1
|
Ferro F, Wolf CR, Henstridge C, Inesta-Vaquera F. Novel in vivo TDP-43 stress reporter models to accelerate drug development in ALS. Open Biol 2024; 14:240073. [PMID: 39471842 PMCID: PMC11521617 DOI: 10.1098/rsob.240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
The development of therapies to combat neurodegenerative diseases is widely recognized as a research priority. Despite recent advances in understanding their molecular basis, there is a lack of suitable early biomarkers to test selected compounds and accelerate their translation to clinical trials. We have investigated the utility of in vivo reporters of cytoprotective pathways (e.g. NRF2, p53) as surrogate early biomarkers of the ALS degenerative disease progression. We hypothesized that cellular stress observed in a model of ALS may precede overt cellular damage and could activate our cytoprotective pathway reporters. To test this hypothesis, we generated novel ALS-reporter mice by crossing the hTDP-43tg model into our oxidative stress/inflammation (Hmox1; NRF2 pathway) and DNA damage (p21; p53 pathway) stress reporter models. Histological analysis of reporter expression in a homozygous hTDP-43tg background demonstrated a time-dependent and tissue-specific activation of the reporters in tissues directly associated with ALS, before moderate clinical signs are observed. Further work is warranted to determine the specific mechanisms by which TDP-43 accumulation leads to reporter activation and whether therapeutic intervention modulates reporters' expression. We anticipate the reporter strategy could be of great value in developing treatments for a range of degenerative disorders.
Collapse
Affiliation(s)
- Febe Ferro
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - C. Roland Wolf
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
| | | | - Francisco Inesta-Vaquera
- Systems and Cellular Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Biochemistry and Molecular Biology and Genetics, University of Extremadura, Badajoz06006, Spain
| |
Collapse
|
2
|
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023; 13:1005. [PMID: 37755285 PMCID: PMC10534741 DOI: 10.3390/metabo13091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.
Collapse
Affiliation(s)
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.); (S.S.)
| |
Collapse
|
3
|
Inesta-Vaquera F, Miyashita L, Grigg J, Henderson CJ, Wolf CR. Defining the in vivo mechanism of air pollutant toxicity using murine stress response biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 888:164211. [PMID: 37196967 DOI: 10.1016/j.scitotenv.2023.164211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Air pollution can cause a wide range of serious human diseases. For the informed instigation of interventions which prevent these outcomes there is an urgent need to develop robust in vivo biomarkers which provide insights into mechanisms of toxicity and relate pollutants to specific adverse outcomes. We exemplify for a first time the application of in vivo stress response reporters in establishing mechanisms of air pollution toxicity and the application of this knowledge in epidemiological studies. We first demonstrated the utility of reporter mice to understand toxicity mechanisms of air pollutants using diesel exhaust particles compounds. We observed that nitro-PAHs induced Hmox1 and CYP1a1 reporters in a time- and dose-dependent, cell- and tissue-specific manner. Using in vivo genetic and pharmacological approaches we confirmed that the NRF2 pathway mediated this Hmox1-reporter induction stress reporter activity. We then correlated the activation of stress-reporter models (oxidative stress/inflammation, DNA damage and Ah receptor -AhR- activity) with responses in primary human nasal cells exposed to chemicals present in particulate matter (PM; PM2.5-SRM2975, PM10-SRM1648b) or fresh roadside PM10. To exemplify their use in clinical studies, Pneumococcal adhesion was assessed in exposed primary human nasal epithelial cells (HPNEpC). The combined use of HPNEpC and in vivo reporters demonstrated that London roadside PM10 particles induced pneumococcal infection in HPNEpC mediated by oxidative stress responses. The combined use of in vivo reporter models with human data thus provides a robust approach to define the relationship between air pollutant exposure and health risks. Moreover, these models can be used in epidemiological studies to hazard ranking environmental pollutants by considering the complexity of mechanisms of toxicity. These data will facilitate the relationship between toxic potential and the level of pollutant exposure in populations to be established and potentially extremely valuable tools for intervention studies for disease prevention.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | | | - Colin J Henderson
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee DD1 9SY, UK.
| |
Collapse
|
4
|
Iñesta Vaquera F, Ferro F, McMahon M, Henderson CJ, Wolf CR. Potential of in vivo stress reporter models to reduce animal use and provide mechanistic insights in toxicity studies. F1000Res 2023; 11:1164. [PMID: 37427015 PMCID: PMC10329194 DOI: 10.12688/f1000research.123077.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Chemical risk assessment ensures protection from the toxic effects of drugs and manmade chemicals. To comply with regulatory guidance, studies in complex organisms are required, as well as mechanistic studies to establish the relevance of any toxicities observed to man. Although in vitro toxicity models are improving, in vivo studies remain central to this process. Such studies are invariably time-consuming and often involve large numbers of animals. New regulatory frameworks recommend the implementation of "smart" in vivo approaches to toxicity testing that can effectively assess safety for humans and comply with societal expectations for reduction in animal use. A major obstacle in reducing the animals required is the time-consuming and complexity of the pathological endpoints used as markers of toxicity. Such endpoints are prone to inter-animal variability, subjectivity and require harmonisation between testing sites. As a consequence, large numbers of animals per experimental group are required. To address this issue, we propose the implementation of sophisticated stress response reporter mice that we have developed. These reporter models provide early biomarkers of toxic potential in a highly reproducible manner at single-cell resolution, which can also be measured non-invasively and have been extensively validated in academic research as early biomarkers of stress responses for a wide range of chemicals at human-relevant exposures. In this report, we describe a new and previously generated models in our lab, provide the methodology required for their use and discuss how they have been used to inform on toxic risk (likelihood of chemical causing an adverse health effect). We propose our in vivo approach is more informative (refinement) and reduces the animal use (reduction) compared to traditional toxicity testing. These models could be incorporated into tiered toxicity testing and used in combination with in vitro assays to generate quantitative adverse outcome pathways and inform on toxic potential.
Collapse
Affiliation(s)
| | - Febe Ferro
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Michael McMahon
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Colin J. Henderson
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - C. Roland Wolf
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
5
|
Iñesta Vaquera F, Ferro F, McMahon M, Henderson CJ, Wolf CR. Potential of in vivo stress reporter models to reduce animal use and provide mechanistic insights in toxicity studies. F1000Res 2023; 11:1164. [PMID: 37427015 PMCID: PMC10329194 DOI: 10.12688/f1000research.123077.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Chemical risk assessment ensures protection from the toxic effects of drugs and manmade chemicals. To comply with regulatory guidance, studies in complex organisms are required, as well as mechanistic studies to establish the relevance of any toxicities observed to man. Although in vitro toxicity models are improving, in vivo studies remain central to this process. Such studies are invariably time-consuming and often involve large numbers of animals. New regulatory frameworks recommend the implementation of "smart" in vivo approaches to toxicity testing that can effectively assess safety for humans and comply with societal expectations for reduction in animal use. A major obstacle in reducing the animals required is the time-consuming and complexity of the pathological endpoints used as markers of toxicity. Such endpoints are prone to inter-animal variability, subjectivity and require harmonisation between testing sites. As a consequence, large numbers of animals per experimental group are required. To address this issue, we propose the implementation of sophisticated stress response reporter mice that we have developed. These reporter models provide early biomarkers of toxic potential in a highly reproducible manner at single-cell resolution, which can also be measured non-invasively and have been extensively validated in academic research as early biomarkers of stress responses for a wide range of chemicals at human-relevant exposures. In this report, we describe a new and previously generated models in our lab, provide the methodology required for their use and discuss how they have been used to inform on toxic risk (likelihood of chemical causing an adverse health effect). We propose our in vivo approach is more informative (refinement) and reduces the animal use (reduction) compared to traditional toxicity testing. These models could be incorporated into tiered toxicity testing and used in combination with in vitro assays to generate quantitative adverse outcome pathways and inform on toxic potential.
Collapse
Affiliation(s)
| | - Febe Ferro
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Michael McMahon
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Colin J. Henderson
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - C. Roland Wolf
- Systems and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| |
Collapse
|
6
|
Mamrosh JL, Sherman DJ, Cohen JR, Johnston JA, Joubert MK, Li J, Lipford JR, Lomenick B, Moradian A, Prabhu S, Sweredoski MJ, Vander Lugt B, Verma R, Deshaies RJ. Quantitative measurement of the requirement of diverse protein degradation pathways in MHC class I peptide presentation. SCIENCE ADVANCES 2023; 9:eade7890. [PMID: 37352349 PMCID: PMC10289651 DOI: 10.1126/sciadv.ade7890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.
Collapse
Affiliation(s)
- Jennifer L. Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - David J. Sherman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Joseph R. Cohen
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael J. Sweredoski
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rati Verma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Raymond J. Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
7
|
Surbek M, Sukseree S, Sachslehner AP, Copic D, Golabi B, Nagelreiter IM, Tschachler E, Eckhart L. Heme Oxygenase-1 Is Upregulated during Differentiation of Keratinocytes but Its Expression Is Dispensable for Cornification of Murine Epidermis. J Dev Biol 2023; 11:12. [PMID: 36976101 PMCID: PMC10058925 DOI: 10.3390/jdb11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
The epidermal barrier of mammals is initially formed during embryonic development and continuously regenerated by the differentiation and cornification of keratinocytes in postnatal life. Cornification is associated with the breakdown of organelles and other cell components by mechanisms which are only incompletely understood. Here, we investigated whether heme oxygenase 1 (HO-1), which converts heme into biliverdin, ferrous iron and carbon monoxide, is required for normal cornification of epidermal keratinocytes. We show that HO-1 is transcriptionally upregulated during the terminal differentiation of human keratinocytes in vitro and in vivo. Immunohistochemistry demonstrated expression of HO-1 in the granular layer of the epidermis where keratinocytes undergo cornification. Next, we deleted the Hmox1 gene, which encodes HO-1, by crossing Hmox1-floxed and K14-Cre mice. The epidermis and isolated keratinocytes of the resulting Hmox1f/f K14-Cre mice lacked HO-1 expression. The genetic inactivation of HO-1 did not impair the expression of keratinocyte differentiation markers, loricrin and filaggrin. Likewise, the transglutaminase activity and formation of the stratum corneum were not altered in Hmox1f/f K14-Cre mice, suggesting that HO-1 is dispensable for epidermal cornification. The genetically modified mice generated in this study may be useful for future investigations of the potential roles of epidermal HO-1 in iron metabolism and responses to oxidative stress.
Collapse
Affiliation(s)
- Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Dragan Copic
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Inesta-Vaquera F, Weiland F, Henderson CJ, Wolf CR. In vivo stress reporters as early biomarkers of the cellular changes associated with progeria. J Cell Mol Med 2022; 26:5463-5472. [PMID: 36201626 PMCID: PMC9639039 DOI: 10.1111/jcmm.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Age‐related diseases account for a high proportion of the total global burden of disease. Despite recent advances in understanding their molecular basis, there is a lack of suitable early biomarkers to test selected compounds and accelerate their translation to clinical trials. We have investigated the utility of in vivo stress reporter systems as surrogate early biomarkers of the degenerative disease progression. We hypothesized that cellular stress observed in models of human degenerative disease preceded overt cellular damage and at the same time will identify potential cytoprotective pathways. To test this hypothesis, we generated novel accelerated ageing (progeria) reporter mice by crossing the LmnaG609G mice into our oxidative stress/inflammation (Hmox1) and DNA damage (p21) stress reporter models. Histological analysis of reporter expression demonstrated a time‐dependent and tissue‐specific activation of the reporters in tissues directly associated with Progeria, including smooth muscle cells, the vasculature and gastrointestinal tract. Importantly, reporter expression was detected prior to any perceptible deleterious phenotype. Reporter expression can therefore be used as an early marker of progeria pathogenesis and to test therapeutic interventions. This work also demonstrates the potential to use stress reporter approaches to study and find new treatments for other degenerative diseases.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| | - Florian Weiland
- Department of Microbial and Molecular Systems (M2S), Centre for Food and Microbial Technology (CLMT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), Technology Campus Ghent, Ghent, Belgium
| | - Colin J Henderson
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| | - Charles Roland Wolf
- Division of Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
9
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
10
|
Melatonin Alleviates Oxidative Stress Induced by H2O2 in Porcine Trophectodern Cells. Antioxidants (Basel) 2022; 11:antiox11061047. [PMID: 35739944 PMCID: PMC9219737 DOI: 10.3390/antiox11061047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023] Open
Abstract
Placental oxidative stress has been implicated as a main risk factor for placental dysfunction. Alleviation of oxidative stress and enhancement of antioxidant capacity of porcine trophectoderm (PTr2) cells are effective means to maintaining normal placental function. The present study was conducted to evaluate the protective effect of melatonin (MT) on H2O2-induced oxidative damage in PTr2 cells. Our data revealed that pretreatment with MT could significantly improve the decrease in cell viability induced by H2O2, and reduce intracellular reactive oxygen species (ROS) levels and the ratio of apoptotic cells. Here, we compared the transcriptomes of untreated versus melatonin-treated PTr2 cells by RNA-seq analysis and found that differentially expressed genes (DEGs) were highly enriched in the Wnt signaling, TGF-beta signaling and mTOR signaling pathways. Moreover, pretreatment with MT upregulated the antioxidant-related genes such as early growth response3 (EGR3), WAP four-disulfide core domain1 (WFDC1), heme oxygenase1 (HMOX1) and vimentin (VIM). These findings reveal that melatonin protects PTr2 cells from H2O2-induced oxidative stress damage.
Collapse
|
11
|
Snijders KE, Fehér A, Táncos Z, Bock I, Téglási A, van den Berk L, Niemeijer M, Bouwman P, Le Dévédec SE, Moné MJ, Van Rossom R, Kumar M, Wilmes A, Jennings P, Verfaillie CM, Kobolák J, Ter Braak B, Dinnyés A, van de Water B. Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Arch Toxicol 2021; 95:3285-3302. [PMID: 34480604 PMCID: PMC8448683 DOI: 10.1007/s00204-021-03127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | - Linda van den Berk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Rob Van Rossom
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - András Dinnyés
- BioTalentum Ltd., 2100, Gödöllő, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Distinct Regulations of HO-1 Gene Expression for Stress Response and Substrate Induction. Mol Cell Biol 2021; 41:e0023621. [PMID: 34398680 DOI: 10.1128/mcb.00236-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is the key enzyme for heme catabolism and cytoprotection. Whereas HO-1 gene expression in response to various stresses has been investigated extensively, the precise mechanisms by which HO-1 gene expression is regulated by the HO-1 substrate heme remain elusive. To systematically examine whether stress-mediated induction and substrate-mediated induction of HO-1 utilize similar or distinct regulatory pathways, we developed an HO-1-DsRed-knock-in reporter mouse in which the HO-1 gene is floxed by loxP sites and the DsRed gene has been inserted. Myeloid lineage-specific recombination of the floxed locus led to fluorescence derived from expression of the HO-1-DsRed fusion protein in peritoneal macrophages. We also challenged general recombination of the locus and generated mice harboring heterozygous recombinant alleles, which enabled us to monitor HO-1-DsRed expression in the whole body in vivo and ex vivo. HO-1 inducers upregulated HO-1-DsRed expression in myeloid lineage cells isolated from the mice. Notably, analyses of peritoneal macrophages from HO-1-DsRed mice lacking NRF2, a major regulator of the oxidative/electrophilic stress response, led us to identify NRF2-dependent stress response-mediated HO-1 induction and NRF2-independent substrate-mediated HO-1 induction. Thus, the HO-1 gene is subjected to at least two distinct levels of regulation, and the available lines of evidence suggest that substrate induction in peritoneal macrophages is independent of CNC family-based regulation.
Collapse
|
13
|
Si Z, Wang X, Kang Y, Wang X, Sun C, Li Y, Xu J, Wu J, Zhang Z, Li L, Peng Y, Li J, Sun C, Hui Y, Gao X. Heme Oxygenase 1 Inhibits Adult Neural Stem Cells Proliferation and Survival via Modulation of Wnt/β-Catenin Signaling. J Alzheimers Dis 2021; 76:623-641. [PMID: 32568195 DOI: 10.3233/jad-200114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adult hippocampal neurogenesis is critical for renewing hippocampal neural circuits and maintaining hippocampal cognitive function and is closely associated with age-related neurodegenerative diseases. Heme oxygenase 1 (HO-1) is a stress protein that catalyzes the degradation of heme into free iron, biliverdin, and carbon monoxide. Elevated HO-1 level constitutes a pathological feature of Alzheimer's disease, Parkinson's disease, and many other age-related neurodegenerative diseases. OBJECTIVE Here we research the precise role of HO-1 in adult hippocampal neurogenesis. METHODS To explore the effect of HO-1 overexpression on adult neural stem cells (aNSCs) and elucidate its mechanisms, Tg(HO-1) was constructed. The transgenic mice and aNSCs were subjected to neurosphereing assay, clonal analysis, and BrdU labelling to detect the proliferation and self-renewal ability. LiCl, MG132, CHX, and IGF-1 treatment were used to research the signaling pathways which regulated by HO-1. RESULTS HO-1 overexpression decreased proliferation ability and induced apoptosis of aNSCs in subgranular zoon (SGZ) in vivo and in vitro. Furthermore, HO-1 overexpression inactivated canonical WNT/β-catenin pathway. Re-activate canonical WNT/β-catenin pathway rescued aNSCs proliferation and survival upon HO-1 overexpression. More importantly, phosphorylation of AKTS473 and GSK3βS9 was found to be significantly decreased in HO-1 overexpressed aNSCs. Re-activation of AKT signaling proved that HO-1 inhibited Wnt/β-catenin signaling pathway via AKT/GSK3β signaling pathway. CONCLUSION These results demonstrated a critical role of HO-1 in regulating aNSCs survival and proliferation by inhibiting Wnt/β-catenin pathway through repression of AKT/GSK3β, which provide a novel insight into the role of HO-1 in Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yuchun Kang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics of China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yuanxin Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jiakun Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Zhujun Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ling Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics of China
| | - Jihong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics of China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University Medical School, Zhejiang, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics of China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics of China
| |
Collapse
|
14
|
Ma H, Song X, Huang P, Zhang W, Ling X, Yang X, Wu W, Xu H, Wang W. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity. Mutat Res 2021; 865:503337. [PMID: 33865543 DOI: 10.1016/j.mrgentox.2021.503337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Environmental exposure to arsenite (As+3) is known to induce immunotoxicity. Natural killer (NK) cells are innate lymphoid cells act as professional killers of tumor cells. Our previous report indicated that 500 ppb As+3 drinking water exposure induced significant DNA damage in the NK cells of C57BL/6 mice. Myricetin is a plant-derived flavonoid known as a strong antioxidant. In this study, daily administration of myricetin at 20 mg/kg was found to alleviate the cell population decrease and DNA damage in the NK cells of BALB/c mice exposed to 500 and 1000 ppb As+3 via drinking water. Oxidative stress and poly(ADP-ribose) polymerase 1 (PARP-1) inhibition were induced by As+3 at 1 and 2 μM in isolated mouse NK cells in vitro, which were attenuated by 20 μM myricetin. The mitigatory effect of myricetin on the PARP-1 inhibition in NK cells treated with As+3 was also found to be the result of its prevention of the zinc loss induced by As+3 on PARP-1. Collectively, these results demonstrated, for the first time, that myricetin could protect NK cells from As+3 induced DNA through attenuating oxidative stress and retaining PARP-1 activity, indicating that myricetin may be utilized for the prevention of the immunotoxicity induced by As+3 in NK cells.
Collapse
Affiliation(s)
- Huijuan Ma
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaodong Song
- Medical Laboratory Department, Hua Shan Hospital North, Fudan University, Shanghai, 201907, China
| | - Ping Huang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Weiwei Zhang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xinyue Ling
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Xiaoning Yang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Wenwei Wu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China
| | - Huan Xu
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China.
| | - Wei Wang
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai, 200237, China; East China University of Science and Technology, School of Pharmacy, Department of Pharmaceutical Sciences, Shanghai, 200237, China; Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| |
Collapse
|
15
|
Inesta-Vaquera F, Navasumrit P, Henderson CJ, Frangova TG, Honda T, Dinkova-Kostova AT, Ruchirawat M, Wolf CR. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116053. [PMID: 33213951 DOI: 10.1016/j.envpol.2020.116053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/26/2023]
Abstract
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Colin J Henderson
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tanya G Frangova
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Albena T Dinkova-Kostova
- Department of Molecular Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - C Roland Wolf
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
16
|
Effects of 2-MCPD on oxidative stress in different organs of male mice. Food Chem Toxicol 2020; 142:111459. [PMID: 32474023 DOI: 10.1016/j.fct.2020.111459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
Abstract
2-Monochloropropane-1,3-diol (2-MCPD) and its isomer 3-monochloropropane-1,2-diol (3-MCPD) are widespread food contaminants. 3-MCPD has been classified as a non-genotoxic carcinogen, whereas very limited toxicological data are available for 2-MCPD. Animal studies indicate that heart and skeletal muscle are target organs of 2-MCPD. Oxidative stress may play a role in this process, and the potential of 3-MCPD to induce oxidative stress in vivo has already been demonstrated. To investigate the potential of 2-MCPD to induce oxidative stress in vivo, a 28-day oral feeding study in male HOTT reporter mice was conducted. This mouse model allows monitoring substance-induced oxidative stress in various target organs on the basis of Hmox1 promoter activation. Repeated daily doses of up to 100 mg 2-MCPD/kg body weight did not result in substantial toxicity. Furthermore, the highest dose of 2-MCPD had only minor effects on oxidative stress in kidney and testes, whereas brain, heart and skeletal muscle were not affected. Additionally, 2-MCPD caused only mild changes in the expression of Nrf2-dependent genes and only slightly affected the redox status of the redox-sensor protein DJ-1. Thus, the data indicate that 2-MCPD, in contrast to its isomer 3-MCPD, does not lead to a considerable induction of oxidative stress in male mice.
Collapse
|
17
|
Schultrich K, Henderson CJ, Braeuning A, Buhrke T. Correlation between 3-MCPD-induced organ toxicity and oxidative stress response in male mice. Food Chem Toxicol 2020; 136:110957. [DOI: 10.1016/j.fct.2019.110957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022]
|
18
|
Heddagaard FE, Møller P. Hazard assessment of small-size plastic particles: is the conceptual framework of particle toxicology useful? Food Chem Toxicol 2019; 136:111106. [PMID: 31899364 DOI: 10.1016/j.fct.2019.111106] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Humans are exposed to plastic particles, but there are no studies on environmental plastics in cell cultures or animals. The toxicological understanding arises from model particles like polystyrene, polyethylene or non-plastic particles like food-grade titanium dioxide. The majority of studies on polystyrene particles show toxicological effects on measures of oxidative stress, inflammation, mitochondrial dysfunction, lysosomal dysfunction and apoptosis. The toxic effects in cell cultures mainly occur at high concentrations. Polyethylene particles seem to generate inflammatory reactions, whereas other toxicological effects have not been assessed. There are very few studies on effects of polystyrene particles in animal models and these have not demonstrated overt indices of toxicity. Studies in animals are the likely way for hazard assessment of micro- or nanoplastics. However, co-culture systems that mimic the complex architecture of mammalian tissues can cost-efficiently determine the hazards of micro- and nanoplastics. Future studies should include low doses of micro- and nanoplastic particles, which are more relevant in the assessment of health risk than the extrapolation of effects from high doses to realistic doses. Based on studies on model particles, environmental exposure to micro- and nanoplastic particles may be a hazard to human health.
Collapse
Affiliation(s)
- Frederikke Emilie Heddagaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| |
Collapse
|
19
|
Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 2019; 93:1817-1833. [DOI: 10.1007/s00204-019-02478-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
|