1
|
Fernandes IA, Stavres J, Hamaoka T, Ojikutu QA, Sabino-Carvalho JL, Vianna LC, Luck JC, Blaha C, Cauffman AE, Dalton PC, Herr MD, Ruiz-Velasco V, Carr ZJ, Janicki PK, Cui J. Does a single oral administration of amiloride affect spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults? J Neurophysiol 2024; 132:922-928. [PMID: 39110514 DOI: 10.1152/jn.00264.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: 1) after 3 h of oral administration of placebo (PLA, 10 mg of methylcellulose within a gelatin capsule) and 2) after 3 h of oral administration of AMD (10 mg). Visits were separated for at least 48 h. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared with PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.NEW & NOTEWORTHY Preclinical models indicate that amiloride (AMD), a nonselective antagonist of the acid-sensing ion channels (ASICs), impairs baroreflex sensitivity and perturbs blood pressure regulation. We translated these findings into humans, investigating the impact of acute oral ingestion of AMD on blood pressure variability and spontaneous cardiac and sympathetic baroreflex sensitivity in healthy young humans. In contrast to preclinical evidence, AMD does not impair spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults.
Collapse
Affiliation(s)
- Igor A Fernandes
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, Mississippi, United States
| | - Takuto Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Qudus A Ojikutu
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Federal District, Brazil
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Aimee E Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Paul C Dalton
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Michael D Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Zyad J Carr
- Department of Anesthesiology, Yale School of Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Piotr K Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States
| |
Collapse
|
2
|
Klassen SA, Limberg JK, Harvey RE, Wiggins CC, Iannarelli NJ, Senefeld JW, Nicholson WT, Curry TB, Joyner MJ, Shoemaker JK, Baker SE. Central α 2-adrenergic mechanisms regulate human sympathetic neuronal discharge strategies. J Physiol 2024; 602:4053-4071. [PMID: 39058701 PMCID: PMC11326960 DOI: 10.1113/jp286450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.
Collapse
Affiliation(s)
- Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jacqueline K. Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Ronée E. Harvey
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C. Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | | | - Jonathon W. Senefeld
- Department of Health and Kinesiology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy B. Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J. Kevin Shoemaker
- School of Kinesiology, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Thrall SF, D'Souza AW, Abrahamson-Durant B, Vianna LC, Limberg JK, Macefield VG, Foster GE. A comparison of wavelet-based action potential detection from the NeuroAmp and the Iowa Bioengineering Nerve Traffic Analysis system. J Neurophysiol 2024; 131:1168-1174. [PMID: 38629146 PMCID: PMC11383387 DOI: 10.1152/jn.00448.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Microneurographic recordings of muscle sympathetic nerve activity (MSNA) reflect postganglionic sympathetic axonal activity directed toward the skeletal muscle vasculature. Recordings are typically evaluated for spontaneous bursts of MSNA; however, the filtering and integration of raw neurograms to obtain multiunit bursts conceals the underlying c-fiber discharge behavior. The continuous wavelet transform with matched mother wavelet has permitted the assessment of action potential discharge patterns, but this approach uses a mother wavelet optimized for an amplifier that is no longer commercially available (University of Iowa Bioengineering Nerve Traffic Analysis System; Iowa NTA). The aim of this project was to determine the morphology and action potential detection performance of mother wavelets created from the commercially available NeuroAmp (ADinstruments), from distinct laboratories, compared with a mother wavelet generated from the Iowa NTA. Four optimized mother wavelets were generated in a two-phase iterative process from independent datasets, collected by separate laboratories (one Iowa NTA, three NeuroAmp). Action potential extraction performance of each mother wavelet was compared for each of the NeuroAmp-based datasets. The total number of detected action potentials was not significantly different across wavelets. However, the predictive value of action potential detection was reduced when the Iowa NTA wavelet was used to detect action potentials in NeuroAmp data, but not different across NeuroAmp wavelets. To standardize approaches, we recommend a NeuroAmp-optimized mother wavelet be used for the evaluation of sympathetic action potential discharge behavior when microneurographic data are collected with this system.NEW & NOTEWORTHY The morphology of custom mother wavelets produced across laboratories using the NeuroAmp was highly similar, but distinct from the University of Iowa Bioengineering Nerve Traffic Analysis System. Although the number of action potentials detected was similar between collection systems and mother wavelets, the predictive value differed. Our data suggest action potential analysis using the continuous wavelet transform requires a mother wavelet optimized for the collection system.
Collapse
Affiliation(s)
- Scott F Thrall
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Andrew W D'Souza
- Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brendan Abrahamson-Durant
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Teixeira AL, Nardone M, Fernandes IA, Millar PJ, Vianna LC. Intra- and interday reliability of sympathetic transduction to blood pressure in young, healthy adults. J Appl Physiol (1985) 2024; 136:917-927. [PMID: 38385178 DOI: 10.1152/japplphysiol.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Microneurographic recordings of muscle sympathetic nerve activity (MSNA) and the succeeding changes in beat-to-beat blood pressure (i.e., sympathetic transduction) provide important insights into the neural control of the circulation in humans. Despite its widespread use, the reliability of this technique remains unknown. Herein, we assessed the intra- and interday test-retest reliability of signal-averaging sympathetic transduction to blood pressure. Data were analyzed from 15 (9 M/6 F) young, healthy participants who completed two baseline recordings of fibular nerve MSNA separated by 60 min (intraday). The interday reliability was obtained in a subset of participants (n = 13, 9 M/4 F) who completed a follow-up MSNA study. Signal-averaging sympathetic transduction was quantified as peak change in diastolic (DBP) and mean arterial pressure (MAP) following a burst of MSNA. Analyses were also computed considering different MSNA burst sizes (quartiles of normalized MSNA) and burst patterns (singlets, couplets, triplets, and quadruplets+), as well as nonburst responses. Intraclass-correlation coefficients (ICCs) were used as the main reliability measure. Peak changes in MAP [intraday: ICC = 0.76 (0.30-0.92), P = 0.006; interday: ICC = 0.91 (0.63-0.97), P < 0.001] demonstrated very good to excellent reliability. Sympathetic transduction of MSNA burst size displayed moderate to very good reliability, though the reliability of MSNA burst pattern was poor to very good. Nonburst responses revealed poor intraday [ICC = 0.37 (-1.05 to 0.80), P = 0.21], but very good interday [ICC = 0.76 (0.18-0.93), P = 0.01] reliability. Intraday reliability measures were consistently lower than interday reliability. Similar results were obtained using DBP. Collectively, these findings provide evidence that the burst-triggering signal-averaging technique is a reliable measure of sympathetic transduction to blood pressure in young, healthy adults.NEW & NOTEWORTHY We found that signal-averaging sympathetic transduction to blood pressure displayed very good to excellent intra- and interday test-retest reliability in healthy, young adults. Reliability analyses according to muscle sympathetic burst size, burst pattern, and nonburst response were less consistent. Results were similar when using diastolic or mean arterial pressure in the transduction calculation. These findings suggest that the signal-averaging technique can be used with confidence to investigate sympathetic transduction to blood pressure in humans across time.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Igor A Fernandes
- Human Neurovascular Control Laboratory, Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Oakley J, Hill M, Giess A, Tanguy M, Elgar G. Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of severe chronic fatigue. J Transl Med 2023; 21:825. [PMID: 37978513 PMCID: PMC10655400 DOI: 10.1186/s12967-023-04711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.
Collapse
Affiliation(s)
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Národni 8, 11694, Prague, Czech Republic
| | - Adam Giess
- Scientific Research and Development, Genomics England, London, UK
| | - Mélanie Tanguy
- Scientific Research and Development, Genomics England, London, UK
| | - Greg Elgar
- Scientific Research and Development, Genomics England, London, UK.
| |
Collapse
|
6
|
Hamasaki H, Yanai H. Association of the use of psychotropic drugs with hospitalization, cardiovascular events, and mortality in patients with type 2 diabetes: a propensity score-matched cohort study. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1181998. [PMID: 37476651 PMCID: PMC10354430 DOI: 10.3389/fcdhc.2023.1181998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Background Use of psychotropic drugs (PD) may be associated with impairment of physical function. However, few studies have assessed the impact of PD on health outcomes in patients with type 2 diabetes. This study aimed to examine the associations between psychotropic drug use and handgrip strength (HGS) and between the use of PD and hospitalization in patients with type 2 diabetes. Methods From April 2013 to December 2015, we conducted a retrospective cohort study in patients with type 2 diabetes at the National Center for Global Health and Medicine Kohnodai Hospital. Patients aged 20 years and over who can measure HGS were included. All participants received nutritional guidance regarding diet therapy for type 2 diabetes at baseline. Nonpsychotropic drug users were matched one-to-one with the PD users using propensity score matching method with respect to their baseline covariates. The differences in HGS and the number of patients who had hospitalizations during the study period were examined. By Cox proportional hazard regression analysis, the association between the use of PD and repeated hospitalizations was estimated. Results A total of 1,282 patients were enrolled and followed up for 2.36 ± 0.73 years. In the propensity score matching cohort, HGS was significantly lower (p = 0.006) in PD users than non-PD users. PD users had more hospitalizations than non-PD users. Cox proportional hazard regression analysis confirmed the association of repeated hospitalizations with the use of PD (hazard ratio = 2.138; 95% confidence interval, 1.144-3.995, p = 0.017)). In addition, HGS was significantly and inversely correlated with the number of hospitalizations (r = -0.143, p = 0.013). Conclusions The use of PD could increase the risk of repeated hospitalizations. Skeletal muscle may play a role in reducing the risk of hospitalization in patients who are treated with PD.
Collapse
Affiliation(s)
| | - Hidekatsu Yanai
- Department of Diabetes and Endocrinology, National Center for Global Health and Medicine, Kohnodai Hospital, Ichikawa, Japan
| |
Collapse
|
7
|
Chen YC, Lin YT, Hu CL, Hwang IS. Low-Level Laser Therapy Facilitates Postcontraction Recovery with Ischemic Preconditioning. Med Sci Sports Exerc 2023; 55:1326-1333. [PMID: 36878185 DOI: 10.1249/mss.0000000000003149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Despite early development of muscle fatigue, ischemic preconditioning is gaining popularity for strength training combined with low-load resistance exercise. This study investigated the effect of low-level laser (LLL) on postcontraction recovery with ischemic preconditioning. METHODS Forty healthy adults (22.9 ± 3.5 yr) were allocated into sham (11 men, 9 women) and LLL (11 men, 9 women) groups. With ischemic preconditioning, they were trained with three bouts of intermittent wrist extension of 40% maximal voluntary contraction (MVC). During the recovery period, the LLL group received LLL (wavelength of 808 nm, 60 J) on the working muscle, whereas the sham group received no sham therapy. MVC, force fluctuations, and discharge variables of motor units (MU) for a trapezoidal contraction were compared between groups at baseline (T0), postcontraction (T1), and after-recovery (T2). RESULTS At T2, the LLL group exhibited a higher normalized MVC (T2/T0; 86.22% ± 12.59%) than that of the sham group (71.70% ± 13.56%; P = 0.001). The LLL group had smaller normalized force fluctuations (LLL, 94.76% ± 21.95%; sham, 121.37% ± 29.02%; P = 0.002) with greater normalized electromyography amplitude (LLL, 94.33% ± 14.69%; sham, 73.57% ± 14.94%; P < 0.001) during trapezoidal contraction. In the LLL group, the smaller force fluctuations were associated with lower coefficients of variation of interspike intervals of MUs (LLL, 0.202 ± 0.053; sham, 0.208 ± 0.048; P = 0.004) with higher recruitment thresholds (LLL, 11.61 ± 12.68 %MVC; sham, 10.27 ± 12.73 %MVC; P = 0.003). CONCLUSIONS LLL expedites postcontraction recovery with ischemic preconditioning, manifesting as superior force generation capacity and force precision control for activation of MU with a higher recruitment threshold and lower discharge variability.
Collapse
Affiliation(s)
| | - Yen-Ting Lin
- Department of Ball Sport, National Taiwan University of Sport, Taichung City, TAIWAN
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, TAIWAN
| | | |
Collapse
|
8
|
Portilla-Martínez A, Ortiz-Flores MÁ, Meaney E, Villarreal F, Nájera N, Ceballos G. (-)-Epicatechin Is a Biased Ligand of Apelin Receptor. Int J Mol Sci 2022; 23:8962. [PMID: 36012227 PMCID: PMC9409145 DOI: 10.3390/ijms23168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated with the activation of two specific receptors: the G protein-coupled estrogen receptor (GPER), a transmembrane receptor, and the pregnane X receptor (PXR), which is a nuclear receptor. However, the effects of EC are so diverse that these two receptors cannot describe the complete phenomenon. The apelin receptor or APLNR is classified within the G protein-coupled receptor (GPCR) family, and is capable of activating the G protein canonical pathways and the β-arrestin transducer, which participates in the phenomenon of receptor desensitization and internalization. β-arrestin gained interest in selective pharmacology and mediators of the so-called "biased agonism". With molecular dynamics (MD) and in vitro assays, we demonstrate how EC can recruit the β-arrestin in the active conformation of the APLN receptor acting as a biased agonist.
Collapse
Affiliation(s)
- Andrés Portilla-Martínez
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Miguel Ángel Ortiz-Flores
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Eduardo Meaney
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | | | - Nayelli Nájera
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
9
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
10
|
Teixeira AL, Nardone M, Samora M, Fernandes IA, Ramos PS, Sabino-Carvalho JL, Ricardo DR, Millar PJ, Vianna LC. Potentiation of GABAergic synaptic transmission by diazepam acutely increases resting beat-to-beat blood pressure variability in young adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R501-R510. [PMID: 35348021 DOI: 10.1152/ajpregu.00291.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5 to 10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (N=13) and spontaneous cardiac and sympathetic baroreflex sensitivity calculated. Compared to placebo, diazepam significantly increased the standard deviation of systolic (4.7±1.4 vs. 5.7±1.5 mmHg, P=0.001), diastolic (3.8±1.2 vs. 4.5±1.2 mmHg, P=0.007) and mean blood pressure (3.8±1.1 vs. 4.5±1.1 mmHg, P=0.002), as well as cardiac output (469±149 vs. 626±259 ml/min, P<0.001) and total peripheral resistance (1.0±0.3 vs. 1.4±0.6 mmHg/l/min, P<0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA burst frequency (placebo: 22±6 vs. diazepam: 18±8 bursts/min, P=0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6±6.7 vs. diazepam: 18.8±7.0 ms/mmHg, P=0.87) and MSNA (placebo: -3.6±1.2 vs. diazepam: -3.4±1.5 bursts/100Hb/mmHg, P=0.55). These findings suggest that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Milena Samora
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Igor Alexandre Fernandes
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Plinio Santos Ramos
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Djalma Rabelo Ricardo
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
11
|
Teixeira AL, Fernandes IA, Millar PJ, Vianna LC. GABA A receptor activation modulates the muscle sympathetic nerve activity responses at the onset of static exercise in humans. J Appl Physiol (1985) 2021; 131:1138-1147. [PMID: 34410847 DOI: 10.1152/japplphysiol.00423.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise is a well-known sympathoexcitatory stimulus. However, muscle sympathetic nerve activity (MSNA) can decrease during the onset of muscle contraction. Yet, the underlying mechanisms and neurotransmitters involved in the sympathetic responses at the onset of exercise remain unknown. Herein, we tested the hypothesis that GABAA receptors may contribute to the MSNA responses at the onset of static handgrip in humans. Thirteen young, healthy individuals (4 females) performed 30 s of ischemic static handgrip at 30% of maximum volitional contraction before and following oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. MSNA (microneurography), beat-to-beat blood pressure (finger photopletysmography), heart rate (electrocardiogram), and stroke volume (ModelFlow) were continuously measured. Cardiac output (CO = stroke volume × heart rate) and total vascular conductance (TVC = CO/mean blood pressure) were subsequently calculated. At rest, MSNA was reduced while hemodynamic variables were unchanged after diazepam administration. Before diazepam, static handgrip elicited a significant decrease in MSNA burst frequency (Δ-7 ± 2 bursts/min, P < 0.01 vs. baseline) and MSNA burst incidence (Δ-16 ± 2 bursts/100 heart beats, P < 0.01 vs. baseline); however, these responses were attenuated following diazepam administration (Δ-1 ± 2 bursts/min and Δ-7 ± 2 bursts/100 heart beats, respectively; P < 0.01 vs. before diazepam). Diazepam did not affect the increases in heart rate, blood pressure, CO, and TVC at the exercise onset. Importantly, the placebo had no effect on any variable at rest or exercise onset. These findings suggest that GABAA receptor activation modulates the MSNA responses at the onset of static exercise in young, healthy humans.NEW & NOTEWORTHY In this study, we found that the reduction in muscle sympathetic nerve activity at the onset of static handgrip exercise was blunted following GABAA receptor activation with oral administration of diazepam in young, healthy individuals. The present findings provide novel insight into neural circuitry mechanisms controlling muscle sympathetic outflow during exercise in humans.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Mizuno M, Hotta N, Ishizawa R, Kim HK, Iwamoto G, Vongpatanasin W, Mitchell JH, Smith SA. The Impact of Insulin Resistance on Cardiovascular Control During Exercise in Diabetes. Exerc Sport Sci Rev 2021; 49:157-167. [PMID: 33965976 PMCID: PMC8195845 DOI: 10.1249/jes.0000000000000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Gary Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| |
Collapse
|
13
|
Teixeira AL, Fernandes IA, Vianna LC. Cardiovascular Control During Exercise: The Connectivity of Skeletal Muscle Afferents to the Brain. Exerc Sport Sci Rev 2020; 48:83-91. [PMID: 32000180 DOI: 10.1249/jes.0000000000000218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exercise pressor reflex (EPR) is engaged upon the activation of group III/IV skeletal muscle afferents and is one of the principal mediators of cardiovascular responses to exercise. This review explores the hypothesis that afferent signals from EPR communicate via GABAergic contacts within the brain stem to evoke parasympathetic withdrawal and sympathoexcitation to increase cardiac output, peripheral resistance, and blood pressure during exercise.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | | | | |
Collapse
|
14
|
Zarzissi S, Bouzid MA, Zghal F, Rebai H, Hureau TJ. Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. Am J Physiol Regul Integr Comp Physiol 2020; 319:R617-R625. [PMID: 32966120 DOI: 10.1152/ajpregu.00151.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to determine the magnitude of the maximal level of peripheral fatigue attainable (fatigue threshold) during an all-out intermittent isometric knee-extensor protocol in both younger (24 ± 1 yr, n = 12) and older (60 ± 2 yr, n = 12) participants to provide new insights into the effects of aging on neuromuscular function. Participants performed two experimental sessions, in which they performed 60 maximal voluntary contractions (MVCs; 3 s of contraction, 2 s of relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the quadriceps (FNMES). Peripheral fatigue was quantified via pre/postexercise decrease in quadriceps twitch force (∆Ptw). Critical force (CF) was determined as the mean force output of the last 12 contractions, whereas W' was calculated as the area above CF. Although FNMES led to a significant decrease in Ptw before performing the 60-MVCs protocol (P = 0.024), ∆Ptw was not different between CTRL and FNMES for both the young group (P = 0.491) and the old group (P = 0.523). However, this peripheral fatigue threshold was significantly greater in young versus old participants (∆Ptw = -48 ± 10% vs. -29 ± 13%, respectively, P = 0.028). In CTRL, W' was 55 ± 13% lower in the old group than in the young group (P < 0.001), but CF was similar (326 ± 10 N vs. 322 ± 12 N, respectively, P = 0.941). ∆Ptw was correlated with W', independently of age (r2 = 0.84, P < 0.001). Exercise performance decreases with aging consequent to a lower tolerance to peripheral fatigue. However, the peripheral fatigue threshold mechanism persists with healthy aging and continues to play a protective role in preserving locomotor muscle function during exercise.
Collapse
Affiliation(s)
- Slim Zarzissi
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France.,European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Samora M, Teixeira AL, Sabino-Carvalho JL, Vianna LC. Sex differences in cardiac vagal reactivation from the end of isometric handgrip exercise and at the onset of muscle metaboreflex isolation. Auton Neurosci 2020; 228:102714. [PMID: 32829151 DOI: 10.1016/j.autneu.2020.102714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
Abstract
A parasympathetic reactivation is an underlying mechanism mediating the rapid fall in heart rate (HR) at the onset of post-exercise ischemia (PEI) in humans. Herein, we tested the hypothesis that, compared to men, women present a slower HR recovery at the cessation of isometric handgrip exercise (i.e., onset of PEI) due to an attenuated cardiac vagal reactivation. Forty-seven (23 women) young and healthy volunteers were recruited. Subjects performed 90s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3-min of PEI. The onset of PEI was analyzed over the first 30s in 10s windows. Cardiac vagal reactivation was indexed using the HR fall and by HR variability metrics (e.g., RMSSD and SDNN) immediately after the cessation of the exercise. HR was significantly increased from rest during exercise in men and women and increases were similar between sexes. However, following the cessation of exercise, the HR recovery was significantly slower in women compared to men regardless of the time point (women vs. men: ∆-14 ± 8 vs. ∆-18 ± 6 beats.min-1 at 10s; ∆-20 ± 9 vs. ∆-25 ± 8 beats.min-1 at 20s; ∆-22 ± 10 vs. ∆-27 ± 9 beats.min-1 at 30s; P = .027). RMSSD and SDNN increased at the cessation of exercise in greater magnitude in men compared to women. These findings demonstrate that women had a slower HR recovery at the cessation of isometric handgrip exercise and onset of PEI compared to men, suggesting a sex-related difference in cardiac vagal reactivation in healthy young humans.
Collapse
Affiliation(s)
- Milena Samora
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil; Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
16
|
Campos MO, Mansur DE, Mattos JD, Paiva ACS, Videira RLR, Macefield VG, da Nóbrega ACL, Fernandes IA. Acid-sensing ion channels blockade attenuates pressor and sympathetic responses to skeletal muscle metaboreflex activation in humans. J Appl Physiol (1985) 2019; 127:1491-1501. [PMID: 31545154 DOI: 10.1152/japplphysiol.00401.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In animals, the blockade of acid-sensing ion channels (ASICs), cation pore-forming membrane proteins located in the free nerve endings of group IV afferent fibers, attenuates increases in arterial pressure (AP) and sympathetic nerve activity (SNA) during muscle contraction. Therefore, ASICs play a role in mediating the metabolic component (skeletal muscle metaboreflex) of the exercise pressor reflex in animal models. Here we tested the hypothesis that ASICs also play a role in evoking the skeletal muscle metaboreflex in humans, quantifying beat-by-beat mean AP (MAP; finger photoplethysmography) and muscle SNA (MSNA; microneurography) in 11 men at rest and during static handgrip exercise (SHG; 35% of the maximal voluntary contraction) and postexercise muscle ischemia (PEMI) before (B) and after (A) local venous infusion of either saline or amiloride (AM), an ASIC antagonist, via the Bier block technique. MAP (BAM +30 ± 6 vs. AAM +25 ± 7 mmHg, P = 0.001) and MSNA (BAM +14 ± 9 vs. AAM +10 ± 6 bursts/min, P = 0.004) responses to SHG were attenuated under ASIC blockade. Amiloride also attenuated the PEMI-induced increases in MAP (BAM +25 ± 6 vs. AAM +16 ± 6 mmHg, P = 0.0001) and MSNA (BAM +16 ± 9 vs. AAM +8 ± 8 bursts/min, P = 0.0001). MAP and MSNA responses to SHG and PEMI were similar before and after saline infusion. We conclude that ASICs play a role in evoking pressor and sympathetic responses to SHG and the isolated activation of the skeletal muscle metaboreflex in humans. NEW & NOTEWORTHY We showed that regional blockade of the acid-sensing ion channels (ASICs), induced by venous infusion of the antagonist amiloride via the Bier block anesthetic technique, attenuated increases in arterial pressure and muscle sympathetic nerve activity during both static handgrip exercise and postexercise muscle ischemia. These findings indicate that ASICs contribute to both pressor and sympathetic responses to the activation of the skeletal muscle metaboreflex in humans.
Collapse
Affiliation(s)
- Monique O Campos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Daniel E Mansur
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - João D Mattos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Adrielle C S Paiva
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | | | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Igor A Fernandes
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|