1
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
2
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
3
|
Bruck O, Pandit LM. Pulmonary Hypertension and Hyperglycemia-Not a Sweet Combination. Diagnostics (Basel) 2024; 14:1119. [PMID: 38893645 PMCID: PMC11171670 DOI: 10.3390/diagnostics14111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Hyperglycemia and pulmonary hypertension (PH) share common pathological pathways that lead to vascular dysfunction and resultant cardiovascular complications. These shared pathologic pathways involve endothelial dysfunction, inflammation, oxidative stress, and hormonal imbalances. Individuals with hyperglycemia or pulmonary hypertension also possess shared clinical factors that contribute to increased morbidity from both diseases. This review aims to explore the relationship between PH and hyperglycemia, highlighting the mechanisms underlying their association and discussing the clinical implications. Understanding these common pathologic and clinical factors will enable early detection for those at-risk for complications from both diseases, paving the way for improved research and targeted therapeutics.
Collapse
Affiliation(s)
- Or Bruck
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
| | - L. M. Pandit
- Section of Pulmonary, Critical Care, Sleep Medicine, Baylor College of Medicine, Houston, TX 77024, USA;
- Michael E. DeBakey Veterans Affairs Medical Center, Center for Translational Research on Inflammatory Diseases (CTRID), Houston, TX 77030, USA
| |
Collapse
|
4
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Li Q, Zhang H. Bioinformatics analysis to identify potential biomarkers for the pulmonary artery hypertension associated with the basement membrane. Open Life Sci 2023; 18:20220730. [PMID: 37772261 PMCID: PMC10523280 DOI: 10.1515/biol-2022-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressing cardiopulmonary disease. It is characterized by increased pulmonary artery pressure and vascular resistance. The most notable histopathological characteristic is vascular remodeling. The changes in the basement membrane (BM) are believed to be related to vascular remodeling. It is crucial to identify potential biomarkers associated with the BM in PAH, to guide its treatment. The microarray datasets GSE117261 and GSE113439 were downloaded from the Gene Expression Omnibus. Two data sets were examined to identify genes associated with the BM by analyzing gene expression changes. Next, we analyzed the relevant genes in the Kyoto Encyclopedia of Genes and Genomes using Gene Ontology and Disease Ontology annotationand conducted pathway enrichment analysis. We conducted a protein-protein interaction network analysis on the genes related to BMs and used the cell cytoHubba plug-in to identify the hub genes. Furthermore, we conducted an immune infiltration analysis and implemented a histogram model. Finally, we predicted and analyzed potential therapeutic drugs for PAH and set up a miRNA network of genetic markers. Six candidate genes related to BMs, namely Integrin Subunit Alpha V, Integrin Subunit Alpha 4, ITGA2, ITGA9, Thrombospondin 1, and Collagen Type IV Alpha 3 Chain, were identified as potential modulators of the immune process in PAH. Furthermore, ginsenoside Rh1 was found to significantly impact drug targeting based on its interactions with the six BM-related genes identified earlier. A novel biomarker related to the BM, which plays a crucial role in the development of PAH, has been identified.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| | - Hu Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| |
Collapse
|
6
|
Niu T, He F, Yang J, Ma C, Xu J, Sun T, Zhang X, Chen S, Ru C. The epidemiological characteristics and infection risk factors for extrapulmonary tuberculosis in patients hospitalized with pulmonary tuberculosis infection in China from 2017 to 2021. BMC Infect Dis 2023; 23:488. [PMID: 37653382 PMCID: PMC10472653 DOI: 10.1186/s12879-023-08410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) complicated with extrapulmonary tuberculosis (EPTB) infection can aggravate the disease, but there have been few reports. METHODS Retrospective analysis was used to collect the clinical data of PTB patients with pathogen positive in a teaching hospital from 2017 to 2021. We describe the incidence, the invasive site of EPTB patients, and analyze the infection risk factors for PTB with EPTB by univariate and multivariate logistic regression models. We also compared the complications, disease burden with chi-square test and rank-sum test. RESULTS A total of 1806 PTB were included, of which 263 (14.6%) were complicated with EPTB. The common invasive sites for EPTB were neck lymph nodes (16.49%), intestines (16.13%), and meninges (10.75%). Age ≤ 40 (OR = 1.735; 95%CI [1.267-2.376]; P = 0.001), malnutrition (OR = 2.029; 95%CI [1.097-3.753]; P = 0.022), anemia (OR = 1.739; 95%CI[1.127-2.683]; P = 0.012), and osteoporosis (OR = 4.147; 95%CI [1.577-10.905]; P = 0.004) were all independent risk factors for PTB infection with EPTB. The incidence of extrathoracic hydrothorax, intestinal bacterial infection, urinary tract bacterial infection, and abdominal bacterial infection were higher in patients with PTB with EPTB. PTB with EPTB patients also had longer median hospitalization durations (19 vs. 14 days), during which time they incurred higher total costs, laboratory test costs, imaging examination costs, and drug use costs. CONCLUSION This study found important risk factors for PTB complicated with EPTB, such as age ≤ 40, malnutrition, anemia, and osteoporosis. PTB with EPTB patients have more extrapulmonary complications and higher hospitalization disease burden.
Collapse
Affiliation(s)
- Tianshui Niu
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei He
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jianshe Yang
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengxi Ma
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingyi Xu
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tianzhi Sun
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin Zhang
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuyi Chen
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chuhui Ru
- Department of Pulmonary and Critical Care Medicine Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Poyatos P, Gratacós M, Samuel K, Orriols R, Tura-Ceide O. Oxidative Stress and Antioxidant Therapy in Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:1006. [PMID: 37237872 PMCID: PMC10215203 DOI: 10.3390/antiox12051006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated artery pressures and pulmonary vascular resistance. Underlying mechanisms comprise endothelial dysfunction, pulmonary artery remodeling and vasoconstriction. Several studies have shown evidence of the critical role of oxidative stress in PH pathophysiology. Alteration of redox homeostasis produces excessive generation of reactive oxygen species, inducing oxidative stress and the subsequent alteration of biological molecules. Exacerbations in oxidative stress production can lead to alterations in nitric oxide signaling pathways, contributing to the proliferation of pulmonary arterial endothelial cells and smooth muscle cells, inducing PH development. Recently, antioxidant therapy has been suggested as a novel therapeutic strategy for PH pathology. However, the favorable outcomes observed in preclinical studies have not been consistently reproduced in clinical practice. Therefore, targeting oxidative stress as a therapeutic intervention for PH is an area that is still being explored. This review summarizes the contribution of oxidative stress to the pathogenesis of the different types of PH and suggests antioxidant therapy as a promising strategy for PH treatment.
Collapse
Affiliation(s)
- Paula Poyatos
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
| | - Miquel Gratacós
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
| | - Kay Samuel
- Scottish National Blood Transfusion Service, NHS National Services Scotland, Edinburgh EH14 4BE, UK
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (P.P.); (M.G.)
- Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
8
|
Xu N, Ijaz M, Shi H, Shahbaz M, Cai M, Wang P, Guo X, Ma L. Screening of Active Ingredients from Wendan Decoction in Alleviating Palmitic Acid-Induced Endothelial Cell Injury. Molecules 2023; 28:molecules28031328. [PMID: 36770995 PMCID: PMC9919343 DOI: 10.3390/molecules28031328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Objective: Traditional Chinese medicine (TCM) plays an important role in the treatment of numerous illnesses. As a classic Chinese medicine, Wendan Decoction (WDD) encompasses a marvelous impact on the remedy of hyperlipidemia. It is known that hyperlipidemia leads to cardiovascular injury, therefore anti-vascular endothelial cell injury (AVECI) may be an underlying molecular mechanism of WDD in the cure of hyperlipidemia. However, there is no relevant research on the effect of WDD on vascular endothelial cells and its pharmacodynamic substances. Therefore, the purpose of this study was to investigate the protective effect of WDD on vascular endothelial cells. (2) Methods: The chemical constituents of WDD were determined by LC-MS/MS technology. The protective effects of 16 batches of WDD on samples from human umbilical vein endothelial cells (HUVECs) were evaluated. Finally, gray relation analysis (GRA) and partial least squares regression (PLSR) were used to analyze the potential correlation between chemical ingredients and AVECI. (3) Results: The results indicated that WDD had apparent protective effect on endothelial cells, and pharmacological properties in 16 batches of WDD tests were apparently discrepant. The GRA and PLSR showed that trigonelline, liquiritin, hesperidin, hesperetin, scopoletin, morin, quercetin, isoliquiritigenin, liquiritigenin and formononetin may be the active ingredients of AVECI in WDD. (4) Conclusions: WDD has a protective effect on endothelial cell injury induced by palmitic acid, which may be related to its component content. This method was suitable for the search of active components in classical TCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Muhammad Ijaz
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Haiyan Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Muhammad Shahbaz
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ping Wang
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Correspondence: (X.G.); (L.M.)
| | - Lei Ma
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (X.G.); (L.M.)
| |
Collapse
|
9
|
Joshi SR, Atabay EK, Liu J, Ding Y, Briscoe SD, Alexander MJ, Andre P, Kumar R, Li G. Sotatercept analog improves cardiopulmonary remodeling and pulmonary hypertension in experimental left heart failure. Front Cardiovasc Med 2023; 10:1064290. [PMID: 36910526 PMCID: PMC9996114 DOI: 10.3389/fcvm.2023.1064290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) is the most frequent manifestation of PH but lacks any approved treatment. Activin receptor type IIA-Fc fusion protein (ActRIIA-Fc) was found previously to be efficacious in experimental and human pulmonary arterial hypertension (PAH). Here we tested the hypothesis that ActRIIA-Fc improves pulmonary vascular remodeling and alleviates PH in models of PH-LHD, specifically in subtypes of heart failure with reduced ejection fraction (PH-HFrEF) and preserved ejection fraction (PH-HFpEF). Treatment with murine ActRIIA-Fc reduced cardiac remodeling and improved cardiac function in two mouse models of left heart disease without PH, confirming that this inhibitor of activin-class ligand signaling can exert cardioprotective effects in heart failure. In a mouse model of PH-HFrEF with prolonged pressure overload caused by transverse aortic constriction, ActRIIA-Fc treatment significantly reduced pulmonary vascular remodeling, pulmonary fibrosis, and pulmonary hypertension while exerting beneficial structural, functional, and histological effects on both the left and right heart. Additionally, in an obese ZSF1-SU5416 rat model of PH-HFpEF with metabolic dysregulation, therapeutic treatment with ActRIIA-Fc normalized SMAD3 overactivation in pulmonary vascular and perivascular cells, reversed pathologic pulmonary vascular and cardiac remodeling, improved pulmonary and cardiac fibrosis, alleviated PH, and produced marked functional improvements in both cardiac ventricles. Studies in vitro revealed that treatment with ActRIIA-Fc prevents an abnormal, glucose-induced, activin-mediated, migratory phenotype in human pulmonary artery smooth muscle cells, providing a mechanism by which ActRIIA-Fc could exert therapeutic effects in experimental PH-HFpEF with metabolic dysregulation. Our results demonstrate that ActRIIA-Fc broadly corrects cardiopulmonary structure and function in experimental PH-LHD, including models of PH-HFrEF and PH-HFpEF, leading to alleviation of PH under diverse pathophysiological conditions. These findings highlight the important pathogenic contributions of activin-class ligands in multiple forms of experimental PH and support ongoing clinical evaluation of human ActRIIA-Fc (sotatercept) in patients with PH-HFpEF.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Elif Karaca Atabay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Jun Liu
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Yan Ding
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Steven D Briscoe
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Mark J Alexander
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Patrick Andre
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Ravindra Kumar
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| | - Gang Li
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
10
|
Niu Z, Fu M, Li Y, Ren H, Zhang X, Yao L. Osthole alleviates pulmonary vascular remodeling by modulating microRNA-22-3p mediated lipid metabolic reprogramming. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153840. [PMID: 34836745 DOI: 10.1016/j.phymed.2021.153840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/02/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pulmonary vascular remodeling is the key pathological feature of pulmonary arterial hypertension (PAH) characterized by a pattern of lipid-related insulin resistance(IR), hormonal derangements and metabolic reprogramming. Our previous studies have demonstrated osthole as natural coumarin compound derived from traditional Chinese medicine is a promising agent for the treatment of pulmonary vascular remodeling in PAH. PURPOSE The present study sought to delineate lipid metabolic modulatory mechanism of osthole against pulmonary vascular remodeling by employing an interdisciplinary strategy. METHODS Rat model with PAH induced with MCT and PASMCs proliferation model induced with PDGF-BB were established in this study. Serum and lung tissues were used to lipid-related IR, hormone related indexes, pulmonary vascular remodeling analysis. Then, lipid metabolic gene, key enzymes, metabolites and cell proliferation indexes were examined to investigate metabolic regulatory mechanism in vivo and vitro model of PAH. RESULTS Osthole significantly showed improvement of lipid-related IR and hormone dysregulation in rats with PAH evidenced by elevating testosterone, androgen receptor and cyclic guanosine monophosphate (cGMP), inhibiting phosphodiesterase-5(PDE-5), modulating lipid-related IR indexes total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), triglyceride (TG)/HDL-C ratio. Additionally, osthole limited key metabolic gene and enzymes to inhibit accumulation of decadienyl-l-carnitine in lipid metabolism, thus to promote oxidative phosphorylation and ATP production through inhibition of miRNA-22-3p, fatty acid translocase (CD36), fatty acid synthase (FAS), phospholipase A2 (PLA2), carnitine palmitoyltransferase 1A (CPT1A), hexokinase 2 (HK2), activation of metabolic switch isocitrate dehydrogenase 3α (IDH3α), NADH dehydrogenase 1 (ND1). We found for the first time miRNA-22-3p modulated PASMCs proliferation and vascular remodeling by regulating lipid metabolism reprogramming. Those modifications uncovered therapeutic mechanism of osthole against pulmonary vascular remodeling. CONCLUSION Our findings revealed the function of miRNA-22-3p in PASMCs and demonstrated a novel mechanism that miRNA-22-3p as a regulator can be targeted by osthole to greatly restore dysregulated lipid metabolism thus to alleviate pulmonary vascular remodeling in PAH, which provides novel insight into the potential therapeutic target for PAH, further highlights the development potential of osthole derived new drug against PAH.
Collapse
Affiliation(s)
- Zheng Niu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Min Fu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Huanhuan Ren
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xuanyu Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin 150081, China; State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
11
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
12
|
O’Rourke RW, Lumeng CN. Pathways to Severe COVID-19 for People with Obesity. Obesity (Silver Spring) 2021; 29:645-653. [PMID: 33270351 PMCID: PMC7753541 DOI: 10.1002/oby.23099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Increased morbidity and mortality from coronavirus disease 2019 (COVID-19) in people with obesity have illuminated the intersection of obesity with impaired responses to infections. Although data on mechanisms by which COVID-19 impacts health are being rapidly generated, there is a critical need to better understand the pulmonary, vascular, metabolic, and immunologic aspects that drive the increased risk for complications from COVID-19 in people with obesity. This review provides a broad overview of the intersection between COVID-19 and the physiology of obesity in order to highlight potential mechanisms by which COVID-19 disease severity is increased by obesity and identify areas for future investigation toward developing tailored therapy for people with obesity who develop COVID-19.
Collapse
Affiliation(s)
- Robert W. O’Rourke
- Department of SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of SurgeryAnn Arbor Veterans Affairs Healthcare SystemAnn ArborMichiganUSA
| | - Carey N. Lumeng
- Division of Pediatric PulmonologyDepartment of PediatricsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
13
|
de la Hoz RE, Jeon Y, Reeves AP, José Estépar RS, Liu X, Doucette JT, Celedón JC, Nolan A. Increased pulmonary artery diameter is associated with reduced FEV 1 in former World Trade Center workers. THE CLINICAL RESPIRATORY JOURNAL 2019; 13:614-623. [PMID: 31347281 PMCID: PMC6783324 DOI: 10.1111/crj.13067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
RATIONALE Occupational exposures at the WTC site after September 11, 2001 have been associated with several presumably inflammatory lower airway diseases. Pulmonary arterial enlargement, as suggested by an increased ratio of the diameter of the pulmonary artery to the diameter of the aorta (PAAr) has been reported as a computed tomographic (CT) scan marker of adverse respiratory health outcomes, including WTC-related disease. In this study, we sought to utilize a novel quantitative CT (QCT) measurement of PAAr to test the hypothesis that an increased ratio is associated with FEV1 below each subject's statistically determined lower limit of normal (FEV1 < LLN). METHODS In a group of 1,180 WTC workers and volunteers, we examined whether FEV1 < LLN was associated with an increased QCT-measured PAAr, adjusting for previously identified important covariates. RESULTS Unadjusted analyses showed a statistically significant association of FEV1 < LLN with PAAr (35.3% vs 24.7%, P = 0.0001), as well as with height, body mass index, early arrival at the WTC disaster site, shorter WTC exposure duration, post-traumatic stress disorder checklist (PCL) score, wall area percent and evidence of bronchodilator response. The multivariate logistic regression model confirmed the association of FEV1 < LLN with PAAr (OR 1.63, 95% CI 1.21, 2.20, P = 0.0015) and all the unadjusted associations, except for PCL score. CONCLUSIONS In WTC workers, FEV1 < LLN is associated with elevated PAAr which, although likely multifactorial, may be related to distal vasculopathy, as has been hypothesized for chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Rafael E. de la Hoz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yunho Jeon
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony P. Reeves
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Xiaoyu Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John T. Doucette
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, Allergy and Immunology, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Nolan
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Affiliation(s)
- Larissa A. Shimoda
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins School of MedicineBaltimoreMD21224USA
| |
Collapse
|