1
|
Kalra A, Kang JK, Wilcox C, Shou BL, Brown P, Rycus P, Anders MM, Zaaqoq AM, Brodie D, Whitman GJR, Cho SM. Pulse Pressure and Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation: An Extracorporeal Life Support Organization Registry Analysis. ASAIO J 2025; 71:99-108. [PMID: 39178166 PMCID: PMC11781983 DOI: 10.1097/mat.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Low pulse pressure (PP) in venoarterial-extracorporeal membrane oxygenation (VA-ECMO) is a marker of cardiac dysfunction and has been associated with acute brain injury (ABI) as continuous-flow centrifugal pump may lead to endothelial dysregulation. We retrospectively analyzed adults (≥18 years) receiving "peripheral" VA-ECMO for cardiogenic shock in the Extracorporeal Life Support Organization Registry (January 2018-July 2023). Acute brain injury (our primary outcome) included central nervous system (CNS) ischemia, intracranial hemorrhage, brain death, and seizures. Multivariable logistic regressions were performed to examine whether PP ≤10 mm Hg was associated with ABI. Of 9,807 peripheral VA-ECMO patients (median age = 57.4 years, 67% = male), 8,294 (85%) had PP >10 mm Hg versus 1,513 (15%) had PP ≤10 mm Hg. Patients with PP ≤10 mm Hg experienced ABI more frequently versus PP >10 mm Hg (15% versus 11%, p < 0.001). After adjustment, PP ≤10 mm Hg was independently associated with ABI (adjusted odds ratio [aOR] = 1.25, 95% confidence interval [CI] = 1.06-1.48, p = 0.01). Central nervous system ischemia and brain death were more common in patients with PP ≤10 versus PP >10 mm Hg (8% versus 6%, p = 0.008; 3% versus 1%, p < 0.001). Pulse pressure ≤10 mm Hg was associated with CNS ischemia (aOR = 1.26, 95% CI = 1.02-1.56, p = 0.03) but not intracranial hemorrhage (aOR = 1.14, 95% CI = 0.85-1.54, p = 0.38). Early low PP (≤10 mm Hg) at 24 hours of ECMO support was associated with ABI, particularly CNS ischemia, in peripheral VA-ECMO patients.
Collapse
Affiliation(s)
- Andrew Kalra
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jin Kook Kang
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Christopher Wilcox
- Department of Critical Care, Mercy Hospital of Buffalo, Buffalo, NY, USA
| | - Benjamin L. Shou
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Patricia Brown
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Peter Rycus
- Extracorporeal Life Support Organization, Ann Arbor, Michigan, USA
| | - Marc M. Anders
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Akram M. Zaaqoq
- Department of Anesthesiology, Division of Critical Care, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Brodie
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Glenn J. R. Whitman
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sung-Min Cho
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
- Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
2
|
Jeyakumar S, Nguyen H, Robson D, Olsen N, Schnegg B, Macdonald P, Fraser CL, Liew G, Jiang J, Hayward C, Muthiah K. Retinal microvascular remodeling associates with adverse events in continuous-flow left ventricular assist device-supported patients. J Heart Lung Transplant 2024; 43:1975-1984. [PMID: 39089605 DOI: 10.1016/j.healun.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Continuous-flow left ventricular assist device (cfLVAD) use is effective in supporting patients with end-stage heart failure (ESHF). Reduced flow pulsatility within the systemic circulation in cfLVAD-supported patients may lead to alterations within the microcirculation. Temporal changes in microvasculature in relation to adverse events in cfLVAD-supported patients have not been studied. We aimed to profile changes within retinal microvasculature and its association with adverse events. METHODS Retinal photography was performed using Topcon TRC-NW8 nonmydriatic fundus camera in cfLVAD-supported patients and ESHF control patients. Specific retinal measurements were evaluated using a validated semiautomated program. Demographic and adverse event data were documented. RESULTS Forty-eight patients were studied (n = 29 cfLVAD, n = 19 ESHF). There were significant trends in retinal arteriolar caliber (B = -0.53 µm, 95% confidence interval [CI]: -0.96 to -0.10, p = 0.016) and retinal fractal dimension parameters (B = 0.014, 95% CI: 0.001-0.002, p = 0.016) in linear mixed model regressions. Among cfLVAD patients, there was a significant association between the incidence of gastrointestinal bleeding and stepwise increases in retinal arteriolar-venular caliber ratio (hazard ratio: 3.03, 95% CI: 2.06-4.45, p = 0.005), a measure of arteriolar narrowing. CONCLUSIONS We have observed for the first time that alterations in retinal microvasculature in cfLVAD-supported patients may be associated with gastrointestinal bleeding. While understanding these temporal changes may predict future adverse events in cfLVAD-supported patients, further multicenter studies are required to confirm the associations observed.
Collapse
Affiliation(s)
| | - Helen Nguyen
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Desiree Robson
- Department of Cardiology, Heart Failure and Transplant Unit, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Nick Olsen
- University of New South Wales Sydney, Sydney, Australia
| | - Bruno Schnegg
- Department of Cardiology, Heart Failure and Transplant Unit, St. Vincent's Hospital Sydney, Sydney, Australia
| | - Peter Macdonald
- University of New South Wales Sydney, Sydney, Australia; Department of Cardiology, Heart Failure and Transplant Unit, St. Vincent's Hospital Sydney, Sydney, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Clare L Fraser
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Gerald Liew
- University of New South Wales Sydney, Sydney, Australia; Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Jacky Jiang
- University of New South Wales Sydney, Sydney, Australia
| | - Christopher Hayward
- University of New South Wales Sydney, Sydney, Australia; Department of Cardiology, Heart Failure and Transplant Unit, St. Vincent's Hospital Sydney, Sydney, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Kavitha Muthiah
- University of New South Wales Sydney, Sydney, Australia; Department of Cardiology, Heart Failure and Transplant Unit, St. Vincent's Hospital Sydney, Sydney, Australia; Victor Chang Cardiac Research Institute, Sydney, Australia.
| |
Collapse
|
3
|
Parodi F, Severi I, Flora G, Cioni S, Vallone IM, Betti V, Martini G, Tassi R. Concurrent subarachnoid haemorrhage and internal carotid artery dissection: a transcranial colour-coded sonography diagnosis. J Ultrasound 2023; 26:771-776. [PMID: 35482247 PMCID: PMC10632309 DOI: 10.1007/s40477-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
We report the case of a young woman affected by an aneurysmal subarachnoid haemorrhage (SAH) and numerous anatomic abnormalities. A Transcranial Colour-Coded Duplex Sonography, performed with the aim of monitoring the vasospasm, showed a non-pulsatile flow with loss of sharp systolic peak and lowering of mean flow velocities in the right extracranial Internal Carotid Artery (ICA) and all its intra-cranial branches. This event suggested a possible concomitant acute right ICA sub-occlusion with a lack of collateral circulation. This type of flow is typically found in systemic and brain arteries of patients undergoing to venous-arterial extracorporeal membrane oxygenation or to left ventricular assist devices. The absence of an adequate cerebral collateral circulation might be the explanation for this type of atypical flow. Aneurysms and arterial dissections contribute to SAH and ischemic stroke events, leading to long-term physical and cognitive disability. In our case, the prompt neurosonological diagnosis leaded to patient's good outcome.
Collapse
Affiliation(s)
- Francesca Parodi
- Stroke Unit, Department of Emergency and Transplantation, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Viale Mario Bracci, 16, 53100, Siena, Italy
| | - Ilaria Severi
- Stroke Unit, Department of Emergency and Transplantation, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Viale Mario Bracci, 16, 53100, Siena, Italy
| | - Giammarco Flora
- Unit of Interventional Neuroradiology, Department of Neurology and Human Movement Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Siena, Italy
| | - Samuele Cioni
- Unit of Interventional Neuroradiology, Department of Neurology and Human Movement Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Siena, Italy
| | - Ignazio Maria Vallone
- Unit of Interventional Neuroradiology, Department of Neurology and Human Movement Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Siena, Italy
| | - Veronica Betti
- Anesthesia and Neuro-ICU, Department of Neurological and Sensorineural, Azienda Opsedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Siena, Italy
| | - Giuseppe Martini
- Stroke Unit, Department of Emergency and Transplantation, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Viale Mario Bracci, 16, 53100, Siena, Italy
| | - Rossana Tassi
- Stroke Unit, Department of Emergency and Transplantation, Azienda Ospedaliera Universitaria Senese, Policlinico "Santa Maria Alle Scotte", Viale Mario Bracci, 16, 53100, Siena, Italy.
| |
Collapse
|
4
|
Kalra A, Kang JK, Wilcox C, Brown P, Rycus P, Anders MM, Zaaqoq AM, Brodie D, Whitman GJR, Cho SM. Impact of Pulse Pressure on Acute Brain Injury in Venoarterial ECMO Patients with Cardiogenic Shock During the First 24 Hours of ECMO Cannulation: Analysis of the Extracorporeal Life Support Organization Registry. RESEARCH SQUARE 2023:rs.3.rs-3646443. [PMID: 38045281 PMCID: PMC10690326 DOI: 10.21203/rs.3.rs-3646443/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Low pulse pressure (PP) in venoarterial-extracorporeal membrane oxygenation (VA-ECMO) is a marker of cardiac dysfunction and has been associated with acute brain injury (ABI) as continuous-flow centrifugal pump may lead to endothelial dysregulation. Methods We retrospectively analyzed adults (≥18 years) on "peripheral" VA-ECMO support for cardiogenic shock in the Extracorporeal Life Support Organization Registry (1/2018-7/2023). Cubic splines were used to establish a threshold (PP≤10 mmHg at 24 hours of ECMO support) for "early low" PP. ABI included central nervous system (CNS) ischemia, intracranial hemorrhage, brain death, and seizures. Multivariable logistic regressions were performed to examine whether PP≤10 mmHg was associated with ABI. Covariates included age, sex, body mass index, pre-ECMO variables (temporary mechanical support, vasopressors, cardiac arrest), on-ECMO variables (pH, PaO2, PaCO2), and on-ECMO complications (hemolysis, arrhythmia, renal replacement therapy). Results Of 9,807 peripheral VA-ECMO patients (median age=57.4 years, 67% male), 8,294 (85%) had PP>10 mmHg vs. 1,513 (15%) had PP≤10 mmHg. Patients with PP≤10 mmHg experienced ABI more frequently vs. PP>10 mmHg (15% vs. 11%, p<0.001). After adjustment, PP≤10 mmHg was independently associated with ABI (adjusted odds ratio [aOR]=1.25, 95% confidence interval [CI]=1.06-1.48, p=0.01). CNS ischemia and brain death were more common in patients with PP≤10 mmHg vs. PP>10 mmHg (8% vs. 6%, p=0.008; 3% vs. 1%, p<0.001). PP≤10 mmHg was associated with CNS ischemia (aOR=1.26, 95%CI=1.02-1.56, p=0.03) but not intracranial hemorrhage (aOR=1.14, 95%CI=0.85-1.54, p=0.38). Conclusions Early low PP (≤10 mmHg) at 24 hours of ECMO support was associated with ABI, particularly CNS ischemia, in peripheral VA-ECMO patients.
Collapse
|
5
|
Park MS, Kim EJ. A Correlative Relationship Between Heart Failure and Cognitive Impairment: A Narrative Review. J Korean Med Sci 2023; 38:e334. [PMID: 37821090 PMCID: PMC10562184 DOI: 10.3346/jkms.2023.38.e334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Heart failure (HF) is a chronic condition affecting millions of people worldwide. While the cardinal manifestations of HF are related to the cardiovascular system, it has become progressively evident that mild cognitive impairment (MCI) is also a significant complication of the disease. In fact, a significant number of patients with HF may experience MCI, which can manifest as deficits in attention, memory, executive function, and processing speed. The mechanisms responsible for cognitive dysfunction in HF are intricate and multifactorial. Possible factors contributing to this condition include decreased cerebral blood flow, thrombogenicity associated with HF, systemic inflammatory conditions, and proteotoxicity. MCI in HF has significant clinical implications, as it is linked to poorer quality of life, increased morbidity and mortality, and higher healthcare costs. Additionally, MCI can disrupt self-care behaviors, adherence to medication, and decision-making abilities, all of which are crucial for effectively managing HF. However, there is currently no gold standard diagnostic tool and follow-up strategy for MCI in HF patients. There is limited knowledge on the prevention and treatment of MCI. In conclusion, MCI is a common and clinically important complication of HF. Considering the substantial influence of MCI on patient outcomes, it is imperative for healthcare providers to be cognizant of this issue and integrate cognitive screening and management strategies into the care of HF patients.
Collapse
Affiliation(s)
- Myung Soo Park
- Department of Medicine, Korea University Graduate School, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Eung Ju Kim
- Division of Cardiology, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
7
|
Kannojiya V, Das AK, Das PK. Effect of left ventricular assist device on the hemodynamics of a patient-specific left heart. Med Biol Eng Comput 2022; 60:1705-1721. [DOI: 10.1007/s11517-022-02572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
8
|
Yang M, Sun D, Wang Y, Yan M, Zheng J, Ren J. Cognitive Impairment in Heart Failure: Landscape, Challenges, and Future Directions. Front Cardiovasc Med 2022; 8:831734. [PMID: 35198608 PMCID: PMC8858826 DOI: 10.3389/fcvm.2021.831734] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is a major global healthcare problem accounting for substantial deterioration of prognosis. As a complex clinical syndrome, HF often coexists with multi-comorbidities of which cognitive impairment (CI) is particularly important. CI is increasing in prevalence among patients with HF and is present in around 40%, even up to 60%, of elderly patients with HF. As a potent and independent prognostic factor, CI significantly increases the hospitalization and mortality and decreases quality of life in patients with HF. There has been a growing awareness of the complex bidirectional interaction between HF and CI as it shares a number of common pathophysiological pathways including reduced cerebral blood flow, inflammation, and neurohumoral activations. Research that focus on the precise mechanism for CI in HF is still ever insufficient. As the tremendous adverse consequences of CI in HF, effective early diagnosis of CI in HF and interventions for these patients may halt disease progression and improve prognosis. The current clinical guidelines in HF have begun to emphasize the importance of CI. However, nearly half of CI in HF is underdiagnosed, and few recommendations are available to guide clinicians about how to approach CI in patients with HF. This review aims to synthesize knowledge about the link between HF and cognitive dysfunction, issues pertaining to screening, diagnosis and management of CI in patients with HF, and emerging therapies for prevention. Based on data from current studies, critical gaps in knowledge of CI in HF are identified, and future research directions to guide the field forward are proposed.
Collapse
Affiliation(s)
- Mengxi Yang
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Di Sun
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Mengwen Yan
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingang Zheng
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jingyi Ren
- Heart Failure Center, China-Japan Friendship Hospital, Beijing, China
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
- Vascular Health Research Center of Peking University Health Science Center, Beijing, China
- *Correspondence: Jingyi Ren
| |
Collapse
|
9
|
Konarik M, Sramko M, Dorazilova Z, Blah M, Netuka I, Ivak P, Maly J, Szarszoi O. Effects of Acute Pump Speed Changes on Cerebral Hemodynamics in Patients With an Implantable Continuous-Flow Left Ventricular Assist Devices. Physiol Res 2021; 70:831-839. [PMID: 34717062 DOI: 10.33549/physiolres.934738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mechanical circulatory support (MCS) with an implantable left ventricular assist device (LVAD) is an established therapeutic option for advanced heart failure. Most of the currently used LVADs generate a continuous stream of blood that decreases arterial pulse pressure. This study investigated whether a change of the pulse pressure during different pump speed settings would affect cerebral autoregulation and thereby affect cerebral blood flow (CBF). The study included 21 haemodynamically stable outpatients with a continuous-flow LVAD (HeartMate II, Abbott, USA) implanted a median of 6 months before the study (interquartile range 3 to 14 months). Arterial blood pressure (measured by finger plethysmography) was recorded simultaneously with CBF (measured by transcranial Doppler ultrasound) during baseline pump speed (8900 rpm [IQR 8800; 9200]) and during minimum and maximum tolerated pump speeds (8000 rpm [IQR 8000; 8200] and 9800 rpm [IQR 9800; 10 000]). An increase in LVAD pump speed by 800 rpm [IQR 800; 1000] from the baseline lead to a significant decrease in arterial pulse pressure and cerebral blood flow pulsatility (relative change -24% and -32%, both p < 0.01), but it did not affect mean arterial pressure and mean CBF velocity (relative change 1% and -1.7%, p = 0.1 and 0.7). In stable patients with a continuous-flow LVAD, changes of pump speed settings within a clinically used range did not impair static cerebral autoregulation and cerebral blood flow.
Collapse
Affiliation(s)
- M Konarik
- Dept. of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ovsenik A, Podbregar M, Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav 2021; 11:e02176. [PMID: 33991075 PMCID: PMC8213942 DOI: 10.1002/brb3.2176] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Cognitive decline is an important contributor to disability in patients with chronic heart failure, affecting 25%-50% of patients. The aim of this review is to stress the importance of understanding pathophysiological mechanisms of heart failure involved in cognitive decline. METHODS An extensive PubMed search was conducted for the literature on the basic mechanisms of cerebral blood flow regulation, the effect of cardiac dysfunction on cerebral blood flow, and possible mechanisms underlying the association between cardiac dysfunction and cognitive decline. RESULTS Published literature supports the thesis that cardiac dysfunction leads to cerebral blood flow impairment and predisposes to cognitive decline. One of the postulated mechanisms underlying cognitive decline in chronic heart failure is chronic regional hypoperfusion of critical brain areas. Cognitive function may be further compromised by microvascular damage due to cardiovascular risk factors. Furthermore, it is implied that cerebral blood flow assessment could enable early recognition of patients at risk and help guide appropriate therapeutic strategies. CONCLUSION Interdisciplinary knowledge in the fields of neurology and cardiology is essential to clarify heart and brain interconnections in chronic heart failure. Understanding and identifying the basic neuropathophysiological changes in chronic heart failure could help with developing methods for early recognition of patients at risk, followed by institution of therapeutic actions to prevent or decrease cognitive decline.
Collapse
Affiliation(s)
- Ana Ovsenik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matej Podbregar
- Faculty of Medicine, Department for Internal Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Intensive care, General Hospital Celje, Celje, Slovenia
| | - Andrej Fabjan
- Faculty of Medicine, Institute for Physiology, University of Ljubljana, Ljubljana, Slovenia.,Department of Vascular Neurology and Intensive Care, Neurological Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Stöhr EJ, Ji R, Akiyama K, Mondellini G, Braghieri L, Pinsino A, Cockcroft JR, Yuzefpolskaya M, Amlani A, Topkara VK, Takayama H, Naka Y, Uriel N, Takeda K, Colombo PC, McDonnell BJ, Willey JZ. Cerebral vasoreactivity in HeartMate 3 patients. J Heart Lung Transplant 2021; 40:786-793. [PMID: 34134913 DOI: 10.1016/j.healun.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND While rates of stroke have declined with the HeartMate3 (HM3) continuous- flow (CF) left ventricular assist device (LVAD), the impact of non-pulsatile flow and artificial pulse physiology on cerebrovascular function is not known. We hypothesized that improved hemodynamics and artificial pulse physiology of HM3 patients would augment cerebrovascular metabolic reactivity (CVR) compared with HeartMate II (HMII) CF-LVAD and heart failure (HF) patients. METHODS Mean, peak systolic and diastolic flow velocities (MFV, PSV, MinFV, respectively) and cerebral pulsatility index were determined in the middle cerebral artery (MCA) before and after a 30 sec breath-hold challenge in 90 participants: 24 healthy controls; 30 HF, 15 HMII, and 21 HM3 patients. RESULTS In HM3 patients, breath-holding increased MFV (Δ8 ± 10 cm/sec, p < .0001 vs baseline) to levels similar to HF patients (Δ9 ± 8 cm/sec, p > .05), higher than HMII patients (Δ2 ± 8 cm/sec, p < .01) but lower than healthy controls (Δ13 ± 7 cm/sec, p < .05). CF-LVAD altered the proportion of systolic and diastolic flow responses as reflected by a differential cerebral pulsatility index (p = .03). Baseline MFV was not related to CVR (r2 = 0.0008, p = .81). However, CF-LVAD pump speed was strongly inversely associated with CVR in HM II (r2 = 0.51, p = .003) but not HM3 patients (r2 = 0.01, p = .65). CONCLUSIONS Compared with HMII, HM3 patients have a significantly improved CVR. However, CVR remains lower in HM3 and HF patients than in healthy controls, therefore suggesting that changes in cerebral hemodynamics are not reversed by CF-LVAD therapy. Further research on the mechanisms and the long-term impact of altered cerebral hemodynamics in this unique patient population are warranted.
Collapse
Affiliation(s)
- Eric J Stöhr
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom; Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York.
| | - Ruiping Ji
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Koichi Akiyama
- Department of Medicine, Division of Cardiac, Vascular & Thoracic Surgery, Columbia University Irving Medical Center, New York City, New York; Department of Anesthesia, Yodogawa Christian Hospital, Osaka City, Osaka, Japan
| | - Giulio Mondellini
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Lorenzo Braghieri
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Alberto Pinsino
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - John R Cockcroft
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom; Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Melana Yuzefpolskaya
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Amrin Amlani
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Veli K Topkara
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Hiroo Takayama
- Department of Medicine, Division of Cardiac, Vascular & Thoracic Surgery, Columbia University Irving Medical Center, New York City, New York
| | - Yoshifumi Naka
- Department of Medicine, Division of Cardiac, Vascular & Thoracic Surgery, Columbia University Irving Medical Center, New York City, New York
| | - Nir Uriel
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Koji Takeda
- Department of Medicine, Division of Cardiac, Vascular & Thoracic Surgery, Columbia University Irving Medical Center, New York City, New York
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, New York
| | - Barry J McDonnell
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Joshua Z Willey
- Department of Neurology, Columbia University Irving Medical Center, New York City, New York
| |
Collapse
|
12
|
Increased Aortic Stiffness Is Associated With Higher Rates of Stroke, Gastrointestinal Bleeding and Pump Thrombosis in Patients With a Continuous Flow Left Ventricular Assist Device. J Card Fail 2021; 27:696-699. [PMID: 33639317 DOI: 10.1016/j.cardfail.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the general population, increased aortic stiffness is associated with an increased risk of cardiovascular events. Previous studies have demonstrated an increase in aortic stiffness in patients with a continuous flow left ventricular assist device (CF-LVAD). However, the association between aortic stiffness and common adverse events is unknown. METHODS AND RESULTS Forty patients with a HeartMate II (HMII) (51 $ 11 years; 20% female; 25% ischemic) implanted between January 2011 and September 2017 were included. Two-dimensional transthoracic echocardiograms of the ascending aorta, obtained before HMII placement and early after heart transplant, were analyzed to calculate the aortic stiffness index (AO-SI). The study cohort was divided into patients who had an increased vs decreased AO-SI after LVAD support. A composite outcome of gastrointestinal bleeding, stroke, and pump thrombosis was defined as the primary end point and compared between the groups. While median AO-SI increased significantly after HMII support (AO-SI 4.4-6.5, P = .012), 16 patients had a lower AO-SI. Patients with increased (n = 24) AO-SI had a significantly higher rate of the composite end point (58% vs 12%, odds ratio 9.8, P < .01). Similarly, those with increased AO-SI tended to be on LVAD support for a longer duration, had higher LVAD speed and reduced use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. CONCLUSIONS Increased aortic stiffness in patients with a HMII is associated with a significantly higher rates of adverse events. Further studies are warranted to determine the causality between aortic stiffness and adverse events, as well as the effect of neurohormonal modulation on the conduit vasculature in patients with a CF-LVAD.
Collapse
|
13
|
Lescroart M, Hébert JL, Vincent F, Nguyen LS. Pulsatility in ventricular assistance devices: A translational review focused on applied haemodynamics. Arch Cardiovasc Dis 2020; 113:461-472. [DOI: 10.1016/j.acvd.2020.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
|
14
|
Stöhr EJ, Cornwell W, Kanwar M, Cockcroft JR, McDonnell BJ. Bionic women and men - Part 1: Cardiovascular lessons from heart failure patients implanted with left ventricular assist devices. Exp Physiol 2020; 105:749-754. [PMID: 32104940 PMCID: PMC9089457 DOI: 10.1113/ep088323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the topic of this review? Patients with advanced heart failure who are implanted with left ventricular assist devices (LVADs) present an opportunity to understand the human circulation under extreme conditions. What advances does it highlight? LVAD patients have a unique circulation that is characterized by a reduced or even absent arterial pulse. The remarkable survival of these patients is accompanied by circulatory complications, including stroke, gastrointestinal bleeding and right-heart failure. Understanding the mechanisms related to the complications in LVAD patients will help the patients and also advance our fundamental understanding of the human circulation in general. ABSTRACT Some humans with chronic, advanced heart failure are surgically implanted with a left ventricular assist device (LVAD). Because the LVAD produces a continuous flow, a palpable pulse is often absent in these patients. This allows for a unique investigation of the human circulation and has created a controversy around the 'need' for a pulse. The medical debate has also generated a more generic, fundamental discussion into what is 'normal' arterial physiology and health. The comprehensive study and understanding of the arterial responses to drastically altered haemodynamics due to continuous-flow LVADs, at rest and during activity, presents an opportunity to significantly increase our current understanding of the fundamental components of arterial regulation (flow, blood pressure, sympathetic activity, endothelial function, pulsatility) in a way that could never have been studied previously. In a series of four articles, we summarize the talks presented at the symposium entitled 'Bionic women and men - Physiology lessons from implantable cardiac devices' presented at the 2019 Annual Meeting of The Physiological Society in Aberdeen, UK. The articles highlight the novel questions generated by physiological phenomena observed in LVAD patients and propose future areas of interest within the field of cardiovascular physiology.
Collapse
Affiliation(s)
- Eric J. Stöhr
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, NY, USA
| | - William Cornwell
- Department of Medicine-Cardiology. University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manreet Kanwar
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - John R. Cockcroft
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
| | - Barry J. McDonnell
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, CF5 2YB, UK
| |
Collapse
|
15
|
McDonnell BJ, Rosenblum H, Cornwell WK, Kanwar M, Cockcroft JR, Stöhr EJ. Bionic women and men - Part 2: Arterial stiffness in heart failure patients implanted with left ventricular assist devices. Exp Physiol 2020; 105:755-758. [PMID: 32144954 DOI: 10.1113/ep088326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/06/2020] [Indexed: 02/02/2024]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses how implantation of continuous flow left ventricular assist devices impact arterial stiffness and outcome. What advances does it highlight? Not all patients implanted with continuous flow left ventricular assist devices show an increase in arterial stiffness. However, in those patients where arterial stiffness increases, levels of composite outcome (stroke, gastrointestinal bleeding, pump thrombosis and death) is significantly higher than those who's arterial stiffness does not increase. ABSTRACT In parallel with the major advances in clinical care, technological advancements and implantation of mechanical circulatory support in patients with severe heart failure have resulted in these patients living longer. However, these patients are still at increased risk of stroke and gastrointestinal bleeding. The unique continuous flow produced by various left ventricular assist devices (LVADs) has been suggested as one potential reason for this increased risk of stroke and gastrointestinal bleeding. Furthermore, these continuous-flow (CF) devices challenge our understanding of circulatory blood pressure and flow regulation in relationship to organ health. In healthy pulsatile and dynamic systems, arterial stiffness is a major independent risk factor for stroke. However, to date, there are limited data regarding the impact of CF-LVAD therapy on arterial stiffness. The purpose of this report is to discuss the variable impact of CF-LVAD therapy on arterial stiffness and attempt to highlight some potential mechanisms linking these associations in this unique population.
Collapse
Affiliation(s)
- Barry J McDonnell
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Hannah Rosenblum
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, NY, USA
| | - William K Cornwell
- Department of Medicine-Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manreet Kanwar
- Cardiovascular Institute at Allegheny Health Network, Pittsburgh, PA, USA
| | - John R Cockcroft
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Eric J Stöhr
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York City, NY, USA
| |
Collapse
|
16
|
Stöhr EJ, McDonnell BJ. The unique physiology of left ventricular assist device patients – keep your finger on the pulse! Exp Physiol 2020; 105:747-748. [DOI: 10.1113/ep088602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Eric J. Stöhr
- School of Sport & Health SciencesCardiff Metropolitan University Cardiff CF5 2YB UK
- Department of MedicineDivision of CardiologyColumbia University Irving Medical Center New York NY USA
| | - Barry J. McDonnell
- School of Sport & Health SciencesCardiff Metropolitan University Cardiff CF5 2YB UK
| |
Collapse
|
17
|
Frontera JA. This is your brain on LVAD. J Heart Lung Transplant 2020; 39:228-230. [DOI: 10.1016/j.healun.2020.01.1337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/11/2023] Open
|
18
|
Veraar CM, Rinösl H, Kühn K, Skhirtladze-Dworschak K, Felli A, Mouhieddine M, Menger J, Pataraia E, Ankersmit HJ, Dworschak M. Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:426. [PMID: 31888721 PMCID: PMC6937980 DOI: 10.1186/s13054-019-2671-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Systemic blood flow in patients on extracorporeal assist devices is frequently not or only minimally pulsatile. Loss of pulsatile brain perfusion, however, has been implicated in neurological complications. Furthermore, the adverse effects of absent pulsatility on the cerebral microcirculation are modulated similarly as CO2 vasoreactivity in resistance vessels. During support with an extracorporeal assist device swings in arterial carbon dioxide partial pressures (PaCO2) that determine cerebral oxygen delivery are not uncommon-especially when CO2 is eliminated by the respirator as well as via the gas exchanger of an extracorporeal membrane oxygenation machine. We, therefore, investigated whether non-pulsatile flow affects cerebrovascular CO2 reactivity (CVR) and regional brain oxygenation (rSO2). METHODS In this prospective, single-centre case-control trial, we studied 32 patients undergoing elective cardiac surgery. Blood flow velocity in the middle cerebral artery (MCAv) as well as rSO2 was determined during step changes of PaCO2 between 30, 40, and 50 mmHg. Measurements were conducted on cardiopulmonary bypass during non-pulsatile and postoperatively under pulsatile blood flow at comparable test conditions. Corresponding changes of CVR and concomitant rSO2 alterations were determined for each flow mode. Each patient served as her own control. RESULTS MCAv was generally lower during hypocapnia than during normocapnia and hypercapnia (p < 0.0001). However, the MCAv/PaCO2 slope during non-pulsatile flow was 14.4 cm/s/mmHg [CI 11.8-16.9] and 10.4 cm/s/mmHg [CI 7.9-13.0] after return of pulsatility (p = 0.03). During hypocapnia, non-pulsatile CVR (4.3 ± 1.7%/mmHg) was higher than pulsatile CVR (3.1 ± 1.3%/mmHg, p = 0.01). Independent of the flow mode, we observed a decline in rSO2 during hypocapnia and a corresponding rise during hypercapnia (p < 0.0001). However, the relationship between ΔrSO2 and ΔMCAv was less pronounced during non-pulsatile flow. CONCLUSIONS Non-pulsatile perfusion is associated with enhanced cerebrovascular CVR resulting in greater relative decreases of cerebral blood flow during hypocapnia. Heterogenic microvascular perfusion may account for the attenuated ΔrSO2/ΔMCAv slope. Potential hazards related to this altered regulation of cerebral perfusion still need to be assessed. TRIAL REGISTRATION The study was retrospectively registered on October 30, 2018, with Clinical Trial.gov (NCT03732651).
Collapse
Affiliation(s)
- Cecilia Maria Veraar
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Harald Rinösl
- Department of Anaesthesia and Intensive Care Medicine, LKH Feldkirch, Feldkirch, Austria
| | - Karina Kühn
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Klinikum Traunstein, Traunstein, Germany
| | - Keso Skhirtladze-Dworschak
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alessia Felli
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Mohamed Mouhieddine
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Johannes Menger
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ekaterina Pataraia
- Department of Neurology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Martin Dworschak
- Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care Medicine, Department of Anaesthesia, Intensive Care Medicine, and Pain Medicine, Vienna General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Smith KJ, Moreno-Suarez I, Scheer A, Dembo L, Naylor LH, Maiorana AJ, Green DJ. Cerebral blood flow responses to exercise are enhanced in left ventricular assist device patients after an exercise rehabilitation program. J Appl Physiol (1985) 2019; 128:108-116. [PMID: 31774355 DOI: 10.1152/japplphysiol.00604.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cerebral blood flow during exercise is impaired in patients with heart failure implanted with left ventricular assist devices (LVADs). Our aim was to determine whether a 3-mo exercise training program could mitigate cerebrovascular dysfunction. Internal carotid artery (ICA) blood flow and intracranial middle (MCAv) and posterior cerebral (PCAv) artery velocities were measured continuously using Doppler ultrasound, alongside cardiorespiratory measures at rest and in response to an incremental cycle ergometer exercise protocol in 12 LVAD participants (5 female, 53.6 ± 11.8 yr; 84.2 ± 15.7 kg; 1.73 ± 0.08) pre- (PreTR) and post- (PostTR) completion of a 3-mo supervised exercise rehabilitation program. At rest, only PCAv was different PostTR (38.1 ± 10.4 cm/s) compared with PreTR (43.0 ± 10.8 cm/s; P < 0.05). PreTR, the reduction in PCAv observed from rest to exercise (5.2 ± 1.8%) was mitigated PostTR (P < 0.001). Similarly, exercise training enhanced ICA flow during submaximal exercise (~8.6 ± 13.7%), resulting in increased ICA flow PostTR compared with a reduced flow PreTR (P < 0.001). Although both end-tidal partial pressure of carbon dioxide and mean arterial pressure responses during incremental exercise were greater PostTR than PreTR, only the improved PETCO2 was related to the improved ICA flow (R2 = 0.14; P < 0.05). Our findings suggest that short-term exercise training improves cerebrovascular function during exercise in patients with LVADs. This finding should encourage future studies investigating long-term exercise training and cerebral and peripheral vascular adaptation.NEW & NOTEWORTHY Left ventricular assist devices, now used as destination therapy in end-stage heart failure, enable patients to undertake rehabilitative exercise training. We show, for the first time in humans, that training improves cerebrovascular function during exercise in patients with left ventricular assist devices. This finding may have implications for cerebrovascular health in patients with heart failure.
Collapse
Affiliation(s)
- Kurt J Smith
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.,School of Kinesiology, Lakehead University, Thunder Bay, Canada
| | | | - Anna Scheer
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, Australia
| | - Lawrence Dembo
- Allied Health Department and Advanced Heart Failure and Cardiac Transplant Service, Fiona Stanley Hospital, Murdoch, Australia
| | - Louise H Naylor
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.,Allied Health Department and Advanced Heart Failure and Cardiac Transplant Service, Fiona Stanley Hospital, Murdoch, Australia
| | - Andrew J Maiorana
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, Australia.,Allied Health Department and Advanced Heart Failure and Cardiac Transplant Service, Fiona Stanley Hospital, Murdoch, Australia
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Cornwell WK, Tarumi T, Lawley J, Ambardekar AV. Rebuttal from William K. Cornwell III, Takashi Tarumi, Justin Lawley and Amrut V. Ambardekar. J Physiol 2018; 597:363-364. [PMID: 30560588 DOI: 10.1113/jp277244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- William K Cornwell
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Takashi Tarumi
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Justin Lawley
- Department of Sports Science, Division of Physiology, University of Innsbruck, Innsbruck, Austria
| | - Amrut V Ambardekar
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|