K, Tzingounis AV, Nambu A, Kubo Y, Kawaguchi Y, Kaibuchi K. Dopamine drives neuronal excitability via KCNQ channel phosphorylation for reward behavior. Cell Rep 2022; 40:111309. [PMID: 36070693 DOI: 10.1016/j.celrep.2022.111309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Otsuka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Md Omar Faruk
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tomoki Nishioka
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Sokendai, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | | | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, Sokendai, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan; Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kusukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
7
|
Miceli F, Millevert C, Soldovieri MV, Mosca I, Ambrosino P, Carotenuto L, Schrader D, Lee HK, Riviello J, Hong W, Risen S, Emrick L, Amin H, Ville D, Edery P, de Bellescize J, Michaud V, Van-Gils J, Goizet C, Willemsen MH, Kleefstra T, Møller RS, Bayat A, Devinsky O, Sands T, Korenke GC, Kluger G, Mefford HC, Brilstra E, Lesca G, Milh M, Cooper EC, Taglialatela M, Weckhuysen S. KCNQ2 R144 variants cause neurodevelopmental disability with language impairment and autistic features without neonatal seizures through a gain-of-function mechanism. EBioMedicine 2022; 81:104130. [PMID: 35780567 PMCID: PMC9254340 DOI: 10.1016/j.ebiom.2022.104130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 01/10/2023] Open
Abstract
Background Prior studies have revealed remarkable phenotypic heterogeneity in KCNQ2-related disorders, correlated with effects on biophysical features of heterologously expressed channels. Here, we assessed phenotypes and functional properties associated with KCNQ2 missense variants R144W, R144Q, and R144G. We also explored in vitro blockade of channels carrying R144Q mutant subunits by amitriptyline. Methods Patients were identified using the RIKEE database and through clinical collaborators. Phenotypes were collected by a standardized questionnaire. Functional and pharmacological properties of variant subunits were analyzed by whole-cell patch-clamp recordings. Findings Detailed clinical information on fifteen patients (14 novel and 1 previously published) was analyzed. All patients had developmental delay with prominent language impairment. R144Q patients were more severely affected than R144W patients. Infantile to childhood onset epilepsy occurred in 40%, while 67% of sleep-EEGs showed sleep-activated epileptiform activity. Ten patients (67%) showed autistic features. Activation gating of homomeric Kv7.2 R144W/Q/G channels was left-shifted, suggesting gain-of-function effects. Amitriptyline blocked channels containing Kv7.2 and Kv7.2 R144Q subunits. Interpretation Patients carrying KCNQ2 R144 gain-of-function variants have developmental delay with prominent language impairment, autistic features, often accompanied by infantile- to childhood-onset epilepsy and EEG sleep-activated epileptiform activity. The absence of neonatal seizures is a robust and important clinical differentiator between KCNQ2 gain-of-function and loss-of-function variants. The Kv7.2/7.3 channel blocker amitriptyline might represent a targeted treatment. Funding Supported by FWO, GSKE, KCNQ2-Cure, Jack Pribaz Foundation, European Joint Programme on Rare Disease 2020, the Italian Ministry for University and Research, the Italian Ministry of Health, the European Commission, the University of Antwerp, NINDS, and Chalk Family Foundation.
Collapse
|
8
|
Development of KVO treatment strategies for chronic pain in a rat model of Gulf War Illness. Toxicol Appl Pharmacol 2022; 434:115821. [PMID: 34896435 DOI: 10.1016/j.taap.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 μM) and/or Diclofenac (50-140 μM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 μM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 μM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 μM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 μM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.
Collapse
|
9
|
Faruk MO, Tsuboi D, Yamahashi Y, Funahashi Y, Lin YH, Ahammad RU, Hossen E, Amano M, Nishioka T, Tzingounis AV, Yamada K, Nagai T, Kaibuchi K. Muscarinic signaling regulates voltage-gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. J Neurochem 2021; 160:325-341. [PMID: 34878647 DOI: 10.1111/jnc.15555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.
Collapse
Affiliation(s)
- Md Omar Faruk
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Tsuboi
- Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yukie Yamahashi
- Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yasuhiro Funahashi
- Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - You-Hsin Lin
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rijwan Uddin Ahammad
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emran Hossen
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Nishioka
- Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Research Project for Neural and Tumor Signaling, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
10
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
11
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
12
|
Boehm S. Meet Our Editorial Board Member. Curr Neuropharmacol 2020. [PMCID: PMC8033984 DOI: 10.2174/1570159x1902201231152908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stefan Boehm
- Department of Neurophysiology and Neuropharmacology Center for Physiology and Pharmacology Medical University of Vienna Schwarzspanierstrasse 17/I, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Ko W, Jung SR, Kim KW, Yeon JH, Park CG, Nam JH, Hille B, Suh BC. Allosteric modulation of alternatively spliced Ca 2+-activated Cl - channels TMEM16A by PI(4,5)P 2 and CaMKII. Proc Natl Acad Sci U S A 2020; 117:30787-30798. [PMID: 33199590 PMCID: PMC7720229 DOI: 10.1073/pnas.2014520117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transmembrane 16A (TMEM16A, anoctamin1), 1 of 10 TMEM16 family proteins, is a Cl- channel activated by intracellular Ca2+ and membrane voltage. This channel is also regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. We find that two splice variants of TMEM16A show different sensitivity to endogenous PI(4,5)P2 degradation, where TMEM16A(ac) displays higher channel activity and more current inhibition by PI(4,5)P2 depletion than TMEM16A(a). These two channel isoforms differ in the alternative splicing of the c-segment (exon 13). The current amplitude and PI(4,5)P2 sensitivity of both TMEM16A(ac) and (a) are significantly strengthened by decreased free cytosolic ATP and by conditions that decrease phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII). Noise analysis suggests that the augmentation of currents is due to a rise of single-channel current (i), but not of channel number (N) or open probability (PO). Mutagenesis points to arginine 486 in the first intracellular loop as a putative binding site for PI(4,5)P2, and to serine 673 in the third intracellular loop as a site for regulatory channel phosphorylation that modulates the action of PI(4,5)P2 In silico simulation suggests how phosphorylation of S673 allosterically and differently changes the structure of the distant PI(4,5)P2-binding site between channel splice variants with and without the c-segment exon. In sum, our study reveals the following: differential regulation of alternatively spliced TMEM16A(ac) and (a) by plasma membrane PI(4,5)P2, modification of these effects by channel phosphorylation, identification of the molecular sites, and mechanistic explanation by in silico simulation.
Collapse
Affiliation(s)
- Woori Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Kwon-Woo Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jun-Hee Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Cheon-Gyu Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Ion Channel Disease Research Center, College of Medicine, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea;
| |
Collapse
|
14
|
van der Horst J, Greenwood IA, Jepps TA. Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels. Front Physiol 2020; 11:727. [PMID: 32695022 PMCID: PMC7338754 DOI: 10.3389/fphys.2020.00727] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Adem GD, Chen G, Shabala L, Chen ZH, Shabala S. GORK Channel: A Master Switch of Plant Metabolism? TRENDS IN PLANT SCIENCE 2020; 25:434-445. [PMID: 31964604 DOI: 10.1016/j.tplants.2019.12.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 05/18/2023]
Abstract
Potassium regulates a plethora of metabolic and developmental response in plants, and upon exposure to biotic and abiotic stresses a substantial K+ loss occurs from plant cells. The outward-rectifying potassium efflux GORK channels are central to this stress-induced K+ loss from the cytosol. In the mammalian systems, signaling molecules such as gamma-aminobutyric acid, G-proteins, ATP, inositol, and protein phosphatases were shown to operate as ligands controlling many K+ efflux channels. Here we present the evidence that the same molecules may also regulate GORK channels in plants. This mechanism enables operation of the GORK channels as a master switch of the cell metabolism, thus adjusting intracellular K+ homeostasis to altered environmental conditions, to maximize plant adaptive potential.
Collapse
Affiliation(s)
- Getnet D Adem
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Guang Chen
- Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| |
Collapse
|
16
|
Brueggemann LI, Cribbs LL, Byron KL. Structural Determinants of Kv7.5 Potassium Channels That Confer Changes in Phosphatidylinositol 4,5-Bisphosphate (PIP 2) Affinity and Signaling Sensitivities in Smooth Muscle Cells. Mol Pharmacol 2019; 97:145-158. [PMID: 31871302 DOI: 10.1124/mol.119.117192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Smooth muscle cells express Kv7.4 and Kv7.5 voltage-dependent potassium channels, which have each been implicated as regulators of smooth muscle contractility, though they display different sensitivities to signaling via cAMP/protein kinase A (PKA) and protein kinase C (PKC). We expressed chimeric channels composed of different components of the Kv7.4 and Kv7.5 α-subunits in vascular smooth muscle cells to determine which components are essential for enhancement or inhibition of channel activity. Forskolin, an activator of the cAMP/PKA pathway, increased wild-type Kv7.5 but not wild-type Kv7.4 current amplitude. Replacing the amino terminus of Kv7.4 with the amino terminus of Kv7.5 conferred partial responsiveness to forskolin. In contrast, swapping carboxy-terminal phosphatidylinositol 4,5-bisphosphate (PIP2) binding domains, or the entire C terminus, was without effect on the forskolin response, but the latter conferred responsiveness to arginine-vasopressin (an inhibitory PKC-dependent response). Serine-to-alanine mutation at position 53 of the Kv7.5 amino terminus abrogated its ability to confer forskolin sensitivity to Kv7.4. Forskolin treatment reduced the sensitivity of Kv7.5 channels to Ciona intestinalis voltage-sensing phosphatase (Ci-VSP)-induced PIP2 depletion, whereas activation of PKC with phorbol-12-myristate-13-acetate potentiated the Ci-VSP-induced decline in Kv7.5 current amplitude. Our findings suggest that PKA-dependent phosphorylation of serine 53 on the amino terminus of Kv7.5 increases its affinity for PIP2, whereas PKC-dependent phosphorylation of the Kv7.5 carboxy terminus is associated with a reduction in PIP2 affinity; these changes in PIP2 affinity have corresponding effects on channel activity. Resting affinities for PIP2 differ for Kv7.4 and Kv7.5 based on differential responsiveness to Ci-VSP activation and different rates of current rundown in ruptured patch recordings. SIGNIFICANCE STATEMENT: Kv7.4 and Kv7.5 channels are known signal transduction intermediates and drug targets for regulation of smooth muscle tone. The present studies identify distinct functional domains that confer differential sensitivities of Kv7.4 and Kv7.5 to stimulatory and inhibitory signaling and reveal structural features of the channel subunits that determine their biophysical properties. These findings may improve our understanding of the roles of these channels in smooth muscle physiology and disease, particularly in conditions where Kv7.4 and Kv7.5 are differentially expressed.
Collapse
Affiliation(s)
- Lyubov I Brueggemann
- Loyola University Chicago, Stritch School of Medicine, Departments of Molecular Pharmacology & Neuroscience (L.I.B., K.L.B.) and Cell and Molecular Physiology (L.L.C.), Maywood, Illinois
| | - Leanne L Cribbs
- Loyola University Chicago, Stritch School of Medicine, Departments of Molecular Pharmacology & Neuroscience (L.I.B., K.L.B.) and Cell and Molecular Physiology (L.L.C.), Maywood, Illinois
| | - Kenneth L Byron
- Loyola University Chicago, Stritch School of Medicine, Departments of Molecular Pharmacology & Neuroscience (L.I.B., K.L.B.) and Cell and Molecular Physiology (L.L.C.), Maywood, Illinois
| |
Collapse
|
17
|
Branched Short-Chain Fatty Acid Isovaleric Acid Causes Colonic Smooth Muscle Relaxation via cAMP/PKA Pathway. Dig Dis Sci 2019; 64:1171-1181. [PMID: 30560338 PMCID: PMC6499669 DOI: 10.1007/s10620-018-5417-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Isovaleric acid (IVA) is a 5-carbon branched-chain fatty acid present in fermented foods and produced in the colon by bacterial fermentation of leucine. We previously reported that the shorter, straight-chain fatty acids acetate, propionate and butyrate differentially affect colonic motility; however, the effect of branched-chain fatty acids on gut smooth muscle and motility is unknown. AIMS To determine the effect of IVA on contractility of colonic smooth muscle. METHODS Murine colonic segments were placed in a longitudinal orientation in organ baths in Krebs buffer and fastened to force transducers. Segments were contracted with acetylcholine (ACh), and the effects of IVA on ACh-induced contraction were measured in the absence and presence of tetrodotoxin (TTx) or inhibitors of nitric oxide synthase [L-N-nitroarginine (L-NNA)] or adenylate cyclase (SQ22536). The effect of IVA on ACh-induced contraction was also measured in isolated muscle cells in the presence or absence of SQ22536 or protein kinase A (PKA) inhibitor (H-89). Direct activation of PKA was measured in isolated muscle cells. RESULTS In colonic segments, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion; the IVA response was not affected by TTx or L-NNA but inhibited by SQ22536. Similarly, in isolated colonic muscle cells, ACh-induced contraction was inhibited by IVA in a concentration-dependent fashion and the effect blocked by SQ22536 and H-89. IVA also increased PKA activity in isolated smooth muscle cells. CONCLUSIONS The branched-chain fatty acid IVA acts directly on colonic smooth muscle and causes muscle relaxation via the PKA pathway.
Collapse
|
18
|
Ray S, Salzer I, Kronschläger MT, Boehm S. The paracetamol metabolite N-acetylp-benzoquinone imine reduces excitability in first- and second-order neurons of the pain pathway through actions on KV7 channels. Pain 2019; 160:954-964. [PMID: 30601242 PMCID: PMC6430418 DOI: 10.1097/j.pain.0000000000001474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Paracetamol (acetaminophen, APAP) is one of the most frequently used analgesic agents worldwide. It is generally preferred over nonsteroidal anti-inflammatory drugs because it does not cause typical adverse effects resulting from the inhibition of cyclooxygenases, such as gastric ulcers. Nevertheless, inhibitory impact on these enzymes is claimed to contribute to paracetamols mechanisms of action which, therefore, remained controversial. Recently, the APAP metabolites N-arachidonoylaminophenol (AM404) and N-acetyl-p-benzoquinone imine (NAPQI) have been detected in the central nervous system after systemic APAP administration and were reported to mediate paracetamol effects. In contrast to nonsteroidal anti-inflammatory drugs that rather support seizure activity, paracetamol provides anticonvulsant actions, and this dampening of neuronal activity may also form the basis for analgesic effects. Here, we reveal that the APAP metabolite NAPQI, but neither the parent compound nor the metabolite AM404, reduces membrane excitability in rat dorsal root ganglion (DRG) and spinal dorsal horn (SDH) neurons. The observed reduction of spike frequencies is accompanied by hyperpolarization in both sets of neurons. In parallel, NAPQI, but neither APAP nor AM404, increases currents through KV7 channels in DRG and SDH neurons, and the impact on neuronal excitability is absent if KV7 channels are blocked. Furthermore, NAPQI can revert the inhibitory action of the inflammatory mediator bradykinin on KV7 channels but does not affect synaptic transmission between DRG and SDH neurons. These results show that the paracetamol metabolite NAPQI dampens excitability of first- and second-order neurons of the pain pathway through an action on KV7 channels.
Collapse
Affiliation(s)
- Sutirtha Ray
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mira T. Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Mauna JC, Harris SS, Pino JA, Edwards CM, DeChellis-Marks MR, Bassi CD, Garcia-Olivares J, Amara SG, Guajardo FG, Sotomayor-Zarate R, Terminel M, Castañeda E, Vergara M, Baust T, Thiels E, Torres GE. G protein βγ subunits play a critical role in the actions of amphetamine. Transl Psychiatry 2019; 9:81. [PMID: 30745563 PMCID: PMC6370791 DOI: 10.1038/s41398-019-0387-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal levels of dopamine (DA) are thought to contribute to several neurological and psychiatric disorders including drug addiction. Extracellular DA levels are regulated primarily via reuptake by the DA transporter (DAT). Amphetamine, a potent psychostimulant, increases extracellular DA by inducing efflux through DAT. Recently, we discovered that G protein βγ subunits (Gβγ) interact with DAT, and that in vitro activation of Gβγ promotes DAT-mediated efflux. Here, we investigated the role of Gβγ in the actions of amphetamine in DA neurons in culture, ex vivo nucleus accumbens (NAc), and freely moving rats. Activation of Gβγ with the peptide myr-Ser-Ile-Arg-Lys-Ala-Leu-Asn-Ile-Leu-Gly-Tyr-Pro-Asp-Tyr-Asp (mSIRK) in the NAc potentiated amphetamine-induced hyperlocomotion, but not cocaine-induced hyperlocomotion, and systemic or intra-accumbal administration of the Gβγ inhibitor gallein attenuated amphetamine-induced, but not cocaine-induced hyperlocomotion. Infusion into the NAc of a TAT-fused peptide that targets the Gβγ-binding site on DAT (TAT-DATct1) also attenuated amphetamine-induced but not cocaine-induced hyperlocomotion. In DA neurons in culture, inhibition of Gβγ with gallein or blockade of the Gβγ-DAT interaction with the TAT-DATct1 peptide decreased amphetamine-induced DA efflux. Furthermore, activation of Gβγ with mSIRK potentiated and inhibition of Gβγ with gallein reduced amphetamine-induced increases of extracellular DA in the NAc in vitro and in freely moving rats. Finally, systemic or intra-accumbal inhibition of Gβγ with gallein blocked the development of amphetamine-induced, but not cocaine-induced place preference. Collectively, these results suggest that interaction between Gβγ and DAT plays a critical role in the actions of amphetamine and presents a novel target for modulating the actions of amphetamine in vivo.
Collapse
Affiliation(s)
- J C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S S Harris
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - J A Pino
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - C M Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M R DeChellis-Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C D Bassi
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Garcia-Olivares
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - S G Amara
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - F G Guajardo
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - R Sotomayor-Zarate
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - M Terminel
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - E Castañeda
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - M Vergara
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - T Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Thiels
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - G E Torres
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
20
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
21
|
Yang JW, Larson G, Konrad L, Shetty M, Holy M, Jäntsch K, Kastein M, Heo S, Erdem FA, Lubec G, Vaughan RA, Sitte HH, Foster JD. Dephosphorylation of human dopamine transporter at threonine 48 by protein phosphatase PP1/2A up-regulates transport velocity. J Biol Chem 2018; 294:3419-3431. [PMID: 30587577 DOI: 10.1074/jbc.ra118.005251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
Several protein kinases, including protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and extracellular signal-regulated kinase, play key roles in the regulation of dopamine transporter (DAT) functions. These functions include surface expression, internalization, and forward and reverse transport, with phosphorylation sites for these kinases being linked to distinct regions of the DAT N terminus. Protein phosphatases (PPs) also regulate DAT activity, but the specific residues associated with their activities have not yet been elucidated. In this study, using co-immunoprecipitation followed by MS and immunoblotting analyses, we demonstrate the association of DAT with PP1 and PP2A in the mouse brain and heterologous cell systems. By applying MS in conjunction with a metabolic labeling method, we defined a PP1/2A-sensitive phosphorylation site at Thr-48 in human DAT, a residue that has not been previously reported to be involved in DAT phosphorylation. Site-directed mutagenesis of Thr-48 to Ala (T48A) to prevent phosphorylation enhanced dopamine transport kinetics, supporting a role for this residue in regulating DAT activity. Moreover, T48A-DAT displayed increased palmitoylation, suggesting that phosphorylation/dephosphorylation at this site has an additional regulatory role and reinforcing a previously reported reciprocal relationship between C-terminal palmitoylation and N-terminal phosphorylation.
Collapse
Affiliation(s)
- Jae-Won Yang
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Garret Larson
- the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, and
| | - Lisa Konrad
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Madhur Shetty
- the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, and
| | - Marion Holy
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Kathrin Jäntsch
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Mirja Kastein
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Seok Heo
- the Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Fatma Asli Erdem
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - Gert Lubec
- Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Roxanne A Vaughan
- the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, and
| | - Harald H Sitte
- From the Institute of Pharmacology, Center for Physiology and Pharmacology, and
| | - James D Foster
- the Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, and
| |
Collapse
|
22
|
Mechanisms of PKA-Dependent Potentiation of Kv7.5 Channel Activity in Human Airway Smooth Muscle Cells. Int J Mol Sci 2018; 19:ijms19082223. [PMID: 30061510 PMCID: PMC6121446 DOI: 10.3390/ijms19082223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
β-adrenergic receptor (βAR) activation promotes relaxation of both vascular and airway smooth muscle cells (VSMCs and ASMCs, respectively), though the signaling mechanisms have not been fully elucidated. We previously found that the activity of Kv7.5 voltage-activated potassium channels in VSMCs is robustly enhanced by activation of βARs via a mechanism involving protein kinase A (PKA)-dependent phosphorylation. We also found that enhancement of Kv7 channel activity in ASMCs promotes airway relaxation. Here we provide evidence that Kv7.5 channels are natively expressed in primary cultures of human ASMCs and that they conduct currents which are robustly enhanced in response to activation of the βAR/cyclic adenosine monophosphate (cAMP)/PKA pathway. MIT Scansite software analysis of putative PKA phosphorylation sites on Kv7.5 identified 8 candidate serine or threonine residues. Each residue was individually mutated to an alanine to prevent its phosphorylation and then tested for responses to βAR activation or to stimuli that elevate cAMP levels. Only the mutation of serine 53 (S53A), located on the amino terminus of Kv7.5, significantly reduced the increase in Kv7.5 current in response to these stimuli. A phospho-mimic mutation (S53D) exhibited characteristics of βAR-activated Kv7.5. Serine-to-alanine mutations of 6 putative PKA phosphorylation sites on the Kv7.5 C-terminus, individually or in combination, did not significantly reduce the enhancement of the currents in response to forskolin treatment (to elevate cAMP levels). We conclude that phosphorylation of S53 on the amino terminus of Kv7.5 is essential for PKA-dependent enhancement of channel activity in response to βAR activation in vascular and airway smooth muscle cells.
Collapse
|
23
|
Erdem FA, Salzer I, Heo S, Chen WQ, Jung G, Lubec G, Boehm S, Yang JW. Updating In Vivo and In Vitro Phosphorylation and Methylation Sites of Voltage-Gated Kv7.2 Potassium Channels. Proteomics 2018; 17. [PMID: 28834300 DOI: 10.1002/pmic.201700015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/26/2017] [Indexed: 02/04/2023]
Abstract
Voltage-gated Kv7.2 potassium channels regulate neuronal excitability. The gating of these channels is tightly controlled by various mediators and neurotransmitters acting via G protein-coupled receptors; the underlying signaling cascades involve phosphatidylinositol-4,5-bisphosphate (PIP2 ), Ca2+ /calmodulin, and phosphorylation. Recent studies found that the PIP2 sensitivity of Kv7.2 channels is affected by two posttranslational modifications, phosphorylation and methylation, harboured within putative PIP2 -binding domains. In this study, we updated phosphorylation and methylation sites in Kv7.2 either heterologously expressed in mammalian cells or as GST-fusion proteins exposed to recombinant protein kinases by using LC-MS/MS. In vitro kinase assays revealed that CDK5, protein kinase C (PKC) alpha, PKA, p38 MAPK, CamKIIα, and GSK3β could mediate phosphorylation. Taken together, we provided a comprehensive map of phosphorylation and methylation in Kv7.2 within protein-protein and protein-lipid interaction domains. This may help to interpret the functional roles of individual PTM sites in Kv7.2 channels. All MS data are available via ProteomeXchange with the identifier PXD005567.
Collapse
Affiliation(s)
- Fatma Asli Erdem
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Seok Heo
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Wei-Qiang Chen
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gangsoo Jung
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Neuroproteomics, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 2017; 114:E6410-E6419. [PMID: 28716904 DOI: 10.1073/pnas.1620598114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.
Collapse
|