1
|
Dohi N, Yamaguchi M, Iwami K, Kaneko YK, Saito SY, Ishikawa T. Mouse liver blood flow is regulated by hepatic stellate cells in response to the sympathetic neurotransmitter norepinephrine. Life Sci 2024; 359:123214. [PMID: 39491770 DOI: 10.1016/j.lfs.2024.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND There is no clear information on the regulation of liver blood flow by the autonomic nervous system. We conducted this study to investigate whether quiescent hepatic stellate cells (qHSCs) regulate liver blood flow in response to the sympathetic neurotransmitter norepinephrine (NE). METHODS qHSCs isolated from mice were cultured in Dulbecco's modified Eagle medium without fetal bovine serum for 1 day on collagen gel. NE-induced qHSC contraction was evaluated using the quantitative single-cell contraction measurement method that we had developed previously. For the measurement of liver perfusion pressure in situ, a buffer solution was perfused from the portal vein in mice. RESULTS NE-induced a reversible contraction of qHSCs. This contraction was suppressed by the nonmuscle myosin II inhibitor blebbistatin, the myosin light chain kinase inhibitor ML-9, the Rho kinase inhibitor H-1152, the calmodulin inhibitor W-7, the store-operated calcium channel inhibitor YM-58483, and the IP3 receptor inhibitor xestospongin C. In contrast, the transient receptor potential C channel inhibitor SKF96365 did not affect the NE-induced contraction. CONCLUSION These results suggest that qHSCs contract in response to NE. NEW & NOTEWORTHY The present study provides direct evidence for the first time that norepinephrine (NE) induces a reversible contraction of isolated single quiescent hepatic stellate cells (qHSCs) and further suggests that the NE-mediated qHSC contraction participates in the regulation of liver blood flow in vivo.
Collapse
Affiliation(s)
- Naoki Dohi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | - Kyosuke Iwami
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | - Shin-Ya Saito
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan; Department of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| |
Collapse
|
2
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
4
|
Han YS, Bandi R, Fogarty MJ, Sieck GC, Brozovich FV. Aging related decreases in NM myosin expression and contractility in a resistance vessel. Front Physiol 2024; 15:1411420. [PMID: 38808359 PMCID: PMC11130448 DOI: 10.3389/fphys.2024.1411420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction: Vasodilatation in response to NO is a fundamental response of the vasculature, and during aging, the vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO mediated vasodilatation. Vascular tone is regulated by the activation of smooth muscle and nonmuscle (NM) myosin, which are regulated by the activities of myosin light chain kinase (MLCK) and MLC phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit, myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function. Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated vasodilatation. This study tested the hypothesis that aging is associated with changes in LZ+ MYPT1 and NM myosin expression, which alter vascular reactivity. Methods: We determined MYPT1 and NM myosin expression, force and the sensitivity of both endothelial dependent and endothelial independent relaxation in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats. Results: The data demonstrate that aging is associated with a decrease in both the expression of NM myosin and force, but LZ+ MYPT expression and the sensitivity to both endothelial dependent and independent vasodilatation did not change. Further, smooth muscle cell hypertrophy increases the thickness of the medial layer of smooth muscle with aging. Discussion: The reduction of NM myosin may represent an aging associated compensatory mechanism to normalize the stiffness of resistance vessels in response to the increase in media thickness observed during aging.
Collapse
Affiliation(s)
- Young Soo Han
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Rishiraj Bandi
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Matthew J Fogarty
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Frank V Brozovich
- Departments of Physiology and Biomedical Engineering and Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Yasuda Y, Wang L, Chitano P, Seow CY. Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. BIOLOGY 2024; 13:115. [PMID: 38392332 PMCID: PMC10886476 DOI: 10.3390/biology13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Rho-kinase inhibitors have been identified as a class of potential drugs for treating asthma because of their ability to reduce airway inflammation and active force in airway smooth muscle (ASM). Past research has revealed that, besides the effect on the ASM's force generation, rho-kinase (ROCK) also regulates actin filament formation and filament network architecture and integrity, thus affecting ASM's cytoskeletal stiffness. The present review is not a comprehensive examination of the roles played by ROCK in regulating ASM function but is specifically focused on passive tension, which is partially determined by the cytoskeletal stiffness of ASM. Understanding the molecular basis for maintaining active force and passive tension in ASM by ROCK will allow us to determine the suitability of ROCK inhibitors and its downstream enzymes as a class of drugs in treating airway hyperresponsiveness seen in asthma. Because clinical trials using ROCK inhibitors in the treatment of asthma have yet to be conducted, the present review focuses on the in vitro effects of ROCK inhibitors on ASM's mechanical properties which include active force generation, relaxation, and passive stiffness. The review provides justification for future clinical trials in the treatment of asthma using ROCK inhibitors alone and in combination with other pharmacological and mechanical interventions.
Collapse
Affiliation(s)
- Yuto Yasuda
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Pasquale Chitano
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Chun Y Seow
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Health Care, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
6
|
Yang ZH, Liu YJ, Ban WK, Liu HB, Lv LJ, Zhang BY, Liu AL, Hou ZY, Lu J, Chen X, You YY. Pterostilbene alleviated cerebral ischemia/reperfusion-induced blood-brain barrier dysfunction via inhibiting early endothelial cytoskeleton reorganization and late basement membrane degradation. Food Funct 2023; 14:8291-8308. [PMID: 37602757 DOI: 10.1039/d3fo02639f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Pterostilbene, an important analogue of the star molecule resveratrol and a novel compound naturally occurring in blueberries and grapes, exerts a significant neuroprotective effect on cerebral ischemia/reperfusion (I/R), but its mechanism is still unclear. This study aimed to follow the molecular mechanisms behind the potential protective effect of pterostilbene against I/R induced injury. For fulfilment of our aim, we investigated the protective effects of pterostilbene on I/R injury caused by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Machine learning models and molecular docking were used for target exploration and validated by western blotting. Pterostilbene significantly reduced the cerebral infarction volume, improved neurological deficits, increased cerebral microcirculation and improved blood-brain barrier (BBB) leakage. Machine learning models confirmed that the stroke target MMP-9 bound to pterostilbene, and molecular docking demonstrated the strong binding activity. We further found that pterostilbene could depolymerize stress fibers and maintain the cytoskeleton by effectively increasing the expression of the non-phosphorylated actin depolymerizing factor (ADF) in the early stage of I/R. In the late stage of I/R, pterostilbene could activate the Wnt pathway and inhibit the expression of MMP-9 to decrease the degradation of the extracellular basement membrane (BM) and increase the expression of junction proteins. In this study, we explored the protective mechanisms of pterostilbene in terms of both endothelial cytoskeleton and extracellular matrix. The early and late protective effects jointly maintain BBB stability and attenuate I/R injury, showing its potential to be a promising drug candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Ye-Ju Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Wei-Kang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Ling-Juan Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Bao-Yue Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Yu Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yu-Yang You
- Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
8
|
Lubomirov LT, Schroeter MM, Hasse V, Frohn M, Metzler D, Bust M, Pryymachuk G, Hescheler J, Grisk O, Chalovich JM, Smyth NR, Pfitzer G, Papadopoulos S. Dual thick and thin filament linked regulation of stretch- and L-NAME-induced tone in young and senescent murine basilar artery. Front Physiol 2023; 14:1099278. [PMID: 37057180 PMCID: PMC10088910 DOI: 10.3389/fphys.2023.1099278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 μmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/− mice generated stretch-induced tone already at an age of 20–21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/− o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2−/−) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.
Collapse
Affiliation(s)
- Lubomir T. Lubomirov
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- *Correspondence: Lubomir T. Lubomirov,
| | - Mechthild M. Schroeter
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Veronika Hasse
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Maria Bust
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy, University of Cologne, Cologne, Germany
- Institute of Anatomy, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Jürgen Hescheler
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Joseph M. Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Neil R. Smyth
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Gabriele Pfitzer
- Center of Physiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Center of Physiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
HBXIP blocks myosin-IIA assembly by phosphorylating and interacting with NMHC-IIA in breast cancer metastasis. Acta Pharm Sin B 2022; 13:1053-1070. [PMID: 36970214 PMCID: PMC10031283 DOI: 10.1016/j.apsb.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Tumor metastasis depends on the dynamic balance of the actomyosin cytoskeleton. As a key component of actomyosin filaments, non-muscle myosin-IIA disassembly contributes to tumor cell spreading and migration. However, its regulatory mechanism in tumor migration and invasion is poorly understood. Here, we found that oncoprotein hepatitis B X-interacting protein (HBXIP) blocked the myosin-IIA assemble state promoting breast cancer cell migration. Mechanistically, mass spectrometry analysis, co-immunoprecipitation assay and GST-pull down assay proved that HBXIP directly interacted with the assembly-competent domain (ACD) of non-muscle heavy chain myosin-IIA (NMHC-IIA). The interaction was enhanced by NMHC-IIA S1916 phosphorylation via HBXIP-recruited protein kinase PKCβII. Moreover, HBXIP induced the transcription of PRKCB, encoding PKCβII, by coactivating Sp1, and triggered PKCβII kinase activity. Interestingly, RNA sequencing and mouse metastasis model indicated that the anti-hyperlipidemic drug bezafibrate (BZF) suppressed breast cancer metastasis via inhibiting PKCβII-mediated NMHC-IIA phosphorylation in vitro and in vivo. We reveal a novel mechanism by which HBXIP promotes myosin-IIA disassembly via interacting and phosphorylating NMHC-IIA, and BZF can serve as an effective anti-metastatic drug in breast cancer.
Collapse
|
10
|
Larson KF, Malik A, Brozovich FV. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022; 12:3813-3822. [PMID: 35950652 DOI: 10.1002/cphy.c210035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro-inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 1-10, 2022.
Collapse
Affiliation(s)
- Kathryn F Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank V Brozovich
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Smooth Muscle Myosin Localizes at the Leading Edge and Regulates the Redistribution of Actin-regulatory Proteins during Migration. Cells 2022; 11:cells11152334. [PMID: 35954178 PMCID: PMC9367404 DOI: 10.3390/cells11152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Airway smooth muscle cell migration plays an essential role in airway development, repair, and remodeling. Smooth muscle myosin II has been traditionally thought to localize in the cytoplasm solely and regulates cell migration by affecting stress fiber formation and focal adhesion assembly. In this study, we unexpectedly found that 20-kDa myosin light chain (MLC20) and myosin-11 (MYH11), important components of smooth muscle myosin, were present at the edge of lamellipodia. The knockdown of MLC20 or MYH11 attenuated the recruitment of c-Abl, cortactinProfilin-1 (Pfn-1), and Abi1 to the cell edge. Moreover, myosin light chain kinase (MLCK) colocalized with integrin β1 at the tip of protrusion. The inhibition of MLCK attenuated the recruitment of c-Abl, cortactin, Pfn-1, and Abi1 to the cell edge. Furthermore, MLCK localization at the leading edge was reduced by integrin β1 knockdown. Taken together, our results demonstrate that smooth muscle myosin localizes at the leading edge and orchestrates the recruitment of actin-regulatory proteins to the tip of lamellipodia. Mechanistically, integrin β1 recruits MLCK to the leading edge, which catalyzes MLC20 phosphorylation. Activated myosin regulates the recruitment of actin-regulatory proteins to the leading edge, and promotes lamellipodial formation and migration.
Collapse
|
12
|
Yang Y, Li L, He H, Shi M, He L, Liang S, Qi J, Chen W. Numb inhibits migration and promotes proliferation of colon cancer cells via RhoA/ROCK signaling pathway repression. Exp Cell Res 2022; 411:113004. [PMID: 34990618 DOI: 10.1016/j.yexcr.2021.113004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Numb regulates cell proliferation and differentiation through endocytosis and ubiquitination of signaling molecules. Besides, Numb controls the migration of epithelial cells by regulating intercellular junctions. Studies have shown that Numb promotes or inhibits tumor progression in different tumors. However, its role and mechanism in colorectal cancer remain unclear. We found that the expression level of Numb in colon tumor tissues has a great variety in different patients. Numb expression was negatively correlated with TNM stage and lymph node metastasis but positively correlated with tumor size. Elevated expression of Numb was associated with a good prognosis. Inhibiting Numb expression promoted the migration and invasion of colon cancer cells induced by TGF-β, up-regulated the expression of EMT-related molecule Snail, and prevented the expression of E-cadherin. We also found that Numb promoted the proliferation and clones formation while inhibiting colon cancer cells' late apoptosis. In addition, Numb inhibited the RhoA activation and ROCK inhibitor Y-27632 or interfered with ROCK expression, partially inhibiting Numb-regulated cell proliferation and migration. In vivo tumorigenesis assay in nude mice also found that Numb promoted the proliferation of colon cancer cells, inhibited the expression of E-cadherin, and strengthened the expression of Snail. In conclusion, our study found that Numb plays multiple roles in the occurrence and progression of colon cancer by regulating the RhoA/ROCK signaling pathway, which provides a new theoretical molecular basis for the pathogenesis of colon cancer.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Lianyong Li
- Department of Gastroenterology, PLA Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Huan He
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Mengyang Shi
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Lanying He
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Shuwen Liang
- Department of Gastroenterology, PLA Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Jun Qi
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
13
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
14
|
Lubomirov LT, Jänsch MH, Papadopoulos S, Schroeter MM, Metzler D, Bust M, Hescheler J, Grisk O, Ritter O, Pfitzer G. Senescent murine femoral arteries undergo vascular remodelling associated with accelerated stress-induced contractility and reactivity to nitric oxide. Basic Clin Pharmacol Toxicol 2021; 130:70-83. [PMID: 34665520 DOI: 10.1111/bcpt.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/17/2022]
Abstract
This work explored the mechanism of augmented stress-induced vascular reactivity of senescent murine femoral arteries (FAs). Mechanical and pharmacological reactivity of young (12-25 weeks, y-FA) and senescent (>104 weeks, s-FAs) femoral arteries was measured by wire myography. Expression and protein phosphorylation of selected regulatory proteins were studied by western blotting. Expression ratio of the Exon24 in/out splice isoforms of the regulatory subunit of myosin phosphatase, MYPT1 (MYPT1-Exon24 in/out), was determined by polymerase chain reaction (PCR). While the resting length-tension relationship showed no alteration, the stretch-induced-tone increased to 8.3 ± 0.9 mN in s-FA versus only 4.6 ± 0.3 mN in y-FAs. Under basal conditions, phosphorylation of the regulatory light chain of myosin at S19 was 19.2 ± 5.8% in y-FA versus 49.2 ± 12.6% in s-FA. Inhibition of endogenous NO release raised tone additionally to 10.4 ± 1.2 mN in s-FA, whereas this treatment had a negligible effect in y-FAs (4.8 ± 0.3 mN). In s-FAs, reactivity to NO donor was augmented (pD2 = -4.5 ± 0.3 in y-FA vs. -5.2 ± 0.1 in senescent). Accordingly, in s-FAs, MYPT1-Exon24-out-mRNA, which is responsible for expression of the more sensitive to protein-kinase G, leucine-zipper-positive MYPT1 isoform, was increased. The present work provides evidence that senescent murine s-FA undergoes vascular remodelling associated with increases in stretch-activated contractility and sensitivity to NO/cGMP/PKG system.
Collapse
Affiliation(s)
- Lubomir T Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Cologne, Germany.,Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Monique Heidrun Jänsch
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Department of Cardiology, Nephrology and Pneumology, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg an der Havel, Germany
| | - Symeon Papadopoulos
- Institute of Neurophysiology, Center of Physiology, University of Cologne, Cologne, Germany
| | - Mechthild M Schroeter
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Cologne, Germany
| | - Maria Bust
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, University of Cologne, Cologne, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Oliver Ritter
- Research Cluster, Molecular Mechanisms of Cardiovascular Diseases, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Department of Cardiology, Nephrology and Pneumology, Brandenburg Medical School, University Hospital Brandenburg, Brandenburg an der Havel, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Pütz S, Barthel LS, Frohn M, Metzler D, Barham M, Pryymachuk G, Trunschke O, Lubomirov LT, Hescheler J, Chalovich JM, Neiss WF, Koch M, Schroeter MM, Pfitzer G. Caldesmon ablation in mice causes umbilical herniation and alters contractility of fetal urinary bladder smooth muscle. J Gen Physiol 2021; 153:212279. [PMID: 34115104 PMCID: PMC8203487 DOI: 10.1085/jgp.202012776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1−/− compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1−/− than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.
Collapse
Affiliation(s)
- Sandra Pütz
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lisa Sophie Barthel
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mohammed Barham
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Oliver Trunschke
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lubomir T Lubomirov
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Wolfram F Neiss
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mechthild M Schroeter
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Wu Y, Huang Y, Zhang W, Gunst SJ. The proprotein convertase furin inhibits IL-13-induced inflammation in airway smooth muscle by regulating integrin-associated signaling complexes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L102-L115. [PMID: 34009050 DOI: 10.1152/ajplung.00618.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Furin is a proprotein convertase that regulates the activation and the inactivation of multiple proteins including matrix metalloproteinases, integrins, and cytokines. It is a serine endoprotease that localizes to the plasma membrane and can be secreted into the extracellular space. The role of furin in regulating inflammation in isolated canine airway smooth muscle tissues was investigated. The treatment of airway tissues with recombinant furin (rFurin) inhibited the activation of Akt and eotaxin secretion induced by IL-13, and it prevented the IL-13-induced suppression of smooth muscle myosin heavy chain expression. rFurin promoted a differentiated phenotype by activating β1-integrin proteins and stimulating the activation of the adhesome proteins vinculin and paxillin by talin. Activated paxillin induced the binding of Akt to β-parvin IPP [integrin-linked kinase (ILK), PINCH, parvin] complexes, which inhibits Akt activation. Treatment of tissues with a furin inhibitor or the depletion of endogenous furin using shRNA resulted in Akt activation and inflammatory responses similar to those induced by IL-13. Furin inactivation or IL-13 caused talin cleavage and integrin inactivation, resulting in the inactivation of vinculin and paxillin. Paxillin inactivation resulted in the coupling of Akt to α-parvin IPP complexes, which catalyze Akt activation and an inflammatory response. The results demonstrate that furin inhibits inflammation in airway smooth muscle induced by IL-13 and that the anti-inflammatory effects of furin are mediated by activating integrin proteins and integrin-associated signaling complexes that regulate Akt-mediated pathways to the nucleus. Furin may have therapeutic potential for the treatment of inflammatory conditions of the lungs and airways.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
17
|
Dufour-Mailhot A, Boucher M, Henry C, Khadangi F, Tremblay-Pitre S, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Flexibility of microstructural adaptations in airway smooth muscle. J Appl Physiol (1985) 2021; 130:1555-1561. [PMID: 33856257 DOI: 10.1152/japplphysiol.00894.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The airway smooth muscle undergoes an elastic transition during a sustained contraction, characterized by a gradual decrease in hysteresivity caused by a relatively greater rate of increase in elastance than resistance. We recently demonstrated that these mechanical changes are more likely to persist after a large strain when they are acquired in dynamic versus static conditions; as if the microstructural adaptations liable for the elastic transition are more flexible when they evolve in dynamic conditions. The extent of this flexibility is undefined. Herein, contracted ovine tracheal smooth muscle strips were kept in dynamic conditions simulating tidal breathing (sinusoidal length oscillations at 5% amplitude) and then subjected to simulated deep inspirations (DI). Each DI was straining the muscle by either 10%, 20%, or 30% and was imposed at either 2, 5, 10, or 30 min after the preceding DI. The goal was to assess whether and the extent by which the time-dependent decrease in hysteresivity is preserved following the DI. The results show that the time-dependent decrease in hysteresivity seen pre-DI was preserved after a strain of 10%, but not after a strain of 20% or 30%. This suggests that the microstructural adaptations liable for the elastic transition withstood a strain at least twofold greater than the oscillating strain that pertained during their evolution (10% vs. 5%). We propose that a muscle adapting in dynamic conditions forges microstructures exhibiting a substantial degree of flexibility.NEW & NOTEWORTHY This study confirms that airway smooth muscle undergoes an elastic transition during a sustained contraction even when it operates in dynamic conditions simulating breathing at tidal volume. It also demonstrates that the microstructural adaptations liable for this elastic transition withstand a strain that is at least twice as large as the oscillating strain that pertains during their evolution. This degree of flexibility might be an asset with major significant impact for a tissue such as the airway smooth muscle that displays an everchanging shape due to breathing.
Collapse
Affiliation(s)
- Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Marine Clisson
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| |
Collapse
|
18
|
Wang L, Chitano P, Seow CY. Filament evanescence of myosin II and smooth muscle function. J Gen Physiol 2021; 153:211814. [PMID: 33606000 PMCID: PMC7901143 DOI: 10.1085/jgp.202012781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Smooth muscle is an integral part of hollow organs. Many of them are constantly subjected to mechanical forces that alter organ shape and modify the properties of smooth muscle. To understand the molecular mechanisms underlying smooth muscle function in its dynamic mechanical environment, a new paradigm has emerged that depicts evanescence of myosin filaments as a key mechanism for the muscle’s adaptation to external forces in order to maintain optimal contractility. Unlike the bipolar myosin filaments of striated muscle, the side-polar filaments of smooth muscle appear to be less stable, capable of changing their lengths through polymerization and depolymerization (i.e., evanescence). In this review, we summarize accumulated knowledge on the structure and mechanism of filament formation of myosin II and on the influence of ionic strength, pH, ATP, myosin regulatory light chain phosphorylation, and mechanical perturbation on myosin filament stability. We discuss the scenario of intracellular pools of monomeric and filamentous myosin, length distribution of myosin filaments, and the regulatory mechanisms of filament lability in contraction and relaxation of smooth muscle. Based on recent findings, we suggest that filament evanescence is one of the fundamental mechanisms underlying smooth muscle’s ability to adapt to the external environment and maintain optimal function. Finally, we briefly discuss how increased ROCK protein expression in asthma may lead to altered myosin filament stability, which may explain the lack of deep-inspiration–induced bronchodilation and bronchoprotection in asthma.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Singh K, Kim AB, Morgan KG. Non-muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non-muscle cortical cytoskeleton. J Cell Mol Med 2021; 25:2471-2483. [PMID: 33547870 PMCID: PMC7933926 DOI: 10.1111/jcmm.16170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Non‐muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist‐induced aortic stress and stiffness in a dose‐dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non‐muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non‐muscle cell cortex. However, the non‐muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin‐mediated inhibition of NM myosin II suppress agonist‐activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension‐dependent phosphorylation of the focal adhesion proteins FAK and paxillin.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Health Sciences, Boston University, Boston, MA, USA.,CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Anne B Kim
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
20
|
Sun J, Qiao YN, Tao T, Zhao W, Wei LS, Li YQ, Wang W, Wang Y, Zhou YW, Zheng YY, Chen X, Pan HC, Zhang XN, Zhu MS. Distinct Roles of Smooth Muscle and Non-muscle Myosin Light Chain-Mediated Smooth Muscle Contraction. Front Physiol 2020; 11:593966. [PMID: 33424621 PMCID: PMC7793928 DOI: 10.3389/fphys.2020.593966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Both smooth muscle (SM) and non-muscle (NM) myosin II are expressed in hollow organs such as the bladder and uterus, but their respective roles in contraction and corresponding physiological functions remain to be determined. In this report, we assessed their roles by analyzing mice deficient of Myl9, a gene encoding the SM myosin regulatory light chain (SM RLC). We find that global Myl9-deficient bladders contracted with an apparent sustained phase, despite no initial phase. This sustained contraction was mediated by NM myosin RLC (NM RLC) phosphorylation by myosin light chain kinase (MLCK). NM myosin II was expressed abundantly in the uterus and young mice bladders, of which the force was accordingly sensitive to NM myosin inhibition. Our findings reveal distinct roles of SM RLC and NM RLC in SM contraction.
Collapse
Affiliation(s)
- Jie Sun
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yan-Ning Qiao
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Tao Tao
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Li-Sha Wei
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ye-Qiong Li
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Wang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ye Wang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yu-Wei Zhou
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Hong-Chun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xue-Na Zhang
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Zhang W, Gunst SJ. S100A4 is activated by RhoA and catalyses the polymerization of non-muscle myosin, adhesion complex assembly and contraction in airway smooth muscle. J Physiol 2020; 598:4573-4590. [PMID: 32767681 DOI: 10.1113/jp280111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS S100A4 is expressed in many tissues, including smooth muscle (SM), but its physiologic function is unknown. S100A4 regulates the motility of metastatic cancer cells by binding to non-muscle (NM) myosin II. Contractile stimulation causes the polymerization of NM myosin in airway SM, which is necessary for tension development. NM myosin regulates the assembly of adhesion junction signalling complexes (adhesomes) that catalyse actin polymerization. In airway SM, ACh (acetylcholine) stimulated the binding of S100A4 to the NM myosin heavy chain, which was catalysed by RhoA GTPase via the RhoA-binding protein, rhotekin. The binding of S100A4 to NM myosin was required for NM myosin polymerization, adhesome assembly and actin polymerization. S100A4 plays a critical function in the regulation of airway SM contraction by catalysing NM myosin filament assembly. The interaction of S100A4 with NM myosin may also play an important role in the physiologic function of other tissues. ABSTRACT S100A4 binds to the heavy chain of non-muscle (NM) myosin II and can regulate the motility of crawling cells. S100A4 is widely expressed in many tissues including smooth muscle (SM), although its role in the regulation of their physiologic function is not known. We hypothesized that S100A4 contributes to the regulation of contraction in airway SM by regulating a pool of NM myosin II at the cell cortex. NM myosin II undergoes polymerization in airway SM and regulates contraction by catalysing the assembly of integrin-associated adhesome complexes that activate pathways that catalyse actin polymerization. ACh stimulated the interaction of S100A4 with NM myosin II in airway SM at the cell cortex and catalysed NM myosin filament assembly. RhoA GTPase regulated the activation of S100A4 via rhotekin, which facilitated the formation of a complex between RhoA, S100A4 and NM myosin II. The depletion of S100A4, RhoA or rhotekin from airway SM tissues using short hairpin RNA or small interfering RNA prevented NM myosin II polymerization as well as the recruitment of vinculin and paxillin to adhesome signalling complexes in response to ACh, and inhibited actin polymerization and tension development. S100A4 depletion did not affect ACh-stimulated SM myosin regulatory light chain phosphorylation. The results show that S100A4 plays a critical role in tension development in airway SM tissue by catalysing NM myosin filament assembly, and that the interaction of S100A4 with NM myosin in response to contractile stimulation is activated by RhoA GTPase. These results may be broadly relevant to the physiologic function of S100A4 in other cell and tissue types.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Seow CY, An SS. The Force Awakens in the Cytoskeleton: The Saga of a Shape-Shifter. Am J Respir Cell Mol Biol 2020; 62:550-551. [PMID: 31940442 PMCID: PMC7193797 DOI: 10.1165/rcmb.2019-0462ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouver, British Columbia, Canada
| | - Steven S An
- Rutgers-Robert Wood Johnson Medical SchoolThe State University of New JerseyPiscataway, New Jerseyand.,Rutgers Institute for Translational Medicine and ScienceNew Brunswick, New Jersey
| |
Collapse
|
23
|
Wu Y, Zhang W, Gunst SJ. S100A4 is secreted by airway smooth muscle tissues and activates inflammatory signaling pathways via receptors for advanced glycation end products. Am J Physiol Lung Cell Mol Physiol 2020; 319:L185-L195. [PMID: 32432920 DOI: 10.1152/ajplung.00347.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
S100A4 is a low-molecular-mass (12 kDa) EF-hand Ca2+-binding S100 protein that is expressed in a broad range of normal tissue and cell types. S100A4 can be secreted from some cells to act in an autocrine or paracrine fashion on target cells and tissues. S100A4 has been reported in the extracellular fluids of subjects with several inflammatory diseases, including asthma. Airway smooth muscle plays a critical role in airway inflammation by synthesizing and secreting inflammatory cytokines. We hypothesized that S100A4 may play an immunomodulatory role in airway smooth muscle. Trachealis smooth muscle tissues were stimulated with recombinant His-S100A4, and the effects on inflammatory responses were evaluated. S100A4 induced the activation of Akt and NF-κB and stimulated eotaxin secretion. It also increased the expression of RAGE and endogenous S100A4 in airway tissues. Stimulation of airway smooth muscle tissues with IL-13 or TNF-α induced the secretion of S100A4 from the tissues and promoted the expression of endogenous receptors for advanced glycation end products (RAGE) and S100A4. The role of RAGE in mediating the responses to S100A4A was evaluated by expressing a mutant nonfunctional RAGE (RAGEΔcyto) in tracheal muscle tissues and by treating tissues with a RAGE inhibitor. S100A4 did not activate NF-κB or Akt in tissues that were expressing RAGEΔcyto or treated with a RAGE inhibitor, indicating that S100A4 mediates its effects by acting on RAGE. Our results demonstrate that inflammatory mediators stimulate the synthesis and secretion of S100A4 in airway smooth muscle tissues and that extracellular S100A4 acts via RAGE to mediate airway smooth muscle inflammation.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
24
|
Mihashi S, Ishida Y, Watanabe M. Accelerating effects of blebbistatin on relaxation process of cell membrane permeabilized trachea and taenia cecum from guinea pig. J Smooth Muscle Res 2020; 56:19-28. [PMID: 32350168 PMCID: PMC7184228 DOI: 10.1540/jsmr.56.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blebbistatin, a potent inhibitor of myosin II, is known to suppress smooth muscle
contraction without affecting myosin light chain phosphorylation level. In order to
clarify the regulatory mechanisms of blebbistatin on phasic and tonic smooth muscles in
detail, we examined the effects of blebbistatin on relaxation process by Ca2+
removal after Ca2+-induced contraction of β-escin skinned (cell membrane
permeabilized) trachea and taenia cecum preparations from guinea pigs. Blebbistatin
significantly suppressed the force during relaxation both in skinned trachea and taenia
cecum. The data fitting analysis of the relaxation processes indicates that blebbistatin
accelerates slow (latch-like) bridge dissociation.
Collapse
Affiliation(s)
- Satoko Mihashi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yukisato Ishida
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Masaru Watanabe
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
25
|
Cao L, Hou C, Hussain Z, Zhang D, Wang Z. Quantitative phosphoproteomics analysis of actomyosin dissociation affected by specific site phosphorylation of myofibrillar protein. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Airway smooth muscle adapting in dynamic conditions is refractory to the bronchodilator effect of a deep inspiration. Am J Physiol Lung Cell Mol Physiol 2020; 318:L452-L458. [PMID: 31913645 DOI: 10.1152/ajplung.00270.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airway smooth muscle (ASM) is continuously strained during breathing at tidal volume. Whether this tidal strain influences the magnitude of the bronchodilator response to a deep inspiration (DI) is not clearly defined. The present in vitro study examines the effect of tidal strain on the bronchodilator effect of DIs. ASM strips from sheep tracheas were mounted in organ baths and then subjected to stretches (30% strain), simulating DIs at varying time intervals. In between simulated DIs, the strips were either held at a fixed length (isometric) or oscillated continuously by 6% (length oscillations) to simulate tidal strain. The contractile state of the strips was also controlled by adding either methacholine or isoproterenol to activate or relax ASM, respectively. Although the time-dependent gain in force caused by methacholine was attenuated by length oscillations, part of the acquired force in the oscillating condition was preserved postsimulated DIs, which was not the case in the isometric condition. Consequently, the bronchodilator effect of simulated DIs (i.e., the decline in force postsimulated versus presimulated DIs) was attenuated in oscillating versus isometric conditions. These findings suggest that an ASM operating in a dynamic environment acquired adaptations that make it refractory to the decline in contractility inflicted by a larger strain simulating a DI.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Marine Clisson
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Marie-Annick Clavel
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
27
|
Gazzola M, Henry C, Lortie K, Khadangi F, Park CY, Fredberg JJ, Bossé Y. Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. Am J Physiol Lung Cell Mol Physiol 2020; 318:L442-L451. [PMID: 31850799 DOI: 10.1152/ajplung.00205.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Force adaptation of airway smooth muscle (ASM) is a process whereby the presence of tone (i.e., a sustained contraction) increases the contractile capacity. For example, tone has been shown to increase airway responsiveness in both healthy mice and humans. The goal of the present study is to elucidate the underlying molecular mechanisms. The maximal force generated by mouse tracheas was measured in response to 10-4 M of methacholine following a 30-min period with or without tone elicited by the EC30 of methacholine. To confirm the occurrence of force adaptation at the cellular level, traction force generated by cultured human ASM cells was also measured following a similar protocol. Different pharmacological inhibitors were used to investigate the role of Rho-associated coiled-coil containing protein kinase (ROCK), protein kinase C (PKC), myosin light chain kinase (MLCK), and actin polymerization in force adaptation. The phosphorylation level of the regulatory light chain (RLC) of myosin, the amount of actin filaments, and the activation level of the actin-severing protein cofilin were also quantified. Although ROCK, PKC, MLCK, and RLC phosphorylation was not implicated, force adaptation was prevented by inhibiting actin polymerization. Interestingly, the presence of tone blocked the activation of cofilin in addition to increasing the amount of actin filaments to a maximal level. We conclude that actin filamentogenesis induced by tone, resulting from both actin polymerization and the prevention of cofilin-mediated actin cleavage, is the main molecular mechanism underlying force adaptation.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Chan Young Park
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Jeffrey J Fredberg
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Shortening of airway smooth muscle is modulated by prolonging the time without simulated deep inspirations in ovine tracheal strips. J Appl Physiol (1985) 2019; 127:1528-1538. [PMID: 31545157 DOI: 10.1152/japplphysiol.00423.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The shortening of airway smooth muscle (ASM) is greatly affected by time. This is because stimuli affecting ASM shortening, such as bronchoactive molecules or the strain inflicted by breathing maneuvers, not only alter quick biochemical processes regulating contraction but also slower processes that allow ASM to adapt to an ever-changing length. Little attention has been given to the effect of time on ASM shortening. The present study investigates the effect of changing the time interval between simulated deep inspirations (DIs) on ASM shortening and its responsiveness to simulated DIs. Excised tracheal strips from sheep were mounted in organ baths and either activated with methacholine or relaxed with isoproterenol. They were then subjected to simulated DIs by imposing swings in distending stress, emulating a transmural pressure from 5 to 30 cmH2O. The simulated DIs were intercalated by 2, 5, 10, or 30 min. In between simulated DIs, the distending stress was either fixed or oscillating to simulate tidal breathing. The results show that although shortening was increased by prolonging the interval between simulated DIs, the bronchodilator effect of simulated DIs (i.e., the elongation of the strip post- vs. pre-DI) was not affected, and the rate of re-shortening post-simulated DIs was decreased. As the frequency with which DIs are taken increases upon bronchoconstriction, our results may be relevant to typical alterations observed in asthma, such as an increased rate of re-narrowing post-DI.NEW & NOTEWORTHY The frequency with which patients with asthma take deep inspirations (DIs) increases during bronchoconstriction. This in vitro study investigated the effect of changing the time interval between simulated DIs on airway smooth muscle shortening. The results demonstrated that decreasing the interval between simulated DIs not only decreases shortening, which may be protective against excessive airway narrowing, but also increases the rate of re-shortening post-simulated DIs, which may contribute to the increased rate of re-narrowing post-DI observed in asthma.
Collapse
|
29
|
Sieck GC, Dogan M, Young‐Soo H, Osorio Valencia S, Delmotte P. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep 2019; 7:e14220. [PMID: 31512410 PMCID: PMC6739507 DOI: 10.14814/phy2.14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Airway diseases such as asthma are triggered by inflammation and mediated by proinflammatory cytokines such as tumor necrosis factor alpha (TNFα). Our goal was to systematically examine the potential mechanisms underlying the effect of TNFα on airway smooth muscle (ASM) contractility. Porcine ASM strips were incubated for 24 h with and without TNFα. Exposure to TNFα increased maximum ASM force in response to acetylcholine (Ach), with an increase in ACh sensitivity (hyperreactivity), as reflected by a leftward shift in the dose-response curve (EC50 ). At the EC50 , the [Ca2+ ]cyt response to ACh was similar between TNFα and control ASM, while force increased; thus, Ca2+ sensitivity appeared to increase. Exposure to TNFα increased the basal level of regulatory myosin light chain (rMLC) phosphorylation in ASM; however, the ACh-dependent increase in rMLC phosphorylation was blunted by TNFα with no difference in the extent of rMLC phosphorylation at the EC50 ACh concentration. In TNFα-treated ASM, total actin and myosin heavy chain concentrations increased. TNFα exposure also enhanced the ACh-dependent polymerization of G- to F-actin. The results of this study confirm TNFα-induced hyperreactivity to ACh in porcine ASM. We conclude that the TNFα-induced increase in ASM force, cannot be attributed to an enhanced [Ca2+ ]cyt response or to an increase in rMLC phosphorylation. Instead, TNFα increases Ca2+ sensitivity of ASM force generation due to increased contractile protein content (greater number of contractile units) and enhanced cytoskeletal remodeling (actin polymerization) resulting in increased tethering of contractile elements to the cortical cytoskeleton and force translation to the extracellular matrix.
Collapse
Affiliation(s)
- Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Murat Dogan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Han Young‐Soo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Sara Osorio Valencia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| |
Collapse
|
30
|
Luo L, Wang L, Paré PD, Seow CY, Chitano P. The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol 2019; 317:L235-L246. [PMID: 31116578 PMCID: PMC6734385 DOI: 10.1152/ajplung.00051.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 05/12/2019] [Indexed: 02/04/2023] Open
Abstract
The cyclic interaction between myosin crossbridges and actin filaments underlies smooth muscle contraction. Phosphorylation of the 20-kDa myosin light chain (MLC20) is a crucial step in activating the crossbridge cycle. Our current understanding of smooth muscle contraction is based on observed correlations among MLC20 phosphorylation, maximal shortening velocity (Vmax), and isometric force over the time course of contraction. However, during contraction there are changes in the extent of phosphorylation of many additional proteins as well as changes in activation of enzymes associated with the signaling pathways. As a consequence, the mechanical manifestation of muscle contraction is likely to change with time. To simplify the study of these relationships, we measured the mechanical properties of airway smooth muscle at different levels of MLC20 phosphorylation at a fixed time during contraction. A simple correlation emerged when time-dependent variables were fixed. MLC20 phosphorylation was found to be directly and linearly correlated with the active stress, stiffness, and power of the muscle; the observed weak dependence of Vmax on MLC20 phosphorylation could be explained by the presence of an internal load in the muscle preparation. These results can be entirely explained by the Huxley crossbridge model. We conclude that when the influence of time-dependent events during contraction is held constant, the basic crossbridge mechanism in smooth muscle is the same as that in striated muscle.
Collapse
Affiliation(s)
- Ling Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Chongqing University Cancer Hospital and Chongqing Cancer Institute, Chongqing, China
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Khadangi F, Bossé Y. Extracellular regulation of airway smooth muscle contraction. Int J Biochem Cell Biol 2019; 112:1-7. [PMID: 31042549 DOI: 10.1016/j.biocel.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms governing the contraction of airway smooth muscle have always been at the forefront of asthma research. New extracellular molecules affecting the contraction of airway smooth muscle are steadily being discovered. Although interesting, this is disconcerting for researchers trying to find a mend for the significant part of asthma symptoms caused by contraction. Additional efforts are being deployed to understand the intracellular signaling pathways leading to contraction. The goal being to find common pathways that are essential to convey the contractile signal emanating from any single or combination of extracellular molecules. Not only these pathways exist and their details are being slowly unveiled, but some carry the signal inside-out to interact back with extracellular molecules. These latter represent targets with promising therapeutic potential, not only because they are molecules downstream of pathways essential for contraction but also because their extracellular location makes them readily accessible by inhaled drugs.
Collapse
|
32
|
Tan L, Yuan X, Liu Y, Cai X, Guo S, Wang A. Non-muscle Myosin II: Role in Microbial Infection and Its Potential as a Therapeutic Target. Front Microbiol 2019; 10:401. [PMID: 30886609 PMCID: PMC6409350 DOI: 10.3389/fmicb.2019.00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
Currently, the major measures of preventing and controlling microbial infection are vaccinations and drugs. However, the appearance of drug resistance microbial mounts is main obstacle in current anti-microbial therapy. One of the most ubiquitous actin-binding proteins, non-muscle myosin II (NM II) plays a crucial role in a wide range of cellular physiological activities in mammals, including cell adhesion, migration, and division. Nowadays, growing evidence indicates that aberrant expression or activity of NM II can be detected in many diseases caused by microbes, including viruses and bacteria. Furthermore, an important role for NM II in the infection of some microbes is verified. Importantly, modulating the expression of NM II with small hairpin RNA (shRNA) or the activity of it by inhibitors can affect microbial-triggered phenotypes. Therefore, NM II holds the promise to be a potential target for inhibiting the infection of microbes and even treating microbial-triggered discords. In spite of these, a comprehensive view on the functions of NM II in microbial infection and the regulators which have an impact on the roles of NM II in this context, is still lacking. In this review, we summarize our current knowledge on the roles of NM II in microbial-triggered discords and provide broad insights into its regulators. In addition, the existing challenge of investigating the multiple roles of NM II in microbial infection and developing NM II inhibitors for treating these microbial-triggered discords, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaomin Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yisong Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
Zhang W, Gunst SJ. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness. ACTA ACUST UNITED AC 2019; 2. [PMID: 32270135 PMCID: PMC7141576 DOI: 10.1115/1.4042775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The smooth muscle of the airways is exposed to continuously changing mechanical
forces during normal breathing. The mechanical oscillations that occur during
breathing have profound effects on airway tone and airway responsiveness both in
experimental animals and humans in vivo and in isolated airway tissues in vitro.
Experimental evidence suggests that alterations in the contractile and
mechanical properties of airway smooth muscle tissues caused by mechanical
perturbations result from adaptive changes in the organization of the
cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a
dynamic structure that undergoes rapid reorganization in response to external
mechanical and pharmacologic stimuli. Contractile stimulation initiates the
assembly of cytoskeletal/extracellular matrix adhesion complex proteins into
large macromolecular signaling complexes (adhesomes) that undergo activation to
mediate the polymerization and reorganization of a submembranous network of
actin filaments at the cortex of the cell. Cortical actin polymerization is
catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the
Arp2/3 complex, which are activated by pathways regulated by paxillin and the
small GTPase, cdc42. These processes create a strong and rigid cytoskeletal
framework that may serve to strengthen the membrane for the transmission of
force generated by the contractile apparatus to the extracellular matrix, and to
enable the adaptation of smooth muscle cells to mechanical stresses. This model
for the regulation of airway smooth muscle function can provide novel
perspectives to explain the normal physiologic behavior of the airways and
pathophysiologic properties of the airways in asthma.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
34
|
Lyle MA, Brozovich FV. HFpEF, a Disease of the Vasculature: A Closer Look at the Other Half. Mayo Clin Proc 2018; 93:1305-1314. [PMID: 30064827 DOI: 10.1016/j.mayocp.2018.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Patients with heart failure are commonly divided into those with reduced ejection fraction (EF<40%) and those with preserved ejection fraction (HFpEF; EF>50%). For heart failure with reduced EF, a number of therapies have been found to improve patient morbidity and mortality, and treatment is guideline based. However for patients with HFpEF, no treatment has been found to have clinical benefit. To objectively assess treatments for HFpEF, a comprehensive PubMed literature search was performed using the terms HFpEF, heart failure, smooth muscle, myosin, myosin phosphatase, and PKG (up to December 31, 2017), with an unbiased focus on pathophysiology, cell signaling, and therapy. This review provides evidence that could explain the lack of clinical benefit in treating patients with HFpEF with sildenafil and long-acting nitrates. Furthermore, the review highlights the vascular abnormalities present in patients with HFpEF, and these abnormalities of the vasculature could potentially contribute to the pathophysiology of HFpEF. Thus, focusing on HFpEF as a vascular disease could result in the development of novel and effective treatment paradigms.
Collapse
Affiliation(s)
- Melissa A Lyle
- Department of Cadiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Frank V Brozovich
- Department of Cadiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN.
| |
Collapse
|
35
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
36
|
Lockett AD, Wu Y, Gunst SJ. Elastase alters contractility and promotes an inflammatory synthetic phenotype in airway smooth muscle tissues. Am J Physiol Lung Cell Mol Physiol 2017; 314:L626-L634. [PMID: 29212803 DOI: 10.1152/ajplung.00334.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutrophil elastase is secreted by inflammatory cells during airway inflammation and can elicit airway hyperreactivity in vivo. Elastase can degrade multiple components of the extracellular matrix. We hypothesized that elastase might disrupt the connections between airway smooth muscle (ASM) cells and the extracellular matrix and that this might have direct effects on ASM tissue responsiveness and inflammation. The effect of elastase treatment on ASM contractility was assessed in vitro in isolated strips of canine tracheal smooth muscle by stimulation of tissues with cumulatively increasing concentrations of acetylcholine (ACh) and measurement of contractile force. Elastase treatment potentiated contractile responses to ACh at low concentrations but suppressed the maximal contractile force generated by the tissues without affecting the phosphorylation of myosin regulatory light chain (RLC). Elastase also promoted the secretion of eotaxin and the activation of Akt in ASM tissues and decreased expression of smooth muscle myosin heavy chain, consistent with promotion of a synthetic inflammatory phenotype. As the degradation of matrix proteins can alter integrin engagement, we evaluated the effect of elastase on the assembly and activation of integrin-associated adhesion junction complexes in ASM tissues. Elastase led to talin cleavage, reduced talin binding to vinculin, and suppressed activation of the adhesome proteins paxillin, focal adhesion kinase, and vinculin, indicating that elastase causes the disassembly of adhesion junction complexes and the inactivation of adhesome signaling proteins. We conclude that elastase promotes an inflammatory phenotype and increased sensitivity to ACh in ASM tissues by disrupting signaling pathways mediated by integrin-associated adhesion complexes.
Collapse
Affiliation(s)
- Angelia D Lockett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yidi Wu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
37
|
Gao N, Tsai MH, Chang AN, He W, Chen CP, Zhu M, Kamm KE, Stull JT. Physiological vs. pharmacological signalling to myosin phosphorylation in airway smooth muscle. J Physiol 2017; 595:6231-6247. [PMID: 28749013 PMCID: PMC5621497 DOI: 10.1113/jp274715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Smooth muscle myosin regulatory light chain (RLC) is phosphorylated by Ca2+ /calmodulin-dependent myosin light chain kinase and dephosphorylated by myosin light chain phosphatase (MLCP). Tracheal smooth muscle contains significant amounts of myosin binding subunit 85 (MBS85), another myosin phosphatase targeting subunit (MYPT) family member, in addition to MLCP regulatory subunit MYPT1. Concentration/temporal responses to carbachol demonstrated similar sensitivities for bovine tracheal force development and phosphorylation of RLC, MYPT1, MBS85 and paxillin. Electrical field stimulation releases ACh from nerves to increase RLC phosphorylation but not MYPT1 or MBS85 phosphorylation. Thus, nerve-mediated muscarinic responses in signalling modules acting on RLC phosphorylation are different from pharmacological responses with bath added agonist. The conditional knockout of MYPT1 or the knock-in mutation T853A in mice had no effect on muscarinic force responses in isolated tracheal tissues. MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction. ABSTRACT Ca2+ /calmodulin activation of myosin light chain kinase (MLCK) initiates myosin regulatory light chain (RLC) phosphorylation for smooth muscle contraction with subsequent dephosphorylation for relaxation by myosin light chain phosphatase (MLCP) containing regulatory (MYPT1) and catalytic (PP1cδ) subunits. RLC phosphorylation-dependent force development is regulated by distinct signalling modules involving protein phosphorylations. We investigated responses to cholinergic agonist treatment vs. neurostimulation by electric field stimulation (EFS) in bovine tracheal smooth muscle. Concentration/temporal responses to carbachol demonstrated tight coupling between force development and RLC phosphorylation but sensitivity differences in MLCK, MYPT1 T853, MYPT1 T696, myosin binding subunit 85 (MBS85), paxillin and CPI-17 (PKC-potentiated protein phosphatase 1 inhibitor protein of 17 kDa) phosphorylations. EFS increased force and phosphorylation of RLC, CPI-17 and MLCK. In the presence of the cholinesterase inhibitor neostigmine, EFS led to an additional increase in phosphorylation of MYPT1 T853, MYPT1 T696, MBS85 and paxillin. Thus, there were distinct pharmacological vs. physiological responses in signalling modules acting on RLC phosphorylation and force responses, probably related to degenerate G protein signalling networks. Studies with genetically modified mice were performed. Expression of another MYPT1 family member, MBS85, was enriched in mouse, as well as bovine tracheal smooth muscle. Carbachol concentration/temporal-force responses were similar in trachea from MYPT1SM+/+ , MYPT1SM-/- and the knock-in mutant mice containing nonphosphorylatable MYPT1 T853A with no differences in RLC phosphorylation. Thus, MYPT1 T853 phosphorylation was not necessary for regulation of RLC phosphorylation in tonic airway smooth muscle. Furthermore, MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming-Ho Tsai
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Present address: Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung, Taiwan
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiqi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Present address: Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - Cai-Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Present address: Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, PR China
| | - Minsheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Chitano P, Wang L, Tin GYY, Ikebe M, Paré PD, Seow CY. Smooth muscle function and myosin polymerization. J Cell Sci 2017; 130:2468-2480. [DOI: 10.1242/jcs.202812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/01/2017] [Indexed: 01/28/2023] Open
Abstract
Smooth muscle is able to function over a much broader length range than striated muscle. The ability to maintain contractility after a large length change is thought to be due to an adaptive process involving restructuring of the contractile apparatus to maximize overlap between the contractile filaments. The molecular mechanism for the length-adaptive behavior is largely unknown. In smooth muscle adapted to different lengths we quantified myosin monomers, basal and activation-induced myosin light chain (MLC) phosphorylation, shortening-velocity, power-output and active force. The muscle was able to generate a constant maximal force over a 2-fold length range when it was allowed to go through isometric contraction/relaxation cycles after each length change (length adaptation). In the relaxed state myosin monomer concentration and basal MLC phosphorylation decreased linearly, while in the activated state activation-induced MLC phosphorylation and shortening-velocity/power-output increased linearly with muscle length. The results suggest that recruitment of myosin monomers and oligomers into the actin filament lattice (where they form force-generating filaments) occurs during muscle adaptation to longer length with the opposite occurring during adaptation to shorter length.
Collapse
Affiliation(s)
- Pasquale Chitano
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Lu Wang
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gabrielle Y. Y. Tin
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Peter D. Paré
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation - St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|