1
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Rosenblum JS, Cole Y, Dang D, Lookian PP, Alkaissi H, Patel M, Cappadona AJ, Jha A, Edwards N, Donahue DR, Munasinghe J, Wang H, Knutsen RH, Pappo AS, Lechan RM, Kozel BA, Smirniotopoulos JG, Kim HJ, Vortmeyer A, Miettinen M, Heiss JD, Zhuang Z, Pacak K. Head and neck paraganglioma in Pacak-Zhuang syndrome. JNCI Cancer Spectr 2025; 9:pkaf001. [PMID: 39821441 PMCID: PMC11790058 DOI: 10.1093/jncics/pkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/15/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model. METHODS We evaluated a cohort of patients with PZS (n = 9) for HNPGL by positron emission tomography, magnetic resonance imaging, and computed tomography and measured carotid body size compared to literature reference values. Resected tumors were evaluated by histologic sectioning and staining. We evaluated the corresponding mouse model at multiple developmental stages (P8 and adult) for lesions of the head and neck by high resolution ex vivo imaging and performed immunohistochemical staining on histologic sections of the identified lesions. RESULTS hree patients had imaging consistent with HNPGL, one of which warranted resection and was confirmed on histology. Three additional patients had carotid body enlargement (Z-score > 2.0), and 3 had carotid artery malformations. We found that 9 of 10 adult variant mice had carotid body tumors and 6 of 8 had a paraganglioma on the cranio-caval vein, the murine homologue of the superior vena cava; these were also found in 4 of 5 variant mice at post-natal day 8. These tumors and the one resected from a patient were positive for tyrosine hydroxylase, synaptophysin, and chromogranin A. Brown fat in a resected patient tumor carried the EPAS1 pathogenic variant. CONCLUSIONS These findings (1) suggest HNPGL as a feature of PZS and (2) show that these pathogenic variants are sufficient to cause the development of these tumors, which we believe represents a continuous spectrum of disease starting from hyperplasia.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yasemin Cole
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle Dang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pashayar P Lookian
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hussam Alkaissi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- General Surgical Pathology Section, National Institutes of Health, Bethesda, MD, United States
| | - Anthony J Cappadona
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto S Pappo
- Division of Solid Tumor, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes & Metabolism, Tufts Medical Center, Boston, MA, United States
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - James G Smirniotopoulos
- Department of Radiology, George Washington University, Washington, DC, United States
- MedPix® National Library of Medicine, Bethesda, MD, United States
| | - H Jeffrey Kim
- Department of Otolaryngology, Georgetown University School of Medicine, Washington, DC, United States
- Office of Clinical Director, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, United States
| | - Alexander Vortmeyer
- Clinical Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Markku Miettinen
- General Surgical Pathology Section, National Institutes of Health, Bethesda, MD, United States
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Adrenal Endocrine Tumors, AKESO, Prague 5, Czech Republic
| |
Collapse
|
3
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
4
|
Lewis EP, Al Khazal F, Wilbanks B, Gades NM, Ortega‐Sáenz P, López‐Barneo J, Adameyko I, Maher LJ. Mouse developmental defects, but not paraganglioma tumorigenesis, upon conditional Complex II loss in early Sox10 + cells. FASEB Bioadv 2024; 6:327-336. [PMID: 39399478 PMCID: PMC11467736 DOI: 10.1096/fba.2024-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024] Open
Abstract
In humans, loss of heterozygosity for defective alleles of any of the four subunits of mitochondrial tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH, also Complex II of the electron transport chain) can lead to paraganglioma tumors in neuroendocrine cells. With the goal of developing mouse models of this rare disorder, we have developed various SDH conditional loss strategies. Based on recent lineage tracing studies, we hypothesized that conditional SDHC loss in early embryogenesis during migration of primordial neural crest cells that form the susceptible chromaffin cells of the adrenal medulla might induce paraganglioma. We triggered low levels of detectable SDHC loss in Sox10+ cells at E11.5 of mouse development. We report that, rather than developing adrenal medulla paraganglioma (pheochromocytoma), offspring survived with evidence of neural crest cell dysfunction. Phenotypes included mild lower extremity gait anomalies suggestive of neural tube closure defects and patches of unpigmented fur consistent with neural crest-derived melanocyte dysfunction. These defects were not observed in mice lacking Sdhc knockout. Our results add to existing data suggesting that, unlike humans, even early embryonic (Sox10-driven) SDHx loss is inadequate to trigger paraganglioma in mice of the genetic backgrounds that have been investigated. Instead, low levels of tricarboxylic acid cycle-deficient neural crest cells cause mild developmental defects in hind limb and melanocyte function. This new model may be of interest for studies of metabolism during early neural crest cell development.
Collapse
Affiliation(s)
- Elizabeth P. Lewis
- Department of Biochemistry and Molecular BiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Fatimah Al Khazal
- Department of Biochemistry and Molecular BiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular BiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| | - Naomi M. Gades
- Department of Comparative MedicineMayo ClinicScottsdaleArizonaUSA
| | - Patricia Ortega‐Sáenz
- Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaSevillaSpain
| | - José López‐Barneo
- Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaSevillaSpain
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetSolnaSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - L. James Maher
- Department of Biochemistry and Molecular BiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
| |
Collapse
|
5
|
Liu B, Zeng H, Su H, Williams QA, Besanson J, Chen Y, Chen JX. Endothelial Cell-Specific Prolyl Hydroxylase-2 Deficiency Augments Angiotensin II-Induced Arterial Stiffness and Cardiac Pericyte Recruitment in Mice. J Am Heart Assoc 2024; 13:e035769. [PMID: 39056332 DOI: 10.1161/jaha.124.035769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Endothelial prolyl hydroxylase-2 (PHD2) is essential for pulmonary remodeling and hypertension. In the present study, we investigated the role of endothelial PHD2 in angiotensin II-mediated arterial stiffness, pericyte recruitment, and cardiac fibrosis. METHODS AND RESULTS Chondroitin sulfate proteoglycan 4 tracing reporter chondroitin sulfate proteoglycan 4- red fluorescent protein (DsRed) transgenic mice were crossed with PHD2flox/flox (PHD2f/f) mice and endothelial-specific knockout of PHD2 (PHD2ECKO) mice. Transgenic PHD2f/f (TgPHD2f/f) mice and TgPHD2ECKO mice were infused with angiotensin II for 4 weeks. Arterial thickness, stiffness, and histological and immunofluorescence of pericytes and fibrosis were measured. Infusion of TgPHD2f/f mice with angiotensin II resulted in a time-dependent increase in pulse-wave velocity. Angiotensin II-induced pulse-wave velocity was further elevated in the TgPHD2ECKO mice. TgPHD2ECKO also reduced coronary flow reserve compared with TgPHD2f/f mice infused with angiotensin II. Mechanistically, knockout of endothelial PHD2 promoted aortic arginase activity and angiotensin II-induced aortic thickness together with increased transforming growth factor-β1 and ICAM-1/VCAM-1 expression in coronary arteries. TgPHD2f/f mice infused with angiotensin II for 4 weeks exhibited a significant increase in cardiac fibrosis and hypertrophy, which was further developed in the TgPHD2ECKO mice. Chondroitin sulfate proteoglycan 4 pericyte was traced by DsRed+ staining and angiotensin II infusion displayed a significant increase of DsRed+ pericytes in the heart, as well as a deficiency of endothelial PHD2, which further promoted angiotensin II-induced pericyte increase. DsRed+ pericytes were costained with fibroblast-specific protein 1 and α-smooth muscle actin for measuring pericyte-myofibroblast cell transition. The knockout of endothelial PHD2 increased the amount of DsRed+/fibroblast-specific protein 1+ and DsRed+/α-smooth muscle actin+ cells induced by angiotensin II infusion. CONCLUSIONS Knockout of endothelial PHD2 enhanced angiotensin II-induced cardiac fibrosis by mechanisms involving increasing arterial stiffness and pericyte-myofibroblast cell transitions.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Heng Zeng
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Han Su
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Quinesha A Williams
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Jessie Besanson
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Yingjie Chen
- Department of Physiology and Biophysics University of Mississippi Medical Center, School of Medicine Jackson MS
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology University of Mississippi Medical Center, School of Medicine Jackson MS
| |
Collapse
|
6
|
Prange-Barczynska M, Jones HA, Sugimoto Y, Cheng X, Lima JD, Ratnayaka I, Douglas G, Buckler KJ, Ratcliffe PJ, Keeley TP, Bishop T. Hif-2α programs oxygen chemosensitivity in chromaffin cells. J Clin Invest 2024; 134:e174661. [PMID: 39106106 PMCID: PMC11405041 DOI: 10.1172/jci174661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The study of transcription factors that determine specialized neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electrophysiologically excitable cells that link the oxygen concentration of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by type I cells of the carotid body, and recent work has revealed one isoform of the hypoxia-inducible transcription factor (HIF), HIF-2α, as having a nonredundant role in the development and function of that organ. Here, we show that activation of HIF-2α, including isolated overexpression of HIF-2α but not HIF-1α, is sufficient to induce oxygen chemosensitivity in adult adrenal medulla. This phenotypic change in the adrenal medulla was associated with retention of extra-adrenal paraganglioma-like tissues resembling the fetal organ of Zuckerkandl, which also manifests oxygen chemosensitivity. Acquisition of chemosensitivity was associated with changes in the adrenal medullary expression of gene classes that are ordinarily characteristic of the carotid body, including G protein regulators and atypical subunits of mitochondrial cytochrome oxidase. Overall, the findings suggest that, at least in certain tissues, HIF-2α acts as a phenotypic driver for cells that display oxygen chemosensitivity, thus linking 2 major oxygen-sensing systems.
Collapse
Affiliation(s)
- Maria Prange-Barczynska
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Holly A. Jones
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Yoichiro Sugimoto
- The Francis Crick Institute, London, United Kingdom
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xiaotong Cheng
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Joanna D.C.C. Lima
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keith J. Buckler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Thomas P. Keeley
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Karna B, Pellegata NS, Mohr H. Animal and Cell Culture Models of PPGLs - Achievements and Limitations. Horm Metab Res 2024; 56:51-64. [PMID: 38171372 DOI: 10.1055/a-2204-4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on rare tumors heavily relies on suitable models for basic and translational research. Paragangliomas (PPGL) are rare neuroendocrine tumors (NET), developing from adrenal (pheochromocytoma, PCC) or extra-adrenal (PGL) chromaffin cells, with an annual incidence of 2-8 cases per million. While most PPGL cases exhibit slow growth and are primarily treated with surgery, limited systemic treatment options are available for unresectable or metastatic tumors. Scarcity of appropriate models has hindered PPGL research, preventing the translation of omics knowledge into drug and therapy development. Human PPGL cell lines are not available, and few animal models accurately replicate the disease's genetic and phenotypic characteristics. This review provides an overview of laboratory models for PPGLs, spanning cellular, tissue, organ, and organism levels. We discuss their features, advantages, and potential contributions to diagnostics and therapeutics. Interestingly, it appears that in the PPGL field, disease models already successfully implemented in other cancers have not been fully explored.
Collapse
Affiliation(s)
- Bhargavi Karna
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Natalia Simona Pellegata
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
8
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
9
|
Rosenblum JS, Wang H, Nazari MA, Zhuang Z, Pacak K. Pacak-Zhuang syndrome: a model providing new insights into tumor syndromes. Endocr Relat Cancer 2023; 30:e230050. [PMID: 37450881 PMCID: PMC10512798 DOI: 10.1530/erc-23-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
This article is a summary of the plenary lecture presented by Jared Rosenblum that was awarded the Manger Prize at the Sixth International Symposium on Pheochromocytoma/Paraganglioma held on 19-22 October 2022 in Prague, Czech Republic. Herein, we review our initial identification of a new syndrome of multiple paragangliomas, somatostatinomas, and polycythemia caused by early postzygotic mosaic mutations in EPAS1, encoding hypoxia-inducible factor 2 alpha (HIF-2α), and our continued exploration of new disease phenotypes in this syndrome, including vascular malformations and neural tube defects. Continued recruitment and close monitoring of patients with this syndrome as well as the generation and study of a corresponding disease mouse model as afforded by the pheochromocytoma/paraganglioma translational program at the National Institutes of Health has provided new insights into the natural history of these developmental anomalies and the pathophysiologic role of HIF-2α. Further, these studies have highlighted the importance of the timing of genetic defects in the development of related disease phenotypes. The recent discovery and continued study of this syndrome has not only rapidly evolved our understanding of pheochromocytoma and paraganglioma but also deepened our understanding of other developmental tumor syndromes, heritable syndromes, and sporadic diseases.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Matthew A Nazari
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD, 20892
| |
Collapse
|
10
|
Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, Fang X, Chelakkot C, Rios-Castillo ME, Shin YK, Surh YJ. Oxygen-independent stabilization of HIF-2α in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med 2023; 207:296-307. [PMID: 37473874 DOI: 10.1016/j.freeradbiomed.2023.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.
Collapse
Affiliation(s)
- Yanymee N Guillen-Quispe
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Tianchi Zhou
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jie Zheng
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Chaithanya Chelakkot
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Milton E Rios-Castillo
- School of Electronic Engineering, Faculty of Electronic and Electrical Engineering, National University of San Marcos, Lima, Peru
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, 41566, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Toledo RA, Jimenez C, Armaiz-Pena G, Arenillas C, Capdevila J, Dahia PLM. Hypoxia-Inducible Factor 2 Alpha (HIF2α) Inhibitors: Targeting Genetically Driven Tumor Hypoxia. Endocr Rev 2023; 44:312-322. [PMID: 36301191 DOI: 10.1210/endrev/bnac025] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Tumors driven by deficiency of the VHL gene product, which is involved in degradation of the hypoxia-inducible factor subunit 2 alpha (HIF2α), are natural candidates for targeted inhibition of this pathway. Belzutifan, a highly specific and well-tolerated HIF2α inhibitor, recently received FDA approval for the treatment of nonmetastatic renal cell carcinomas, pancreatic neuroendocrine tumors, and central nervous system hemangioblastomas from patients with von Hippel-Lindau disease, who carry VHL germline mutations. Such approval is a milestone in oncology; however, the full potential, and limitations, of HIF2α inhibition in the clinic are just starting to be explored. Here we briefly recapitulate the molecular rationale for HIF2α blockade in tumors and review available preclinical and clinical data, elaborating on mutations that might be particularly sensitive to this approach. We also outline some emerging mechanisms of intrinsic and acquired resistance to HIF2α inhibitors, including acquired mutations of the gatekeeper pocket of HIF2α and its interacting partner ARNT. Lastly, we propose that the high efficacy of belzutifan observed in tumors with genetically driven hypoxia caused by VHL mutations suggests that a focus on other mutations that similarly lead to HIF2α stabilization, such as those occurring in neuroendocrine tumors with disruptions in the tricarboxylic acid cycle (SDHA/B/C/D, FH, MDH2, IDH2), HIF hydroxylases (EGLN/PHDs), and the HIF2α-encoding gene, EPAS1, are warranted.
Collapse
Affiliation(s)
- Rodrigo A Toledo
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gustavo Armaiz-Pena
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Carlota Arenillas
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medical Oncology Department, Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), IOB Quiron-Teknon, 08035 Barcelona, Spain
| | - Patricia L M Dahia
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Caballero-Eraso C, Colinas O, Sobrino V, González-Montelongo R, Cabeza JM, Gao L, Pardal R, López-Barneo J, Ortega-Sáenz P. Rearrangement of cell types in the rat carotid body neurogenic niche induced by chronic intermittent hypoxia. J Physiol 2023; 601:1017-1036. [PMID: 36647759 DOI: 10.1113/jp283897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The carotid body (CB) is a prototypical acute oxygen (O2 )-sensing organ that mediates reflex hyperventilation and increased cardiac output in response to hypoxaemia. CB overactivation, secondary to the repeated stimulation produced by the recurrent episodes of intermittent hypoxia, is believed to contribute to the pathogenesis of sympathetic hyperactivity present in sleep apnoea patients. Although CB functional plasticity induced by chronic intermittent hypoxia (CIH) has been demonstrated, the underlying mechanisms are not fully elucidated. Here, we show that CIH induces a small increase in CB volume and rearrangement of cell types in the CB, characterized by a mobilization of immature quiescent neuroblasts, which enter a process of differentiation into mature, O2 -sensing and neuron-like, chemoreceptor glomus cells. Prospective isolation of individual cell classes has allowed us to show that maturation of CB neuroblasts is paralleled by an upregulation in the expression of specific glomus cell genes involved in acute O2 -sensing. CIH enhances mitochondrial responsiveness to hypoxia in maturing neuroblasts as well as in glomus cells. These data provide novel perspectives on the pathogenesis of CB-mediated sympathetic overflow that may lead to the development of new pharmacological strategies of potential applicability in sleep apnoea patients. KEY POINTS: Obstructive sleep apnoea is a frequent condition in the human population that predisposes to severe cardiovascular and metabolic alterations. Activation of the carotid body, the main arterial oxygen-sensing chemoreceptor, by repeated episodes of hypoxaemia induces exacerbation of the carotid body-mediated chemoreflex and contributes to sympathetic overflow characteristic of sleep apnoea patients. In rats, chronic intermittent hypoxaemia induces fast neurogenesis in the carotid body with rapid activation of neuroblasts, which enter a process of proliferation and maturation into O2 -sensing chemoreceptor glomus cells. Maturing carotid body neuroblasts and glomus cells exposed to chronic intermittent hypoxia upregulate genes involved in acute O2 sensing and enhance mitochondrial responsiveness to hypoxia. These findings provide novel perspectives on the pathogenesis of carotid body-mediated sympathetic hyperactivation. Pharmacological modulation of carotid body fast neurogenesis could help to ameliorate the deleterious effects of chronic intermittent hypoxaemia in sleep apnoea patients.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Unidad Médico Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío/IBIS, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Olaia Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rafaela González-Montelongo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José María Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Lazarov NE, Atanasova DY. Stem Cell Niche in the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:139-153. [PMID: 37946081 DOI: 10.1007/978-3-031-44757-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Accumulating evidence suggests that the mammalian carotid body (CB) constitutes a neurogenic center that contains a functionally active germinal niche. A variety of transcription factors is required for the generation of a precursor cell pool in the developing CB. Most of them are later silenced in their progeny, thus allowing for the maturation of the differentiated neurons. In the adult CB, neurotransmitters and vascular cytokines released by glomus cells upon exposure to chronic hypoxia act as paracrine signals that induce proliferation and differentiation of pluripotent stem cells, neuronal and vascular progenitors. Key proliferation markers such as Ki-67 and BrdU are widely used to evaluate the proliferative status of the CB parenchymal cells in the initial phase of this neurogenesis. During hypoxia sustentacular cells which are dormant cells in normoxic conditions can proliferate and differentiate into new glomus cells. However, more recent data have revealed that the majority of the newly formed glomus cells is derived from the glomus cell lineage itself. The mature glomus cells express numerous trophic and growth factors, and their corresponding receptors, which act on CB cell populations in autocrine or paracrine ways. Some of them initially serve as target-derived survival factors and then as signaling molecules in developing vascular targets. Morphofunctional insights into the cellular interactions in the CB stem cell microenvironment can be helpful in further understanding the therapeutic potential of the CB cell niche.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
14
|
Pardal R. The Adult Carotid Body: A Germinal Niche at the Service of Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:13-22. [PMID: 37322331 DOI: 10.1007/978-3-031-32371-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The carotid body is the most relevant oxygen sensor in mammalian organisms. This organ helps to detect acute changes in PO2, but it is also crucial for the organismal adaptation to a maintained hypoxemia. Profound angiogenic and neurogenic processes take place in the carotid body to facilitate this adaptation process. We have described a plethora of multipotent stem cells and restricted progenitors, from both vascular and neuronal lineages, existing in the quiescent normoxic carotid body, ready to contribute to organ growth and adaptation upon the arrival of the hypoxic stimulus. Our deep understanding of the functioning of this stunning germinal niche will very likely facilitate the management and treatment of an important group of diseases that course with carotid body over-activation and malfunction.
Collapse
Affiliation(s)
- Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
15
|
Ohh M, Taber CC, Ferens FG, Tarade D. Hypoxia-inducible factor underlies von Hippel-Lindau disease stigmata. eLife 2022; 11:80774. [PMID: 36040300 PMCID: PMC9427099 DOI: 10.7554/elife.80774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
von Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that causes a predisposition to renal clear-cell carcinoma, hemangioblastoma, pheochromocytoma, and autosomal-recessive familial polycythemia. pVHL is the substrate conferring subunit of an E3 ubiquitin ligase complex that binds to the three hypoxia-inducible factor alpha subunits (HIF1-3α) for polyubiquitylation under conditions of normoxia, targeting them for immediate degradation by the proteasome. Certain mutations in pVHL have been determined to be causative of VHL disease through the disruption of HIFα degradation. However, it remains a focus of investigation and debate whether the disruption of HIFα degradation alone is sufficient to explain the complex genotype-phenotype relationship of VHL disease or whether the other lesser or yet characterized substrates and functions of pVHL impact the development of the VHL disease stigmata; the elucidation of which would have a significant ramification to the direction of research efforts and future management and care of VHL patients and for those manifesting sporadic counterparts of VHL disease. Here, we examine the current literature including the other emergent pseudohypoxic diseases and propose that the VHL disease-phenotypic spectrum could be explained solely by the varied disruption of HIFα signaling upon the loss or mutation in pVHL.
Collapse
Affiliation(s)
- Michael Ohh
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Fraser G Ferens
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Ivy CM, Velotta JP, Cheviron ZA, Scott GR. Genetic variation in HIF-2α attenuates ventilatory sensitivity and carotid body growth in chronic hypoxia in high-altitude deer mice. J Physiol 2022; 600:4207-4225. [PMID: 35797482 DOI: 10.1113/jp282798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-altitude natives of many species have experienced natural selection on the gene encoding HIF-2α, Epas1, including high-altitude populations of deer mice. HIF-2α regulates ventilation and carotid body growth in hypoxia, so the genetic variants in Epas1 in high-altitude natives may underlie evolved changes in control of breathing. Deer mice from controlled crosses between high- and low-altitude populations were used to examine the effects of Epas1 genotype on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth in chronic hypoxia, but had no effects on haematology. The results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. ABSTRACT The gene encoding HIF-2α, Epas1, has experienced a history of natural selection in many high-altitude taxa, but the functional role of mutations in this gene are still poorly understood. We investigated the influence of the high-altitude variant of Epas1 in North American deer mice (Peromyscus maniculatus) on control of breathing and carotid body growth during chronic hypoxia. We created hybrids between high- and low-altitude populations of deer mice to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L , respectively) could be examined on an admixed genomic background. In general, chronic hypoxia (4 weeks at 12 kPa O2 ) enhanced ventilatory chemosensitivity (assessed as the acute ventilatory response to hypoxia), increased total ventilation and arterial O2 saturation during progressive poikilocapnic hypoxia, and increased haematocrit and blood haemoglobin content across genotypes. However, effects of chronic hypoxia on ventilatory chemosensitivity were attenuated in mice that were homozygous for the high-altitude Epas1 allele (Epas1H/H ). Carotid body growth and glomus cell hyperplasia, which was strongly induced in Epas1L/L mice in chronic hypoxia, was not observed in Epas1H/H mice. Epas1 genotype also modulated the effects of chronic hypoxia on metabolism and body temperature depression in hypoxia, but had no effects on haematological traits. These findings confirm the important role of HIF-2α in modulating ventilatory sensitivity and carotid body growth in chronic hypoxia, and show that genetic variation in Epas1 is responsible for evolved changes in the control of breathing and metabolism in high-altitude deer mice. Abstract figure legend ventilation and carotid body growth in hypoxia, so we investigated the role genetic variants in Epas1 in highaltitude deer mice on the control of breathing. In the lab, hybrids between high- and lowaltitude populations of deer mice were created to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L, respectively) could be examined on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth after 4 weeks of chronic hypoxia, compared to mice homozygous for the low-altitude allele (Epas1LL). These results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
17
|
Differential HIF2α Protein Expression in Human Carotid Body and Adrenal Medulla under Physiologic and Tumorigenic Conditions. Cancers (Basel) 2022; 14:cancers14122986. [PMID: 35740651 PMCID: PMC9221385 DOI: 10.3390/cancers14122986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxia-inducible factors (HIF) 2α and 1α are the major oxygen-sensing molecules in eukaryotic cells. HIF2α has been pathogenically linked to paraganglioma and pheochromocytoma (PPGL) arising in sympathetic paraganglia or the adrenal medulla (AM), respectively. However, its involvement in the pathogenesis of paraganglioma arising in the carotid body (CB) or other parasympathetic ganglia in the head and neck (HNPGL) remains to be defined. Here, we retrospectively analyzed HIF2α by immunohistochemistry in 62 PPGL/HNPGL and human CB and AM, and comprehensively evaluated the HIF-related transcriptome of 202 published PPGL/HNPGL. We report that HIF2α is barely detected in the AM, but accumulates at high levels in PPGL, mostly (but not exclusively) in those with loss-of-function mutations in VHL and genes encoding components of the succinate dehydrogenase (SDH) complex. This is associated with upregulation of EPAS1 and the HIF2α-regulated genes COX4I2 and ADORA2A. In contrast, HIF2α and HIF2α-regulated genes are highly expressed in CB and HNPGL, irrespective of VHL and SDH dysfunctions. We also found that HIF2α and HIF1α protein expressions are not correlated in PPGL nor HNPGL. In addition, HIF1α-target genes are almost exclusively overexpressed in VHL-mutated HNPGL/PPGL. Collectively, the data suggest that involvement of HIF2α in the physiology and tumor pathology of human paraganglia is organ-of-origin-dependent and HIF1α-independent.
Collapse
|
18
|
Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of zebrafish (Danio rerio) exposed to hypoxia. Sci Rep 2022; 12:10144. [PMID: 35710785 PMCID: PMC9203529 DOI: 10.1038/s41598-022-13693-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
The fish gill is a multifunctional organ involved in numerous physiological processes, such as gas exchange and sensing of hypoxia by respiratory chemoreceptors, called neuroepithelial cells (NECs). Many studies have focused on zebrafish (Danio rerio) to investigate the structure, function and development of the gills, yet the transcriptomic profile of most gill cells remains obscure. We present the results of a comprehensive transcriptomic analysis of the gills of zebrafish using single-cell RNA sequencing (scRNA‐seq). Gill cells from ETvmat2:EGFP zebrafish were individually labelled before scRNA‐seq library construction using 10× Genomics Chromium technology. 12,819 cells were sequenced with an average depth of over 27,000 reads per cell. We identified a median of 485 genes per cell and 16 cell clusters, including NECs, neurons, pavement cells, endothelial cells and mitochondrion-rich cells. The identity of NECs was confirmed by expression of slc18a2, encoding the vesicular monoamine transporter, Vmat2. Highly differentially-expressed genes in NECs included tph1a, encoding tryptophan hydroxylase, sv2 (synaptic vesicle protein), and proteins implicated in O2 sensing (ndufa4l2a, cox8al and epas1a). In addition, NECs and neurons expressed genes encoding transmembrane receptors for serotonergic, cholinergic or dopaminergic neurotransmission. Differential expression analysis showed a clear shift in the transcriptome of NECs following 14 days of acclimation to hypoxia. NECs in the hypoxia group showed high expression of genes involved in cell cycle control and proliferation. The present article provides a complete cell atlas for the zebrafish gill and serves as a platform for future studies investigating the molecular biology and physiology of this organ.
Collapse
|
19
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
21
|
Ratcliffe PJ. Harveian Oration 2020: Elucidation of molecular oxygen sensing mechanisms in human cells: implications for medicine. Clin Med (Lond) 2022; 22:23-33. [PMID: 34921056 PMCID: PMC8813027 DOI: 10.7861/clinmed.ed.22.1.harv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK, and director of clinical research, Francis Crick Institute, London, UK
| |
Collapse
|
22
|
Eckardt L, Prange-Barczynska M, Hodson EJ, Fielding JW, Cheng X, Lima JDCC, Kurlekar S, Douglas G, Ratcliffe PJ, Bishop T. Developmental role of PHD2 in the pathogenesis of pseudohypoxic pheochromocytoma. Endocr Relat Cancer 2021; 28:757-772. [PMID: 34658364 PMCID: PMC8558849 DOI: 10.1530/erc-21-0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Despite a general role for the HIF hydroxylase system in cellular oxygen sensing and tumour hypoxia, cancer-associated mutations of genes in this pathway, including PHD2, PHD1, EPAS1 (encoding HIF-2α) are highly tissue-restricted, being observed in pseudohypoxic pheochromocytoma and paraganglioma (PPGL) but rarely, if ever, in other tumours. In an effort to understand that paradox and gain insights into the pathogenesis of pseudohypoxic PPGL, we constructed mice in which the principal HIF prolyl hydroxylase, Phd2, is inactivated in the adrenal medulla using TH-restricted Cre recombinase. Investigation of these animals revealed a gene expression pattern closely mimicking that of pseudohypoxic PPGL. Spatially resolved analyses demonstrated a binary distribution of two contrasting patterns of gene expression among adrenal medullary cells. Phd2 inactivation resulted in a marked shift in this distribution towards a Pnmt-/Hif-2α+/Rgs5+ population. This was associated with morphological abnormalities of adrenal development, including ectopic TH+ cells within the adrenal cortex and external to the adrenal gland. These changes were ablated by combined inactivation of Phd2 with Hif-2α, but not Hif-1α. However, they could not be reproduced by inactivation of Phd2 in adult life, suggesting that they arise from dysregulation of this pathway during adrenal development. Together with the clinical observation that pseudohypoxic PPGL manifests remarkably high heritability, our findings suggest that this type of tumour likely arises from dysregulation of a tissue-restricted action of the PHD2/HIF-2α pathway affecting adrenal development in early life and provides a model for the study of the relevant processes.
Collapse
Affiliation(s)
- Luise Eckardt
- Target Discovery Institute, University of Oxford, Oxford, UK
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Maria Prange-Barczynska
- Target Discovery Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Emma J Hodson
- The Francis Crick Institute, London, UK
- The Department of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - James W Fielding
- Target Discovery Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Xiaotong Cheng
- Target Discovery Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Samvid Kurlekar
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Gillian Douglas
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter J Ratcliffe
- Target Discovery Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
- The Francis Crick Institute, London, UK
- Correspondence should be addressed to P J Ratcliffe or T Bishop: or
| | - Tammie Bishop
- Target Discovery Institute, University of Oxford, Oxford, UK
- Correspondence should be addressed to P J Ratcliffe or T Bishop: or
| |
Collapse
|
23
|
Kameda Y. Comparative morphological and molecular studies on the oxygen-chemoreceptive cells in the carotid body and fish gills. Cell Tissue Res 2021; 384:255-273. [PMID: 33852077 DOI: 10.1007/s00441-021-03421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
Oxygen-chemoreceptive cells play critical roles for the respiration control. This review summarizes the chemoreceptive cells in the carotid body and fish gills from a morphological and molecular perspective. The cells synthesize and secrete biogenic amines, neuropeptides, and neuroproteins and also express many signaling molecules and transcription factors. In mammals, birds, reptiles, and amphibians, the carotid body primordium is consistently formed in the wall of the third arch artery which gives rise to the common carotid artery and the basal portion of the internal carotid artery. Consequently, the carotid body is located in the carotid bifurcation region, except birds in which the organ is situated at the lateral side of the common carotid artery. The carotid body receives branches of the cranial nerves IX and/or X dependent on the location of the organ. The glomus cell progenitors in mammals and birds are derived from the neighboring ganglion, i.e., the superior cervical sympathetic ganglion and the nodose ganglion, respectively, and immigrate into the carotid body primordium, constituting a solid cell cluster. In other animal species, the glomus cells are dispersed singly or forming small cell groups in intervascular stroma of the carotid body. In fishes, the neuroepithelial cells, corresponding to the glomus cells, are distributed in the gill filaments and lamellae. All oxygen-chemoreceptive cells sensitively respond to acute or chronic hypoxia, exhibiting degranulation, hypertrophy, hyperplasia, and upregulated expression of many genes.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
24
|
Chala-Galindo AI, Albornoz Garzón CA, Gómez-Vera CE. Carcinoma del glomus carotideo. Serie de casos. REVISTA COLOMBIANA DE CIRUGÍA 2021. [DOI: 10.30944/20117582.743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introducción. El carcinoma del glomus carotideo es infrecuente y se presenta en el 6 % de los paragangliomas carotideos. Suele haber dificultad en su diagnóstico preoperatorio y no se diferencia fácilmente de su contraparte benigna, lo que puede conllevar a complicaciones quirúrgicas. Este trabajo describe la experiencia en su abordaje clínico y quirúrgico en una serie de casos, además de una revisión de la literatura profundizando en su diagnóstico, abordaje terapéutico, sobrevida y mortalidad.
Métodos. De los pacientes operados por glomus carotideos durante un periodo de 20 años, se identificaron aquellos llevados a cirugía por carcinoma. Se realizó una búsqueda bibliográfica extensa en PubMed, haciendo énfasis en diagnóstico y tratamiento.
Resultados. De un total de 139 pacientes sometidos a cirugía de resección de tumor del cuerpo carotideo, tres pacientes (2,2 %) presentaron carcinoma. Dos tenían metástasis cervicales y uno metástasis hepáticas. Uno presentaba glomus bilateral asociado a trastorno genético de origen familiar. Se realizó cirugía y adyuvancia en todos los casos.
Discusión. El diagnóstico diferencial preoperatorio entre glomus benigno y maligno es difícil, por lo cual deben buscarse hallazgos clínicos o factores de riesgo que puedan sugerir malignidad. Las imágenes pocas veces muestran características claras de invasión vascular. Siempre que sea posible, en el tratamiento del cáncer del glomus carotideo, debe realizarse resección quirúrgica, acompañada de un vaciamiento funcional de cuello, dejando la radioterapia, la quimioterapia y la hormonoterapia como terapias adyuvantes.
Collapse
|
25
|
Rosenblum JS, Wang H, Dmitriev PM, Cappadona AJ, Mastorakos P, Xu C, Jha A, Edwards N, Donahue DR, Munasinghe J, Nazari MA, Knutsen RH, Rosenblum BR, Smirniotopoulos JG, Pappo A, Spetzler RF, Vortmeyer A, Gilbert MR, McGavern DB, Chew E, Kozel BA, Heiss JD, Zhuang Z, Pacak K. Developmental vascular malformations in EPAS1 gain-of-function syndrome. JCI Insight 2021; 6:144368. [PMID: 33497361 PMCID: PMC8021124 DOI: 10.1172/jci.insight.144368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Mutations in EPAS1, encoding hypoxia-inducible factor-2α (HIF-2α), were previously identified in a syndrome of multiple paragangliomas, somatostatinoma, and polycythemia. HIF-2α, when dimerized with HIF-1β, acts as an angiogenic transcription factor. Patients referred to the NIH for new, recurrent, and/or metastatic paraganglioma or pheochromocytoma were confirmed for EPAS1 gain-of-function mutation; imaging was evaluated for vascular malformations. We evaluated the Epas1A529V transgenic syndrome mouse model, corresponding to the mutation initially detected in the patients (EPAS1A530V), for vascular malformations via intravital 2-photon microscopy of meningeal vessels, terminal vascular perfusion with Microfil silicate polymer and subsequent intact ex vivo 14T MRI and micro-CT, and histologic sectioning and staining of the brain and identified pathologies. Further, we evaluated retinas from corresponding developmental time points (P7, P14, and P21) and the adult dura via immunofluorescent labeling of vessels and confocal imaging. We identified a spectrum of vascular malformations in all 9 syndromic patients and in all our tested mutant mice. Patient vessels had higher variant allele frequency than adjacent normal tissue. Veins of the murine retina and intracranial dura failed to regress normally at the expected developmental time points. These findings add vascular malformation as a new clinical feature of EPAS1 gain-of-function syndrome. We discovered vascular malformations due to failure of developmental vascular regression in patients with EPAS1 gain-of-function mutation syndrome and the corresponding transgenic mouse model.
Collapse
Affiliation(s)
- Jared S Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Pauline M Dmitriev
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anthony J Cappadona
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Panagiotis Mastorakos
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.,Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Chen Xu
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Matthew A Nazari
- Internal Medicine and Pediatrics, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bruce R Rosenblum
- Department of Neurosurgery, Riverview Medical Center, Red Bank, New Jersey, USA
| | - James G Smirniotopoulos
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA.,National Library of Medicine, Bethesda, Maryland, USA
| | - Alberto Pappo
- Oncology Department, Developmental Biology and Solid Tumor Program, St. Jude Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert F Spetzler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital, and Medical Center, Phoenix, Arizona, USA
| | - Alexander Vortmeyer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest 2021; 130:5042-5051. [PMID: 32730232 DOI: 10.1172/jci137560] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA), a widespread disorder of breathing. This Review focuses on the role of hypoxia-inducible factors (HIFs) in hypertension, type 2 diabetes (T2D), and cognitive decline in experimental models of IH patterned after O2 profiles seen in OSA. IH increases HIF-1α and decreases HIF-2α protein levels. Dysregulated HIFs increase reactive oxygen species (ROS) through HIF-1-dependent activation of pro-oxidant enzyme genes in addition to reduced transcription of antioxidant genes by HIF-2. ROS in turn activate chemoreflex and suppress baroreflex, thereby stimulating the sympathetic nervous system and causing hypertension. We also discuss how increased ROS generation by HIF-1 contributes to IH-induced insulin resistance and T2D as well as disrupted NMDA receptor signaling in the hippocampus, resulting in cognitive decline.
Collapse
|
27
|
Abstract
2-Oxoglutarate-dependent dioxygenases (2OGDDs) are a superfamily of enzymes that play diverse roles in many biological processes, including regulation of hypoxia-inducible factor-mediated adaptation to hypoxia, extracellular matrix formation, epigenetic regulation of gene transcription and the reprogramming of cellular metabolism. 2OGDDs all require oxygen, reduced iron and 2-oxoglutarate (also known as α-ketoglutarate) to function, although their affinities for each of these co-substrates, and hence their sensitivity to depletion of specific co-substrates, varies widely. Numerous 2OGDDs are recurrently dysregulated in cancer. Moreover, cancer-specific metabolic changes, such as those that occur subsequent to mutations in the genes encoding succinate dehydrogenase, fumarate hydratase or isocitrate dehydrogenase, can dysregulate specific 2OGDDs. This latter observation suggests that the role of 2OGDDs in cancer extends beyond cancers that harbour mutations in the genes encoding members of the 2OGDD superfamily. Herein, we review the regulation of 2OGDDs in normal cells and how that regulation is corrupted in cancer.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
28
|
Al Khazal F, Kang S, Nelson Holte M, Choi DS, Singh R, Ortega-Sáenz P, López-Barneo J, Maher LJ. Unexpected obesity, rather than tumorigenesis, in a conditional mouse model of mitochondrial complex II deficiency. FASEB J 2020; 35:e21227. [PMID: 33247500 PMCID: PMC7861419 DOI: 10.1096/fj.202002100r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Mutations in any of the genes encoding the four subunits of succinate dehydrogenase (SDH), a mitochondrial membrane‐bound enzyme complex that is involved in both the tricarboxylic acid cycle and the electron transport chain, can lead to a variety of disorders. Recognized conditions with such mutations include Leigh syndrome and hereditary tumors such as pheochromocytoma and paraganglioma (PPGL), renal cell carcinoma, and gastrointestinal stromal tumor. Tumors appear in SDH mutation carriers with dominant inheritance due to loss of heterozygosity in susceptible cells. Here, we describe a mouse model intended to reproduce hereditary PPGL through Cre‐mediated loss of SDHC in cells that express tyrosine hydroxylase (TH), a compartment where PPGL is known to originate. We report that while there is modest expansion of TH+ glomus cells in the carotid body upon SDHC loss, PPGL is not observed in such mice, even in the presence of a conditional dominant negative p53 protein and chronic hypoxia. Instead, we report an unexpected phenotype of nondiabetic obesity beginning at about 20 weeks of age. We hypothesize that this obesity is caused by TH+ cell loss or altered phenotype in key compartments of the central nervous system responsible for regulating feeding behavior, coupled with metabolic changes due to loss of peripheral catecholamine production.
Collapse
Affiliation(s)
- Fatimah Al Khazal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Seungwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ravinder Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
29
|
Ortega-Sáenz P, Moreno-Domínguez A, Gao L, López-Barneo J. Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α. Front Physiol 2020; 11:614893. [PMID: 33329066 PMCID: PMC7719705 DOI: 10.3389/fphys.2020.614893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023] Open
Abstract
Carotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to elicit rapid compensatory responses (hyperventilation and sympathetic activation). The mechanisms underlying acute O2 sensing by glomus cells have been elusive. Using a combination of mouse genetics and single-cell optical and electrophysiological techniques, it has recently been shown that activation of glomus cells by hypoxia relies on the generation of mitochondrial signals (NADH and reactive oxygen species), which modulate membrane ion channels to induce depolarization, Ca2+ influx, and transmitter release. The special sensitivity of glomus cell mitochondria to changes in O2 tension is due to Hif2α-dependent expression of several atypical mitochondrial subunits, which are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. A mitochondrial-to-membrane signaling model of acute O2 sensing has been proposed, which explains existing data and provides a solid foundation for future experimental tests. This model has also unraveled new molecular targets for pharmacological modulation of carotid body activity potentially relevant in the treatment of highly prevalent medical conditions.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
30
|
Neurotransmitter Modulation of Carotid Body Germinal Niche. Int J Mol Sci 2020; 21:ijms21218231. [PMID: 33153142 PMCID: PMC7662800 DOI: 10.3390/ijms21218231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.
Collapse
|
31
|
Powers JF, Tischler AS. Immunohistochemical Staining for SOX10 and SDHB in SDH-Deficient Paragangliomas Indicates that Sustentacular Cells Are Not Neoplastic. Endocr Pathol 2020; 31:307-309. [PMID: 32562155 DOI: 10.1007/s12022-020-09633-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
32
|
Cheng X, Prange-Barczynska M, Fielding JW, Zhang M, Burrell AL, Lima JD, Eckardt L, Argles IL, Pugh CW, Buckler KJ, Robbins PA, Hodson EJ, Bruick RK, Collinson LM, Rastinejad F, Bishop T, Ratcliffe PJ. Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control. J Clin Invest 2020; 130:2237-2251. [PMID: 31999648 PMCID: PMC7190921 DOI: 10.1172/jci133194] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is strikingly upregulated in many types of cancer, and there is great interest in applying inhibitors of HIF as anticancer therapeutics. The most advanced of these are small molecules that target the HIF-2 isoform through binding the PAS-B domain of HIF-2α. These molecules are undergoing clinical trials with promising results in renal and other cancers where HIF-2 is considered to be driving growth. Nevertheless, a central question remains as to whether such inhibitors affect physiological responses to hypoxia at relevant doses. Here, we show that pharmacological HIF-2α inhibition with PT2385, at doses similar to those reported to inhibit tumor growth, rapidly impaired ventilatory responses to hypoxia, abrogating both ventilatory acclimatization and carotid body cell proliferative responses to sustained hypoxia. Mice carrying a HIF-2α PAS-B S305M mutation that disrupts PT2385 binding, but not dimerization with HIF-1β, did not respond to PT2385, indicating that these effects are on-target. Furthermore, the finding of a hypomorphic ventilatory phenotype in untreated HIF-2α S305M mutant mice suggests a function for the HIF-2α PAS-B domain beyond heterodimerization with HIF-1β. Although PT2385 was well tolerated, the findings indicate the need for caution in patients who are dependent on hypoxic ventilatory drive.
Collapse
Affiliation(s)
- Xiaotong Cheng
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James W. Fielding
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | - Keith J. Buckler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A. Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Richard K. Bruick
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Peter J. Ratcliffe
- Target Discovery Institute and
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- Francis Crick Institute, London, United Kingdom
| |
Collapse
|
33
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
34
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
35
|
Moreno-Domínguez A, Ortega-Sáenz P, Gao L, Colinas O, García-Flores P, Bonilla-Henao V, Aragonés J, Hüttemann M, Grossman LI, Weissmann N, Sommer N, López-Barneo J. Acute O 2 sensing through HIF2α-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Sci Signal 2020; 13:scisignal.aay9452. [PMID: 31848220 DOI: 10.1126/scisignal.aay9452] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute cardiorespiratory responses to O2 deficiency are essential for physiological homeostasis. The prototypical acute O2-sensing organ is the carotid body, which contains glomus cells expressing K+ channels whose inhibition by hypoxia leads to transmitter release and activation of nerve fibers terminating in the brainstem respiratory center. The mechanism by which changes in O2 tension modulate ion channels has remained elusive. Glomus cells express genes encoding HIF2α (Epas1) and atypical mitochondrial subunits at high levels, and mitochondrial NADH and reactive oxygen species (ROS) accumulation during hypoxia provides the signal that regulates ion channels. We report that inactivation of Epas1 in adult mice resulted in selective abolition of glomus cell responsiveness to acute hypoxia and the hypoxic ventilatory response. Epas1 deficiency led to the decreased expression of atypical mitochondrial subunits in the carotid body, and genetic deletion of Cox4i2 mimicked the defective hypoxic responses of Epas1-null mice. These findings provide a mechanistic explanation for the acute O2 regulation of breathing, reveal an unanticipated role of HIF2α, and link acute and chronic adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Victoria Bonilla-Henao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| | - Julián Aragonés
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid 28009, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid 28009, Spain
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen 35392, Germany
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain. .,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville 41013, Spain
| |
Collapse
|
36
|
Kameda Y. Molecular and cellular mechanisms of the organogenesis and development of the mammalian carotid body. Dev Dyn 2019; 249:592-609. [DOI: 10.1002/dvdy.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yoko Kameda
- Department of AnatomyKitasato University School of Medicine Sagamihara Japan
| |
Collapse
|
37
|
Schweizer RM, Velotta JP, Ivy CM, Jones MR, Muir SM, Bradburd GS, Storz JF, Scott GR, Cheviron ZA. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genet 2019; 15:e1008420. [PMID: 31697676 PMCID: PMC6837288 DOI: 10.1371/journal.pgen.1008420] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022] Open
Abstract
Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation.
Collapse
Affiliation(s)
- Rena M. Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| | - Jonathan P. Velotta
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Matthew R. Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Sarah M. Muir
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Gideon S. Bradburd
- Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Zachary A. Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
38
|
Bernardo-Castiñeira C, Valdés N, Celada L, Martinez ASJ, Sáenz-de-Santa-María I, Bayón GF, Fernández AF, Sierra MI, Fraga MF, Astudillo A, Jiménez-Fonseca P, Rial JC, Hevia MÁ, Turienzo E, Bernardo C, Forga L, Tena I, Molina-Garrido MJ, Cacho L, Villabona C, Serrano T, Scola B, Chirivella I, Del Olmo M, Menéndez CL, Navarro E, Tous M, Vallejo A, Athimulam S, Bancos I, Suarez C, Chiara MD. Epigenetic Deregulation of Protocadherin PCDHGC3 in Pheochromocytomas/Paragangliomas Associated With SDHB Mutations. J Clin Endocrinol Metab 2019; 104:5673-5692. [PMID: 31216007 DOI: 10.1210/jc.2018-01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
CONTEXT SDHB mutations are found in an increasing number of neoplasms, most notably in paragangliomas and pheochromocytomas (PPGLs). SDHB-PPGLs are slow-growing tumors, but ∼50% of them may develop metastasis. The molecular basis of metastasis in these tumors is a long-standing and unresolved problem. Thus, a better understanding of the biology of metastasis is needed. OBJECTIVE This study aimed to identify gene methylation changes relevant for metastatic SDHB-PPGLs. DESIGN We performed genome-wide profiling of DNA methylation in diverse clinical and genetic PPGL subtypes, and validated protocadherin γ-C3 (PCDHGC3) gene promoter methylation in metastatic SDHB-PPGLs. RESULTS We define an epigenetic landscape specific for metastatic SDHB-PPGLs. DNA methylation levels were found significantly higher in metastatic SDHB-PPGLs than in SDHB-PPGLs without metastases. One such change included long-range de novo methylation of the PCDHA, PCDHB, and PCDHG gene clusters. High levels of PCDHGC3 promoter methylation were validated in primary metastatic SDHB-PPGLs, it was found amplified in the corresponding metastases, and it was significantly correlated with PCDHGC3 reduced expression. Interestingly, this epigenetic alteration could be detected in primary tumors that developed metastasis several years later. We also show that PCDHGC3 down regulation engages metastasis-initiating capabilities by promoting cell proliferation, migration, and invasion. CONCLUSIONS Our data provide a map of the DNA methylome episignature specific to an SDHB-mutated cancer and establish PCDHGC3 as a putative suppressor gene and a potential biomarker to identify patients with SDHB-mutated cancer at high risk of metastasis who might benefit from future targeted therapies.
Collapse
Affiliation(s)
- Cristóbal Bernardo-Castiñeira
- Head and Neck Oncology Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
- Institute of Oncology of Asturias, Spain
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Oncología, Oviedo, Spain
| | - Nuria Valdés
- Service of Endocrinology and Nutrition, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Lucía Celada
- Head and Neck Oncology Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Oncología, Oviedo, Spain
| | | | - I Sáenz-de-Santa-María
- Head and Neck Oncology Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
- Institute of Oncology of Asturias, Spain
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
| | - Gustavo F Bayón
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Cancer Epigenetics Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Agustín F Fernández
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Cancer Epigenetics Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta I Sierra
- Institute of Oncology of Asturias, Spain
- Cancer Epigenetics Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario F Fraga
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center, Spanish Council for Scientific Research, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Service of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Paula Jiménez-Fonseca
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Service of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Carlos Rial
- Service of Neurosurgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Ángel Hevia
- Service of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Service of Urology Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Estrella Turienzo
- Service of Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carmen Bernardo
- Service of Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Lluis Forga
- Service of Endocrinology and Nutrition, Complejo Universitario de Navarra, Pamplona, Spain
| | - Isabel Tena
- Service of Medical Oncology, Hospital Provincial de Castellón, Castellón, Spain
| | | | - Laura Cacho
- Service of Endocrinology and Nutrition, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carles Villabona
- Service of Endocrinology and Nutrition, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Teresa Serrano
- Service of Pathology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Bartolomé Scola
- Service of Head and Neck Surgery, Hospital Gregorio Marañón, Madrid, Spain
| | - Isabel Chirivella
- Unit of Genetic Counsel in Cancer, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Maribel Del Olmo
- Service of Endocrinology and Nutrition, Hospital Universitario La Fe, Valencia, Spain
| | | | - Elena Navarro
- Service of Endocrinology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - María Tous
- Unidad de Gestión Clínica of Endocrinology and Nutrition, Hospital Virgen Macarena, Seville, Spain
| | - Ana Vallejo
- Unidad de Gestión Clínica of Pathology, Hospital Virgen Macarena, Seville, Spain
| | - Shobana Athimulam
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Carlos Suarez
- Institute of Oncology of Asturias, Spain
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
| | - María-Dolores Chiara
- Head and Neck Oncology Laboratory, Hospital Universitario Central de Asturias, Oviedo, Spain
- Institute of Oncology of Asturias, Spain
- Institute of Sanitary Research of Principado Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Oncología, Oviedo, Spain
| |
Collapse
|
39
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
40
|
EglN3 hydroxylase stabilizes BIM-EL linking VHL type 2C mutations to pheochromocytoma pathogenesis and chemotherapy resistance. Proc Natl Acad Sci U S A 2019; 116:16997-17006. [PMID: 31375625 DOI: 10.1073/pnas.1900748116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the discovery of the oxygen-sensitive regulation of HIFα by the von Hippel-Lindau (VHL) protein, the mechanisms underlying the complex genotype/phenotype correlations in VHL disease remain unknown. Some germline VHL mutations cause familial pheochromocytoma and encode proteins that preserve their ability to down-regulate HIFα. While type 1, 2A, and 2B VHL mutants are defective in regulating HIFα, type 2C mutants encode proteins that preserve their ability to down-regulate HIFα. Here, we identified an oxygen-sensitive function of VHL that is abolished by VHL type 2C mutations. We found that BIM-EL, a proapoptotic BH3-only protein, is hydroxylated by EglN3 and subsequently bound by VHL. VHL mutants fail to bind hydroxylated BIM-EL, regardless of whether they have the ability to bind hydroxylated HIFα or not. VHL binding inhibits BIM-EL phosphorylation by extracellular signal-related kinase (ERK) on serine 69. This causes BIM-EL to escape from proteasomal degradation, allowing it to enhance EglN3-induced apoptosis. BIM-EL was rapidly degraded in cells lacking wild-type VHL or in which EglN3 was inactivated genetically or by lack of oxygen, leading to enhanced cell survival and chemotherapy resistance. Combination therapy using ERK inhibitors, however, resensitizes VHL- and EglN3-deficient cells that are otherwise cisplatin-resistant.
Collapse
|
41
|
Sobrino V, Annese V, Navarro-Guerrero E, Platero-Luengo A, Pardal R. The carotid body: a physiologically relevant germinal niche in the adult peripheral nervous system. Cell Mol Life Sci 2019; 76:1027-1039. [PMID: 30498994 PMCID: PMC11105339 DOI: 10.1007/s00018-018-2975-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Oxygen constitutes a vital element for the survival of every single cell in multicellular aerobic organisms like mammals. A complex homeostatic oxygen-sensing system has evolved in these organisms, including detectors and effectors, to guarantee a proper supply of the element to every cell. The carotid body represents the most important peripheral arterial chemoreceptor organ in mammals and informs about hypoxemic situations to the effectors at the brainstem cardiorespiratory centers. To optimize organismal adaptation to maintained hypoxemic situations, the carotid body has evolved containing a niche of adult tissue-specific stem cells with the capacity to differentiate into both neuronal and vascular cell types in response to hypoxia. These neurogenic and angiogenic processes are finely regulated by the niche and by hypoxia itself. Our recent data on the cellular and molecular mechanisms underlying the functioning of this niche might help to comprehend a variety of different diseases coursing with carotid body failure, and might also improve our capacity to use these stem cells for the treatment of neurological disease. Herein, we review those data about the recent characterization of the carotid body niche, focusing on the study of the phenotype and behavior of multipotent stem cells within the organ, comparing them with other well-documented neural stem cells within the adult nervous system.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Elena Navarro-Guerrero
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Aida Platero-Luengo
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Laboratory 103, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Avda, Manuel Siurot, s/n., 41013, Sevilla, Spain.
| |
Collapse
|
42
|
Sobrino V, Annese V, Pardal R. Progenitor Cell Heterogeneity in the Adult Carotid Body Germinal Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:19-38. [PMID: 31016593 DOI: 10.1007/978-3-030-11096-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Somatic stem cells confer plasticity to adult tissues, permitting their maintenance, repair and adaptation to a changing environment. Adult germinal niches supporting somatic stem cells have been thoroughly characterized throughout the organism, including in central and peripheral nervous systems. Stem cells do not reside alone within their niches, but they are rather accompanied by multiple progenitor cells that not only contribute to the progression of stem cell lineage but also regulate their behavior. Understanding the mechanisms underlying these interactions within the niche is crucial to comprehend associated pathologies and to use stem cells in cell therapy. We have described a stunning germinal niche in the adult peripheral nervous system: the carotid body. This is a chemoreceptor organ with a crucial function during physiological adaptation to hypoxia. We have shown the presence of multipotent stem cells within this niche, escorted by multiple restricted progenitor cell types that contribute to niche physiology and hence organismal adaptation to the lack of oxygen. Herein, we discuss new and existing data about the nature of all these stem and progenitor cell types present in the carotid body germinal niche, discussing their role in physiology and their clinical relevance for the treatment of diverse pathologies.
Collapse
Affiliation(s)
- Verónica Sobrino
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Valentina Annese
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|