1
|
Patrone LGA, Frias AT, Fantinatti GT, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Long-term effects on cardiorespiratory and behavioral responses in male and female rats prenatally exposed to cannabinoid. Am J Physiol Lung Cell Mol Physiol 2024; 327:L341-L358. [PMID: 39012058 DOI: 10.1152/ajplung.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Alana T Frias
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Gabriel T Fantinatti
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, Brazil
| |
Collapse
|
2
|
Ripamonte GC, Fonseca EM, Frias AT, Patrone LGA, Vilela-Costa HH, Silva KSC, Szawka RE, Bícego KC, Zangrossi H, Plummer NW, Jensen P, Gargaglioni LH. Locus coeruleus noradrenaline depletion and its differential impact on CO 2-induced panic and hyperventilation in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111063. [PMID: 38908504 PMCID: PMC11323958 DOI: 10.1016/j.pnpbp.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Heloísa H Vilela-Costa
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
3
|
Beyeler SA, Naidoo R, Morrison NR, McDonald EA, Albarrán D, Huxtable AG. Maternal opioids age-dependently impair neonatal respiratory control networks. Front Physiol 2023; 14:1109754. [PMID: 37008014 PMCID: PMC10060555 DOI: 10.3389/fphys.2023.1109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Infants exposed to opioids in utero are an increasing clinical population and these infants are often diagnosed with Neonatal Abstinence Syndrome (NAS). Infants with NAS have diverse negative health consequences, including respiratory distress. However, many factors contribute to NAS, confounding the ability to understand how maternal opioids directly impact the neonatal respiratory system. Breathing is controlled centrally by respiratory networks in the brainstem and spinal cord, but the impact of maternal opioids on developing perinatal respiratory networks has not been studied. Using progressively more isolated respiratory network circuitry, we tested the hypothesis that maternal opioids directly impair neonatal central respiratory control networks. Fictive respiratory-related motor activity from isolated central respiratory networks was age-dependently impaired in neonates after maternal opioids within more complete respiratory networks (brainstem and spinal cords), but unaffected in more isolated networks (medullary slices containing the preBötzinger Complex). These deficits were due, in part, to lingering opioids within neonatal respiratory control networks immediately after birth and involved lasting impairments to respiratory pattern. Since opioids are routinely given to infants with NAS to curb withdrawal symptoms and our previous work demonstrated acute blunting of opioid-induced respiratory depression in neonatal breathing, we further tested the responses of isolated networks to exogenous opioids. Isolated respiratory control networks also demonstrated age-dependent blunted responses to exogenous opioids that correlated with changes in opioid receptor expression within a primary respiratory rhythm generating region, the preBötzinger Complex. Thus, maternal opioids age-dependently impair neonatal central respiratory control and responses to exogenous opioids, suggesting central respiratory impairments contribute to neonatal breathing destabilization after maternal opioids and likely contribute to respiratory distress in infants with NAS. These studies represent a significant advancement of our understanding of the complex effects of maternal opioids, even late in gestation, contributing to neonatal breathing deficits, necessary first steps in developing novel therapeutics to support breathing in infants with NAS.
Collapse
Affiliation(s)
- Sarah A. Beyeler
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Robyn Naidoo
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Nina R. Morrison
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Emilee A. McDonald
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - David Albarrán
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Adrianne G. Huxtable
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
- *Correspondence: Adrianne G. Huxtable,
| |
Collapse
|
4
|
Patrone LGA, Ferrari GD, da Silva RM, Alberici LC, Lopes NP, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Sex- and age-specific respiratory alterations induced by prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 in rats. Br J Pharmacol 2023. [PMID: 36710256 DOI: 10.1111/bph.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Gustavo D Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Moreira da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
5
|
Rocha AC, Patrone LGA, Cristina-Silva C, Silva KSDC, Bícego KC, Szawka RE, Gargaglioni LH. Metabolic and respiratory chemosensitivity and brain monoaminergic responses to cold exposure in chicks subjected to thermal manipulation during incubation. J Therm Biol 2022; 109:103317. [DOI: 10.1016/j.jtherbio.2022.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
6
|
da Silva Junior CA, Patrone LGA, Biancardi V, Vilela-Costa HH, Marques DA, Cristina-Silva C, da Costa Silva KS, Bícego KC, Szawka RE, Gargaglioni LH. Sexually dimorphic effects of prenatal diazepam exposure on respiratory control and the monoaminergic system of neonate and young rats. Pflugers Arch 2022; 474:1185-1200. [DOI: 10.1007/s00424-022-02730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
|
7
|
Biancardi V, Patrone LGA, Vicente MC, Marques DA, Bicego KC, Funk GD, Gargaglioni LH. Prenatal fluoxetine has long lasting, differential effects on respiratory control in male and female rats. J Appl Physiol (1985) 2022; 133:371-389. [PMID: 35708704 DOI: 10.1152/japplphysiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82). Prenatal FLX exposure of males showed a lower baseline that appeared in juveniles and remained in adulthood, with no sleep-wake state dependency. Prenatal FLX exposure of females did not affect baseline breathing. Juvenile male FLX rats showed increased CO2 and hypoxic ventilatory responses, normalizing by adulthood. Alterations in juvenile-FLX treated males were associated with greater number of 5-HT neurons in the ROB and RMAG. Adult FLX-exposed males showed greater number of 5-HT neurons in the RPA and TH neurons in the A5, while reduced number of TH neurons in A7. Prenatal FLX exposure of female rats was associated with greater hyperventilation induced by hypercapnia at P0-2 and juveniles whereas P12-14 and adult FLX (NREM sleep) rats showed an attenuation of the hypercapnic hyperventilation.FLX-exposed females had fewer 5-HT neurons in the RPA and reduced TH A6 density at P0-2; and greater number of TH neurons in the A7 at P12-14. These data indicate that prenatal FLX exposure affects the number of neurons of some monoaminergic regions in the brain and results in long lasting, sex specific changes in baseline breathing pattern and ventilatory responses to respiratory challenges.
Collapse
Affiliation(s)
- Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bicego
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Gregory D Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| |
Collapse
|
8
|
Rocha ACG, Cristina-Silva C, Taxini CL, da Costa Silva KS, Lima VTM, Macari M, Bícego KC, Szawka RE, Gargaglioni LH. Embryonic Thermal Manipulation Affects Ventilation, Metabolism, Thermal Control and Central Dopamine in Newly Hatched and Juvenile Chicks. Front Physiol 2021; 12:699142. [PMID: 34220555 PMCID: PMC8249324 DOI: 10.3389/fphys.2021.699142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The first third of incubation is critical for embryonic development, and environmental changes during this phase can affect the physiology and survival of the embryos. We evaluated the effects of low (LT), control (CT), and high (HT) temperatures during the first 5 days of incubation on ventilation (V.E), body temperature (Tb), oxygen consumption (V.O2), respiratory equivalent (V.E/V.O2), and brain monoamines on 3-days-old (3d) and 14-days-old (14d) male and female chickens. The body mass of LT animals of both ages and sexes was higher compared to HT and CT animals (except for 3d males). The heart mass of 14d HT animals was higher than that of CT animals. Thermal manipulation did not affect V.E, V.O2 or V.E/V.O2 of 3d animals in normoxia, except for 3d LT males V.E, which was lower than CT. Regarding 14d animals, the HT females showed a decrease in V.E and V.O2 compared to CT and LT groups, while the HT males displayed a lower V.O2 compared to CT males, but no changes in V.E/V.O2. Both sexes of 14d HT chickens presented a greater Tb compared to CT animals. Thermal manipulations increased the dopamine turnover in the brainstem of 3d females. No differences were observed in ventilatory and metabolic parameters in the 3d animals of either sexes, and 14d males under 7% CO2. The hypercapnic hyperventilation was attenuated in the 14d HT females due to changes in V.O2, without alterations in V.E. The 14d LT males showed a lower V.E, during hypercapnia, compared to CT, without changes in V.O2, resulting in an attenuation in V.E/V.O2. During hypoxia, 3d LT females showed an attenuated hyperventilation, modulated by a higher V.O2. In 14d LT and HT females, the increase in V.E was greater and the hypometabolic response was attenuated, compared to CT females, which resulted in no change in the V.E/V.O2. In conclusion, thermal manipulations affect hypercapnia-induced hyperventilation more so than hypoxic challenge, and at both ages, females are more affected by thermal manipulation than males.
Collapse
Affiliation(s)
- Aline C G Rocha
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | | | - Kaoma Stephani da Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Virgínia T M Lima
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Marcos Macari
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
9
|
Oliveira LM, Baertsch NA, Moreira TS, Ramirez JM, Takakura AC. Unraveling the Mechanisms Underlying Irregularities in Inspiratory Rhythm Generation in a Mouse Model of Parkinson's Disease. J Neurosci 2021; 41:4732-4747. [PMID: 33863785 PMCID: PMC8260248 DOI: 10.1523/jneurosci.2114-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
- Department of Pediatrics, University of Washington, Seattle, Washington 98101
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508, Brazil
| |
Collapse
|
10
|
Taxini CL, Marques DA, Bícego KC, Gargaglioni LH. A5 noradrenergic neurons and breathing control in neonate rats. Pflugers Arch 2021; 473:859-872. [PMID: 33855632 DOI: 10.1007/s00424-021-02550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
The pontine A5 noradrenergic group contributes to the maturation of the respiratory system before birth in rats. These neurons are connected to the neural network responsible for respiratory rhythmogenesis. In the present study, we investigated the participation of A5 noradrenergic neurons in neonates (P7-8 and P14-15) in the control of ventilation during hypoxia and hypercapnia in in vivo experiments using conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP) to specifically ablate noradrenergic neurons. Thus, DβH-SAP (420 ng/μL) or saporin (SAP, control) was injected into the A5 region of neonatal male Wistar rats. Hypoxia reduced respiratory variability in control animals; however, A5 lesion prevented this effect in P7-8 rats. Our data suggest that noradrenergic neurons of the A5 region in neonate rats do not participate in the control of ventilation under baseline and hypercapnic conditions, but exert an inhibitory modulation on breathing variability under hypoxic challenge in early life (P7-8).
Collapse
Affiliation(s)
- Camila L Taxini
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil
| | - Danuzia A Marques
- Department of Pediatrics, Centre de Recherche de L'Institut Universitaire de Cardiologie Et de Pneumologie de Québec, Université Laval, Québec, G1V 4G5, Canada
| | - Kênia C Bícego
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil
| | - Luciane H Gargaglioni
- Department of Morphology and Animal Physiology - FCAV, São Paulo State University (UNESP), Via de acesso Paulo Donato Castellane s/n, Jaboticabal, SP, 14870-900, Brazil.
| |
Collapse
|
11
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired cardiorespiratory responses to hypercapnia in neonatal mice lacking PAC1 but not VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2021; 320:R116-R128. [PMID: 33146556 DOI: 10.1152/ajpregu.00161.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evidence is mounting for a role for abnormal signaling of the stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its canonical receptor PAC1 in the pathogenesis of sudden infant death syndrome. In this study, we investigated whether the PACAP receptors PAC1 or VPAC2 are involved in the neonatal cardiorespiratory response to hypercapnic stress. We used head-out plethysmography and surface ECG electrodes to assess cardiorespiratory responses to an 8% hypercapnic challenge in unanesthetized and spontaneously breathing 4-day-old PAC1 or VPAC2 knockout (KO) and wild-type mouse pups. We demonstrate that compared with WTs, breathing frequency (RR) and minute ventilation ([Formula: see text]) in PAC1 KO pups were significantly blunted in response to hypercapnia. Although heart rate was unaltered in PAC1 KO pups during hypercapnia, heart rate recovery posthypercapnia was impaired. In contrast, cardiorespiratory impairments in VPAC2 KO pups were limited to only an overall higher tidal volume (VT), independent of treatment. These findings suggest that PACAP signaling through the PAC1 receptor plays a more important role than signaling through the VPAC2 receptor in neonatal respiratory responses to hypercapnia. Thus deficits in PACAP signaling primarily via PAC1 may contribute to the inability of infants to mount an appropriate protective response to homeostatic stressors in childhood disorders such as SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| |
Collapse
|
12
|
Wang W, Alzate-Correa D, Alves MJ, Jones M, Garcia AJ, Zhao J, Czeisler CM, Otero JJ. Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution. Respir Physiol Neurobiol 2020; 283:103558. [PMID: 33010456 DOI: 10.1016/j.resp.2020.103558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022]
Abstract
Respiratory parameters change during post-natal development, but the nature of their changes have not been well-described. The advent of commercially available plethysmographic instruments provided improved repeatability of measurements and standardization of measured breathing in mice across laboratories. These technologies thus allowed for exploration of more precise respiratory pattern changes during the post-natal developmental epoch. Current methods to analyze respiratory behavior utilize plethysmography to acquire standing values of frequency, volume and flow at specific time points in murine maturation. These metrics have historically been independently analyzed as a function of time with no further analysis examining the interplay these variables have with each other and in the context of postnatal maturation or during blood gas homeostasis. We posit that machine learning workflows can provide deeper physiological understanding into the postnatal development of respiration. In this manuscript, we delineate a machine learning workflow based on the R-statistical programming language to examine how variation and relationships of frequency (f) and tidal volume (TV) change with respect to inspiratory and expiratory parameters. Our analytical workflows could successfully predict age and found that the variation and relationships between respiratory metrics are dynamically shifting with age and during hypercapnic breathing. Thus, our work demonstrates the utility of high dimensional analyses to provide reliable class label predictions using non-invasive respiratory metrics. These approaches may be useful in large-scale phenotyping across development and in disease.
Collapse
Affiliation(s)
- Wesley Wang
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Diego Alzate-Correa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Alfredo J Garcia
- Department of Emergency Medicine, University of Chicago, Chicago, IL, United States
| | - Jing Zhao
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine Miriam Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States.
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
13
|
Bittencourt‐Silva PG, Menezes MF, Mendonça‐Junior BA, Karlen‐Amarante M, Zoccal DB. Postnatal intermittent hypoxia enhances phrenic and reduces vagal upper airway motor activities in rats by epigenetic mechanisms. Exp Physiol 2019; 105:148-159. [DOI: 10.1113/ep087928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Paloma G. Bittencourt‐Silva
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP) Araraquara Brazil
| | - Miguel Furtado Menezes
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP) Araraquara Brazil
| | - Bolival A. Mendonça‐Junior
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP) Araraquara Brazil
| | - Marlusa Karlen‐Amarante
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP) Araraquara Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology School of Dentistry of Araraquara São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
14
|
Patrone LGA, Capalbo AC, Marques DA, Bícego KC, Gargaglioni LH. An age- and sex-dependent role of catecholaminergic neurons in the control of breathing and hypoxic chemoreflex during postnatal development. Brain Res 2019; 1726:146508. [PMID: 31606412 DOI: 10.1016/j.brainres.2019.146508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
Abstract
The respiratory system undergoes significant development during the postnatal phase. Maturation of brainstem catecholaminergic (CA) neurons is important for the control and modulation of respiratory rhythmogenesis, as well as for chemoreception in early life. We demonstrated an inhibitory role for CA neurons in CO2 chemosensitivity in neonatal and juvenile male and female rats, but information regarding their role in the hypoxic ventilatory response (HVR) is lacking. We evaluated the contribution of brainstem CA neurons in the HVR during postnatal (P) development (P7-8, P14-15 and P20-21) in male and female rats through chemical injury with conjugated saporin anti-dopamine beta-hydroxylase (DβH-SAP, 420 ng·μL-1) injected in the fourth ventricle. Ventilation (V̇E) and oxygen consumption were recorded one week after the lesion in unanesthetized rats during exposure to normoxia and hypoxia. Hypoxia reduced breathing variability in P7-8 control rats of both sexes. At P7-8, the HVR for lesioned males and females increased 27% and 24%, respectively. Additionally, the lesion reduced the normoxic breathing variability in both sexes at P7-8, but hypoxia partially reverted this effect. For P14-15, the increase in V̇E during hypoxia was 30% higher for male and 24% higher for female lesioned animals. A sex-specific difference was detected at P20-21, as lesioned males exhibited a 24% decrease in the HVR, while lesioned females experienced a 22% increase. Furthermore, the hypoxia-induced body temperature reduction was attenuated in P20-21 lesioned females. We conclude that brainstem CA neurons modulate the HRV during the postnatal phase, and possibly thermoregulation during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Aretuza C Capalbo
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV, Jaboticabal, SP, Brazil.
| |
Collapse
|
15
|
Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110543. [PMID: 31445081 DOI: 10.1016/j.cbpa.2019.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023]
Abstract
Breathing is a vital behavior that ensures both the adequate supply of oxygen and the elimination of CO2, and it is influenced by many factors. Despite that most of the studies in respiratory physiology rely heavily on male subjects, there is much evidence to suggest that sex is an important factor in the respiratory control system, including the susceptibility for some diseases. These different respiratory responses in males and females may be related to the actions of sex hormones, especially in adulthood. These hormones affect neuromodulatory systems that influence the central medullary rhythm/pontine pattern generator and integrator, sensory inputs to the integrator and motor output to the respiratory muscles. In this article, we will first review the sex dependence on the prevalence of some respiratory-related diseases. Then, we will discuss the role of sex and gonadal hormones in respiratory control under resting conditions and during respiratory challenges, such as hypoxia and hypercapnia, and whether hormonal fluctuations during the estrous/menstrual cycle affect breathing control. We will then discuss the role of the locus coeruleus, a sexually dimorphic CO2/pH-chemosensitive nucleus, on breathing regulation in males and females. Next, we will highlight the studies that exist regarding sex differences in respiratory control during development. Finally, the few existing studies regarding the influence of sex on breathing control in non-mammalian vertebrates will be discussed.
Collapse
|
16
|
Patrone LGA, Duarte JB, Bícego KC, Steiner AA, Romanovsky AA, Gargaglioni LH. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO₂-Drive to Breathe. Pharmaceuticals (Basel) 2019; 12:ph12010019. [PMID: 30682830 PMCID: PMC6469189 DOI: 10.3390/ph12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation (V˙E), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 μg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Jaime B Duarte
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| | - Alexandre A Steiner
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-090, Brazil.
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil.
| |
Collapse
|
17
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|