1
|
Wu X, Cunningham KP, Bruening-Wright A, Pandey S, Larsson HP. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Int J Mol Sci 2024; 25:4309. [PMID: 38673895 PMCID: PMC11050684 DOI: 10.3390/ijms25084309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels share similar structures but have opposite gating polarity. Kv channels have a strong coupling (>109) between the voltage sensor (S4) and the activation gate: when S4s are activated, the gate is open to >80% but, when S4s are deactivated, the gate is open <10-9 of the time. Using noise analysis, we show that the coupling between S4 and the gate is <200 in HCN channels. In addition, using voltage clamp fluorometry, locking the gate open in a Kv channel drastically altered the energetics of S4 movement. In contrast, locking the gate open or decreasing the coupling between S4 and the gate in HCN channels had only minor effects on the energetics of S4 movement, consistent with a weak coupling between S4 and the gate. We propose that this loose coupling is a prerequisite for the reversed voltage gating in HCN channels.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
| | - Kevin P. Cunningham
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | | | - Shilpi Pandey
- Oregan National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA;
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
2
|
Yip D, Accili E. Kinetic modelling of voltage-dependent gating in funny channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:182-188. [PMID: 34310984 DOI: 10.1016/j.pbiomolbio.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Delbert Yip
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada
| | - Eric Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada.
| |
Collapse
|
3
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
5
|
|
6
|
Lyashchenko AK, Redd KJ, Goldstein PA, Tibbs GR. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 2014; 9:e101236. [PMID: 24983358 PMCID: PMC4077740 DOI: 10.1371/journal.pone.0101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.
Collapse
Affiliation(s)
- Alex K. Lyashchenko
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
| | - Kacy J. Redd
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Gareth R. Tibbs
- Department of Anesthesiology, Columbia University, New York, New York, United States of America
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hyperpolarization-activated current, If, in mathematical models of rabbit sinoatrial node pacemaker cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:872454. [PMID: 23936852 PMCID: PMC3722861 DOI: 10.1155/2013/872454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/31/2013] [Indexed: 01/01/2023]
Abstract
A typical feature of sinoatrial (SA) node pacemaker cells is the presence of an ionic current that activates upon hyperpolarization. The role of this hyperpolarization-activated current, If, which is also known as the “funny current” or “pacemaker current,” in the spontaneous pacemaker activity of SA nodal cells remains a matter of intense debate. Whereas some conclude that If plays a fundamental role in the generation of pacemaker activity and its rate control, others conclude that the role of If is limited to a modest contribution to rate control. The ongoing debate is often accompanied with arguments from computer simulations, either to support one's personal view or to invalidate that of the antagonist. In the present paper, we review the various mathematical descriptions of If that have been used in computer simulations and compare their strikingly different characteristics with our experimental data. We identify caveats and propose a novel model for If based on our experimental data.
Collapse
|
8
|
Rosen MR, Nargeot J, Salama G. The case for the funny current and the calcium clock. Heart Rhythm 2012; 9:616-8. [DOI: 10.1016/j.hrthm.2011.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Indexed: 01/01/2023]
|
9
|
Anderson WD, Galván EJ, Mauna JC, Thiels E, Barrionuevo G. Properties and functional implications of I (h) in hippocampal area CA3 interneurons. Pflugers Arch 2011; 462:895-912. [PMID: 21938402 DOI: 10.1007/s00424-011-1025-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/24/2011] [Accepted: 08/29/2011] [Indexed: 12/26/2022]
Abstract
The present study examines the biophysical properties and functional implications of I (h) in hippocampal area CA3 interneurons with somata in strata radiatum and lacunosum-moleculare. Characterization studies showed a small maximum h-conductance (2.6 ± 0.3 nS, n = 11), shallow voltage dependence with a hyperpolarized half-maximal activation (V (1/2) = -91 mV), and kinetics characterized by double-exponential functions. The functional consequences of I (h) were examined with regard to temporal summation and impedance measurements. For temporal summation experiments, 5-pulse mossy fiber input trains were activated. Blocking I (h) with 50 μM ZD7288 resulted in an increase in temporal summation, suggesting that I (h) supports sensitivity of response amplitude to relative input timing. Impedance was assessed by applying sinusoidal current commands. From impedance measurements, we found that I (h) did not confer theta-band resonance, but flattened the impedance-frequency relations instead. Double immunolabeling for hyperpolarization-activated cyclic nucleotide-gated proteins and glutamate decarboxylase 67 suggests that all four subunits are present in GABAergic interneurons from the strata considered for electrophysiological studies. Finally, a model of I (h) was employed in computational analyses to confirm and elaborate upon the contributions of I (h) to impedance and temporal summation.
Collapse
Affiliation(s)
- Warren D Anderson
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
10
|
Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol 2009; 48:55-64. [PMID: 19591835 DOI: 10.1016/j.yjmcc.2009.06.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/15/2009] [Accepted: 06/26/2009] [Indexed: 12/17/2022]
Abstract
In mammals cardiac rate is determined by the duration of the diastolic depolarization of sinoatrial node (SAN) cells which is mainly determined by the pacemaker I(f) current. f-channels are encoded by four members of the hyperpolarization-activated cyclic nucleotide-gated gene (HCN1-4) family. HCN4 is the most abundant isoform in the SAN, and its relevance to pacemaking has been further supported by the discovery of four loss-of-function mutations in patients with mild or severe forms of cardiac rate disturbances. Due to its selective contribution to pacemaking, the I(f) current is also the pharmacological target of a selective heart rate-reducing agent (ivabradine) currently used in the clinical practice. Albeit to a minor extent, the I(f) current is also present in other spontaneously active myocytes of the cardiac conduction system (atrioventricular node and Purkinje fibres). In working atrial and ventricular myocytes f-channels are expressed at a very low level and do not play any physiological role; however in certain pathological conditions over-expression of HCN proteins may represent an arrhythmogenic mechanism. In this review some of the most recent findings on f/HCN channels contribution to pacemaking are described.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Università degli Studi di Milano, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), via Celoria 26, 20133 Milano, Italy.
| | | | | |
Collapse
|
11
|
Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J Neurosci 2009; 29:5841-53. [PMID: 19420251 DOI: 10.1523/jneurosci.5746-08.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, I(h), in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single-channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent.
Collapse
|
12
|
Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, I(f). Int J Cardiol 2009; 132:318-36. [PMID: 19181406 DOI: 10.1016/j.ijcard.2008.12.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/16/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
Abstract
The mechanism of primary, spontaneous cardiac pacemaker activity of the sinoatrial node (SAN) has extensively been studied in several animal species, but is virtually unexplored in man. Understanding the mechanisms of human SAN pacemaker activity is important for developing new therapeutic approaches for controlling the heart rate in the sick sinus syndrome and in diseased myocardium. Here we review the functional role of the hyperpolarization-activated 'funny' current, I(f), in human SAN pacemaker activity. Despite the many animal studies performed over the years, the contribution of I(f) to pacemaker activity is still controversial and not fully established. However, recent clinical data on mutations in the I(f) encoding HCN4 gene, which is thought to be the most abundant isoform of the HCN gene family in SAN, suggest a functional role of I(f) in human pacemaker activity. These clinical findings are supported by recent experimental data from single isolated human SAN cells that provide direct evidence that I(f) contributes to human SAN pacemaker activity. Therefore, controlling heart rate in clinical practice via I(f) blockers offers a valuable approach to lowering heart rate and provides an attractive alternative to conventional treatment for a wide range of patients with confirmed stable angina, while upregulation or artificial expression of I(f) may relieve disease-causing bradycardias.
Collapse
|
13
|
Zhao X, Bucchi A, Oren RV, Kryukova Y, Dun W, Clancy CE, Robinson RB. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality. J Physiol 2009; 587:1513-25. [PMID: 19171659 DOI: 10.1113/jphysiol.2008.163444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Lyashchenko AK, Tibbs GR. Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels. ACTA ACUST UNITED AC 2008; 131:227-43. [PMID: 18270171 PMCID: PMC2248720 DOI: 10.1085/jgp.200709868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IH pacemaker channels carry a mixed monovalent cation current that, under physiological ion gradients, reverses at ∼−34 mV, reflecting a 4:1 selectivity for K over Na. However, IH channels display anomalous behavior with respect to permeant ions such that (a) open channels do not exhibit the outward rectification anticipated assuming independence; (b) gating and selectivity are sensitive to the identity and concentrations of externally presented permeant ions; (c) the channels' ability to carry an inward Na current requires the presence of external K even though K is a minor charge carrier at negative voltages. Here we show that open HCN channels (the hyperpolarization-activated, cyclic nucleotide sensitive pore forming subunits of IH) undergo a fast, voltage-dependent block by intracellular Mg in a manner that suggests the ion binds close to, or within, the selectivity filter. Eliminating internal divalent ion block reveals that (a) the K dependence of conduction is mediated via K occupancy of site(s) within the pore and that asymmetrical occupancy and/or coupling of these sites to flux further shapes ion flow, and (b) the kinetics of equilibration between K-vacant and K-occupied states of the pore (10–20 μs or faster) is close to the ion transit time when the pore is occupied by K alone (∼0.5–3 μs), a finding that indicates that either ion:ion repulsion involving Na is adequate to support flux (albeit at a rate below our detection threshold) and/or the pore undergoes rapid, permeant ion-sensitive equilibration between nonconducting and conducting configurations. Biophysically, further exploration of the Mg site and of interactions of Na and K within the pore will tell us much about the architecture and operation of this unusual pore. Physiologically, these results suggest ways in which “slow” pacemaker channels may contribute dynamically to the shaping of fast processes such as Na-K or Ca action potentials.
Collapse
Affiliation(s)
- Alex K Lyashchenko
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
15
|
Bruening-Wright A, Elinder F, Larsson HP. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. ACTA ACUST UNITED AC 2007; 130:71-81. [PMID: 17591986 PMCID: PMC2154369 DOI: 10.1085/jgp.200709769] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational changes and to correlate these to the different activation steps in spHCN channels. We show that S4 undergoes two distinct conformational changes during voltage activation. Analysis of the fluorescence signals suggests that the N-terminal region of S4 undergoes conformational changes during a previously characterized mode shift in HCN channel voltage dependence, while a more C-terminal region undergoes an additional conformational change during gating charge movements. We fit our fluorescence and ionic current data to a previously proposed 10-state allosteric model for HCN channels. Our results are not compatible with a fast S4 motion and rate-limiting channel opening. Instead, our data and modeling suggest that spHCN channels open after only two S4s have moved and that S4 motion is rate limiting during voltage activation of spHCN channels.
Collapse
Affiliation(s)
- Andrew Bruening-Wright
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
16
|
Tusscher KHWJT, Panfilov AV. Modelling of the ventricular conduction system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 96:152-70. [PMID: 17910889 DOI: 10.1016/j.pbiomolbio.2007.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The His-Purkinje conduction system initiates the normal excitation of the ventricles and is a major component of the specialized conduction system of the heart. Abnormalities and propagation blocks in the Purkinje system result in abnormal excitation of the heart. Experimental findings suggest that the Purkinje network plays an important role in ventricular tachycardia and fibrillation, which is the major cause of sudden cardiac death. Nowadays an important area in the study of cardiac arrhythmias is anatomically accurate modelling. The majority of current anatomical models have not included a description of the Purkinje network. As a consequence, these models cannot be used to study the important role of the Purkinje system in arrhythmia initiation and maintenance. In this article we provide an overview of previous work on modelling of the Purkinje system and report on the development of a His-Purkinje system for our human ventricular model. We use the model to simulate the normal activation pattern as well as abnormal activation patterns resulting from bundle branch block and bundle branch reentry.
Collapse
Affiliation(s)
- K H W J Ten Tusscher
- Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
17
|
Vassalle M. The vicissitudes of the pacemaker current I Kdd of cardiac purkinje fibers. J Biomed Sci 2007; 14:699-716. [PMID: 17564816 DOI: 10.1007/s11373-007-9182-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/10/2007] [Indexed: 01/23/2023] Open
Abstract
The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I (Kdd). An alternative proposal is that the hyperpolarization-activated current I (f) underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K(+) depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I (K1). In turn, this decay would be responsible for a "fake" reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba(2+) was used to block the decay of I (K1). In the presence of Ba(2+) the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as -120 mV. In this regard, the distinct possibility needs to be considered that Ba(2+) had blocked I (Kdd) (and not only I (K1)). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba(2+). In the absence of Ba(2+), I (Kdd) was present in the pacemaker potential range and reversed at E (K). In the presence of Ba(2+), I (Kdd) was blocked and I (f) appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I (Kdd) but not with I (f). The fact that I (f) is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I (Kdd) (but not of I (f)) in Purkinje fibers.
Collapse
Affiliation(s)
- Mario Vassalle
- Department of Physiology and Pharmacology, Box 31 State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
18
|
Pena F, Amuzescu B, Neaga E, Flonta ML. Thermodynamic properties of hyperpolarization-activated current (Ih) in a subgroup of primary sensory neurons. Exp Brain Res 2006; 173:282-90. [PMID: 16676167 DOI: 10.1007/s00221-006-0473-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/24/2006] [Indexed: 11/25/2022]
Abstract
Ih is a poorly selective cation current that activates upon hyperpolarization, present in various types of neurons. Our aim was to perform a detailed thermodynamic analysis of Ih gating kinetics, in order to assess putative structural changes associated with its activation and deactivation. To select dorsal root ganglia neurons that exhibit large Ih, we applied a current signature method by Petruska et al. (J Neurophysiol 84:2365-2379, 2000) and found appropriate neurons in cluster 4. Currents elicited by 3,000-ms hyperpolarizing pulses at 25 and 33 degrees C were fitted with double exponential functions, yielding time constants similar to those of HCN1. The fast activation and deactivation rates showed temperature coefficients (Q10) of 2.9 and 3.1, respectively, while Q10 of the absolute conductance was 1.3. Using the Arrhenius-Eyring formalism we computed heights of voltage-independent Gibbs free energy and entropy barriers for each rate. The free energy barriers of the fast rates were just approximately 2RT units lower than those of the corresponding slow rates (31.3 vs. 33.2RT for activation, and 24.7 vs. 25.8RT for deactivation, at 25 degrees C). Interestingly, the entropy barriers of the slow rates were negative: -15.2R units for activation and -11.9R units for deactivation, compared to 4.6 and 1.3R units, respectively, for the fast component. The equivalent gating charge (zg) (3.75 +/- 0.32, mean +/- SEM, at 25 degrees C) and half-activation potential (V1/2) (-70.0 +/- 1.3 mV at 25 degrees C) did not vary significantly with temperature.
Collapse
Affiliation(s)
- Florentina Pena
- Department of Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, 76201, Romania
| | | | | | | |
Collapse
|
19
|
Kole MHP, Hallermann S, Stuart GJ. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 2006; 26:1677-87. [PMID: 16467515 PMCID: PMC6793638 DOI: 10.1523/jneurosci.3664-05.2006] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of cortical layer 5 pyramidal neurons in vitro. In these neurons, we find that Ih channels have an average unitary conductance of 680 +/- 30 fS (n = 18). Spectral analysis of simulated and native Ih channels showed that there is little or no channel flicker below 5 kHz. In contrast to the uniformly distributed single-channel conductance, Ih channel number increases exponentially with distance, reaching densities as high as approximately 550 channels/microm2 at distal dendritic sites. These high channel densities generate significant membrane voltage noise. By incorporating a stochastic model of Ih single-channel gating into a morphologically realistic model of a layer 5 neuron, we show that this channel noise is higher in distal dendritic compartments and increased threefold with a 10-fold increased single-channel conductance (6.8 pS) but constant Ih current density. In addition, we demonstrate that voltage fluctuations attributable to stochastic Ih channel gating impact on action potential output, with greater spike-timing precision in models with the experimentally determined single-channel conductance. These data suggest that, in the face of high current densities, the small single-channel conductance of Ih is critical for maintaining the fidelity of action potential output.
Collapse
Affiliation(s)
- Maarten H P Kole
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
20
|
Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005; 107:59-79. [PMID: 15963351 DOI: 10.1016/j.pharmthera.2005.01.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 12/19/2022]
Abstract
First described over a quarter of a century ago, the cardiac pacemaker "funny" (I(f)) current has been extensively characterized since, and its role in cardiac pacemaking has been thoroughly demonstrated. A similar current, termed I(h), was later described in different types of neurons, where it has a variety of functions and contributes to the control of cell excitability and plasticity. I(f) is an inward current activated by both voltage hyperpolarization and intracellular cAMP. In the heart, as well as generating spontaneous activity, f-channels mediate autonomic-dependent modulation of heart rate: beta-adrenergic stimulation accelerates, and vagal stimulation slows, cardiac rate by increasing and decreasing, respectively, the intracellular cAMP concentration and, consequently, the f-channel degree of activation. Four isoforms of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have been cloned more recently and shown to be the molecular correlates of native f-channels in the heart and h-channels in the brain. Individual HCN isoforms have kinetic and modulatory properties which differ quantitatively. A comparison of their biophysical properties with those of native pacemaker channels provides insight into the molecular basis of the pacemaker current properties and, together with immunolabelling and other detection techniques, gives information on the pattern of HCN isoform distribution in different tissues. Because of their relevance to cardiac pacemaker activity, f-channels are a natural target of drugs aimed at the pharmacological control of heart rate. Several agents developed for their ability to selectively reduce heart rate act by a specific inhibition of f-channel function; these substances have a potential for the treatment of diseases such as angina and heart failure. In the near future, devices based on the delivery of f-channels in situ, or of a cellular source of f-channels (biological pacemakers), will likely be developed for use in therapies for diseases of heart rhythm with the aim of replacing electronic pacemakers.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Laboratory of Molecular Physiology and Neurobiology, Department of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
21
|
Männikkö R, Pandey S, Larsson HP, Elinder F. Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties. ACTA ACUST UNITED AC 2005; 125:305-26. [PMID: 15710913 PMCID: PMC2234019 DOI: 10.1085/jgp.200409130] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (τ ≈ 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.
Collapse
Affiliation(s)
- Roope Männikkö
- Department of Neuroscience, The Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Michels G, Er F, Khan I, Südkamp M, Herzig S, Hoppe UC. Single-Channel Properties Support a Potential Contribution of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels and
I
f
to Cardiac Arrhythmias. Circulation 2005; 111:399-404. [PMID: 15687126 DOI: 10.1161/01.cir.0000153799.65783.3a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The pacemaker current
I
f
is present in atrial and ventricular myocytes. However, it remains controversial whether
I
f
overexpression in diseased states might play a role for arrhythmogenesis, because first
I
f
activation in whole-cell recordings hardly overlapped the diastolic voltage of working myocardium.
Methods and Results—
To obtain further insight into
I
HCN
and
I
f
properties, we provide for the first time detailed single-channel analysis of heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) isoforms and native human
I
f
. HCN subtypes differed significantly in single-channel amplitude, conductance, and activation kinetics. Interestingly, threshold potentials of HCN isoforms were more positive than would have been expected from whole-cell measurements. Single-channel properties of cells cotransfected with HCN2 and HCN4 were distinct from cells expressing HCN2 or HCN4 alone, demonstrating that different HCN isoforms can influence current properties of a single HCN channel complex, thus providing direct functional evidence for HCN heteromerization. Pooled data of homomeric and heteromeric HCN channels and of native
I
f
extrapolated from maximum likelihood fits indicated a multistate gating scheme comprising 5 closed- and 4 open-channel states. Single-channel characteristics of
I
f
in human atrial myocytes closely resembled those of HCN4 or HCN2+HCN4, supporting the hypothesis that native
I
f
channels in atrial myocardium are heteromeric complexes composed of HCN4 and/or HCN2. Most interestingly, half-maximal activation of single-channel atrial
I
f
(−68.3±4.9 mV; k=−9.9±1.5; n=8) was well within the diastolic voltage range of human atrial myocardium.
Conclusions—
These observations support a potential contribution of HCN/
I
f
to the arrhythmogenesis of working myocardium under pathological conditions.
Collapse
Affiliation(s)
- Guido Michels
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. THE JAPANESE JOURNAL OF PHYSIOLOGY 2003; 53:105-23. [PMID: 12877767 DOI: 10.2170/jjphysiol.53.105] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individual ion channels or exchangers are described with a common set of equations for both the sinoatrial node pacemaker and ventricular cells. New experimental data are included, such as the new kinetics of the inward rectifier K+ channel, delayed rectifier K+ channel, and sustained inward current. The gating model of Shirokov et al. (J Gen Physiol 102: 1005-1030, 1993) is used for both the fast Na+ and L-type Ca2+ channels. When combined with a contraction model (Negroni and Lascano: J Mol Cell Cardiol 28: 915-929, 1996), the experimental staircase phenomenon of contraction is reconstructed. The modulation of the action potential by varying the external Ca2+ and K+ concentrations is well simulated. The conductance of I(CaL) dominates membrane conductance during the action potential so that an artificial increase of I(to), I(Kr), I(Ks), or I(KATP) magnifies I(CaL) amplitude. Repolarizing current is provided sequentially by I(Ks), I(Kr), and I(K1). Depression of ATP production results in the shortening of action potential through the activation of I(KATP). The ratio of Ca2+ released from SR over Ca2+ entering via I(CaL) (Ca2+ gain = approximately 15) in excitation-contraction coupling well agrees with the experimental data. The model serves as a predictive tool in generating testable hypotheses.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Macri V, Proenza C, Agranovich E, Angoli D, Accili EA. Separable gating mechanisms in a Mammalian pacemaker channel. J Biol Chem 2002; 277:35939-46. [PMID: 12121985 DOI: 10.1074/jbc.m203485200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite permeability to both K(+) and Na(+), hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels contain the K(+) channel signature sequence, GYG, within the selectivity filter of the pore. Here, we show that this region is involved in regulating gating in a mouse isoform of the pacemaker channel (mHCN2). A mutation in the GYG sequence of the selectivity filter (G404S) had different effects on the two components of the wild-type current; it eliminated the slowly activating current (I(f)) but, surprisingly, did not affect the instantaneous current (I(inst)). Confocal imaging and immunocytochemistry showed G404S protein on the periphery of the cells, consistent with the presence of channels on the plasma membrane. Experiments with the wild-type channel showed that the rate of I(f) deactivation and I(f) amplitude had a parallel dependence on the ratio of K(+)/Na(+) driving forces. In addition, the amplitude of fully activated I(f), unlike I(inst), was not well predicted by equal and independent flow of K(+) and Na(+). The data are consistent with two separable gating mechanisms associated with pacemaker channels: one (I(f)) that is sensitive to voltage, to a mutation in the selectivity filter, and to driving forces for permeating cations and another (I(inst)) that is insensitive to these influences.
Collapse
Affiliation(s)
- Vincenzo Macri
- Ion Channel Laboratory, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
25
|
Kawai F, Horiguchi M, Suzuki H, Miyachi EI. Modulation by hyperpolarization-activated cationic currents of voltage responses in human rods. Brain Res 2002; 943:48-55. [PMID: 12088838 DOI: 10.1016/s0006-8993(02)02531-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used the whole-cell patch-clamp recording technique on surgically excised human retina to examine whether human rod photoreceptors express hyperpolarization-activated cationic currents (I(h)) and to analyze the effects of I(h) on rod's voltage responses. Hyperpolarizing voltage steps from a holding potential of -60 mV evoked a slow inward-rectifying current in both rods in retinal slices and isolated rods. The slow inward-rectifying currents induced by hyperpolarization were markedly reduced by 3 mM Cs(+) (a blocker of I(h)) in the bath, but not by 3 mM Ba(2+) (an anomalous rectifier K(+) current blocker) or 1 mM SITS (a Cl(-) current blocker). A concentration-response curve for block by Cs(+) of the inward currents could be fitted by the Hill equation with a half-blocking concentration (IC(50)) of 41 microM and a Hill coefficient of 0.91. The time course of the inward current activation was well described at all recorded voltages by the sum of two exponentials. Under current-clamp conditions, injection of steps of current, either hyperpolarizing or depolarizing, elicited an initial rapid voltage change that was followed by a gradual decay in the voltage response. The decay in the voltage responses was eliminated by bath application of 3 mM Cs(+). The voltage dependence, pharmacology, and kinetics of the slow inward-rectifying currents described above suggest that human rods express I(h). We suggest that I(h) becomes activated in the course of large hyperpolarizations generated by bright-light illumination and may modify the waveform of the photovoltage in human rods.
Collapse
Affiliation(s)
- Fusao Kawai
- Department of Physiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukakechou, Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
26
|
Demontis GC, Moroni A, Gravante B, Altomare C, Longoni B, Cervetto L, DiFrancesco D. Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. J Physiol 2002; 542:89-97. [PMID: 12096053 PMCID: PMC2290391 DOI: 10.1113/jphysiol.2002.017640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gating of voltage-dependent conductances in retinal photoreceptors is the first step of a process leading to the enhancement of the temporal performance of the visual system. The molecular components underlying voltage-dependent gating in rods are presently poorly defined. In the present work we have investigated the isoform composition and the functional characteristics of hyperpolarisation-activated cyclic nucleotide-gated channels (HCN) in rabbit rods. Using immunocytochemistry we show the expression in the inner segment and cell body of the isoform 1 (HCN1). Electrophysiological investigations show that hyperpolarisation-activated currents (I(h)) can be measured only from the cell regions where HCN1 is expressed. Half-activation voltage (-75.0 +/- 0.3 mV) and kinetics (t(1/2) of 101 +/- 8 ms at -110 mV and 20 degrees C) of the I(h) in rods are similar to those of the macroscopic current carried by homomeric rabbit HCN1 channels expressed in HEK 293 cells. The homomeric nature of HCN1 channels in rods is compatible with the observation that cAMP induces a small shift (2.3 +/- 0.8 mV) in the half-activation voltage of I(h). In addition, the observation that within the physiological range of membrane potentials, cAMP does not significantly affect the gain of the current-to-voltage conversion, may reflect the need to protect the first step in the processing of visual signals from changes in cAMP turnover.
Collapse
Affiliation(s)
- Gian Carlo Demontis
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno, 6-56126 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Altomare C, Bucchi A, Camatini E, Baruscotti M, Viscomi C, Moroni A, DiFrancesco D. Integrated allosteric model of voltage gating of HCN channels. J Gen Physiol 2001; 117:519-32. [PMID: 11382803 PMCID: PMC2232403 DOI: 10.1085/jgp.117.6.519] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.
Collapse
Affiliation(s)
- C Altomare
- Dipartimento di Fisiologia e Biochimica Generali, via Celoria 26, and INFM-Unità Milano Università, via Celoria 16, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Bal R, Oertel D. Hyperpolarization-activated, mixed-cation current (I(h)) in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 2000; 84:806-17. [PMID: 10938307 DOI: 10.1152/jn.2000.84.2.806] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Octopus cells in the posteroventral cochlear nucleus of mammals detect the coincidence of synchronous firing in populations of auditory nerve fibers and convey the timing of that coincidence with great temporal precision. Earlier recordings in current clamp have shown that two conductances contribute to the low input resistance and therefore to the ability of octopus cells to encode timing precisely, a low-threshold K(+) conductance and a hyperpolarization-activated mixed-cation conductance, g(h). The present experiments describe the properties of g(h) in octopus cells as they are revealed under voltage clamp with whole-cell, patch recordings. The hyperpolarization-activated current, I(h), was blocked by extracellular Cs(+) (5 mM) and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (50-100 nM) but not by extracellular Ba(2+) (2 mM). The reversal potential for I(h) in octopus cells under normal physiological conditions was -38 mV. Increasing the extracellular potassium concentration from 3 to 12 mM shifted the reversal potential to -26 mV; lowering extracellular sodium concentration from 138 to 10 mM shifted the reversal potential to -77 mV. These pharmacological and ion substitution experiments show that I(h) in octopus cells is a mixed-cation current that resembles I(h) in other neurons and in heart muscle cells. Under control conditions when cells were perfused intracellularly with ATP and GTP, I(h) had an activation threshold between about -35 to -40 mV and became fully activated at -110 mV. The maximum conductance associated with hyperpolarizing voltage steps to -112 mV ranged from 87 to 212 nS [150 +/- 30 (SD) nS, n = 36]. The voltage dependence of g(h) obtained from peak tail currents is fit by a Boltzmann function with a half-activation potential of -65 +/- 3 mV and a slope factor of 7. 7 +/- 0.7. This relationship reveals that g(h) was activated 41% at the mean resting potential of octopus cells, -62 mV, and that at rest I(h) contributes a steady inward current of between 0.9 and 2.1 nA. The voltage dependence of g(h) was unaffected by the extracellular application of dibutyryl cAMP but was shifted in hyperpolarizing direction, independent of the presence or absence of dibutyryl cAMP, by the removal of intracellular ATP and GTP.
Collapse
Affiliation(s)
- R Bal
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Rocchetti M, Armato A, Cavalieri B, Micheletti M, Zaza A. Lidocaine inhibition of the hyperpolarization-activated current (I(f)) in sinoatrial myocytes. J Cardiovasc Pharmacol 1999; 34:434-9. [PMID: 10471004 DOI: 10.1097/00005344-199909000-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to provide information on the dose dependence and biophysical details of lidocaine blockade of the hyperpolarization-activated current (I(f)) in the sinoatrial node. Isolated rabbit sinoatrial myocytes were patch-clamped in the whole-cell configuration at 36+/-0.5 degrees C, in the presence of 1 mM Ba2+ and 2 mM Mn2+ to minimize contamination by K+ and Ca2+ currents, respectively. Lidocaine inhibited I(f) dose-dependently with a maximal inhibition of 69.5% at 75 microM and a half-maximal effect at 38.2 microM. Lidocaine reduced the conductance of fully activated I(f), without affecting the current reversal potential; the blocking effect was independent of membrane potential. Voltage dependence of I(f) activation gating was not affected by lidocaine, whose effect was independent of use and rate. Lidocaine did not modify the time course of I(f) activation. At therapeutic concentrations, lidocaine significantly inhibited I(f) by reducing fully activated channel conductance. Lack of voltage and rate dependence of effect differentiates lidocaine from most of other blockers of this current.
Collapse
Affiliation(s)
- M Rocchetti
- Dipartimento di Biotecnologie e Scienze Biologiche, Università di Milano-Bicocca, Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 1999; 96:9391-6. [PMID: 10430953 PMCID: PMC17793 DOI: 10.1073/pnas.96.16.9391] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhythmic activity of neurons and heart cells is endowed by pacemaker channels that are activated by hyperpolarization and directly regulated by cyclic nucleotides (termed HCN channels). These channels constitute a multigene family, and it is assumed that the properties of each member are adjusted to fit its particular function in the cell in which it resides. Here we report the molecular and functional characterization of a human subtype hHCN4. hHCN4 transcripts are expressed in heart, brain, and testis. Within the brain, the thalamus is the predominant area of hHCN4 expression. Heterologous expression of hHCN4 produces channels of unusually slow kinetics of activation and inactivation. The mean potential of half-maximal activation (V(1/2)) was -75.2 mV. cAMP shifted V(1/2) by 11 mV to more positive values. The hHCN4 gene was mapped to chromosome band 15q24-q25. The characteristic expression pattern and the sluggish gating suggest that hHCN4 controls the rhythmic activity in both thalamocortical neurons and pacemaker cells of the heart.
Collapse
Affiliation(s)
- R Seifert
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 1999; 868:741-64. [PMID: 10414361 DOI: 10.1111/j.1749-6632.1999.tb11353.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular basis of the hyperpolarization-activated cation channels that underlie the anomalous rectifying current variously termed Ih, Iq, or I(f) is discussed. On the basis of the expression patterns and biophysical properties of the newly cloned HCN ion channels, an initial attempt at defining the identity and subunit composition of channels underlying native Ih is undertaken. By comparing the sequences of HCN channels to other members of the K channel superfamily, we discuss how channel opening may be coupled to membrane hyperpolarization and to direct binding of cyclic nucleotide. Finally, we consider some of the questions in cardiovascular physiology and neurobiology that can be addressed as a result of the demonstration that Ih is encoded by the HCN gene family.
Collapse
Affiliation(s)
- B Santoro
- Center for Neurobiology and Behavior, Columbio University, New York, New York 10032, USA
| | | |
Collapse
|
32
|
DiFrancesco D. Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node. J Physiol 1999; 515 ( Pt 2):367-76. [PMID: 10050004 PMCID: PMC2269155 DOI: 10.1111/j.1469-7793.1999.367ac.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. A Monod-Whyman-Changeux (MWC) allosteric reaction model was used in the attempt to describe the dual activation of 'pacemaker' f-channel gating subunits by voltage hyperpolarization and cyclic nucleotides. Whole-channel kinetics were described by assuming that channels are composed of two identical subunits gated independently according to the Hodgkin-Huxley (HH) equations. 2. The simple assumption that cAMP binding favours open channels was found to readily explain induction of depolarizing voltage shifts of open probability with a sigmoidal dependence on agonist concentration. 3. Voltage shifts of open probability were measured against cAMP concentration in macropatches of sino-atrial (SA) node cells; model fitting of dose-response relations yielded dissociation constants of 0.0732 and 0.4192 microM for cAMP binding to open and closed channels, respectively. The allosteric model correctly predicted the modification of the pacemaker current (If) time constant curve induced by 10 microM cAMP (13.7 mV depolarizing shift). 4. cAMP shifted deactivation more than activation rate constant curves, according to sigmoidal dose-response relations (maximal shifts of +22.3 and +13.4 mV at 10 microM cAMP, respectively); this feature was fully accounted for by allosteric interactions, and indicated that cAMP acts primarily by 'locking' f-channels in the open configuration. 5. These results provide an interpretation of the dual voltage- and cyclic nucleotide- dependence of f-channel activation.
Collapse
Affiliation(s)
- D DiFrancesco
- Università di Milano, Dipartimento di Fisiologia e Biochimica Generali, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
33
|
Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998; 393:583-7. [PMID: 9634235 DOI: 10.1038/31248] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea urchin eggs attract sperm through chemotactic peptides, which evoke complex changes in membrane voltage and in the concentrations of cyclic AMP, cyclic GMP and Ca2+ ions The intracellular signalling pathways and their cellular targets are largely unknown. We have now cloned, from sea urchin testis, the complementary DNA encoding a channel polypeptide, SPIH. Functional expression of SPIH gives rise to weakly K+-selective hyperpolarization-activated channels, whose activity is enhanced by the direct action of cAMP. Thus, SPIH is under the dual control of voltage and cAMP. The SPIH channel, which is confined to the sperm flagellum, may be involved in the control of flagellar beating. SPIH currents exhibit all the hallmarks of hyperpolarization-activated currents (Ih), which participate in the rhythmic firing of central neurons, control pacemaking in the heart, and curtail saturation by bright light in retinal photoreceptors. Because of their sequence and functional properties, Ih channels form a class of their own within the superfamily of voltage-gated and cyclic-nucleotide-gated channels.
Collapse
Affiliation(s)
- R Gauss
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany
| | | | | |
Collapse
|
34
|
Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998; 93:717-29. [PMID: 9630217 DOI: 10.1016/s0092-8674(00)81434-8] [Citation(s) in RCA: 562] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of pacemaker activity in heart and brain is mediated by hyperpolarization-activated cation channels that are directly regulated by cyclic nucleotides. We previously cloned a novel member of the voltage-gated K channel family from mouse brain (mBCNG-1) that contained a carboxy-terminal cyclic nucleotide-binding domain (Santoro et al., 1997) and hence proposed it to be a candidate gene for pacemaker channels. Heterologous expression of mBCNG-1 demonstrates that it does indeed code for a channel with properties indistinguishable from pacemaker channels in brain and similar to those in heart. Three additional mouse genes and two human genes closely related to mBCNG-1 display unique patterns of mRNA expression in different tissues, including brain and heart, demonstrating that these channels constitute a widely expressed gene family.
Collapse
Affiliation(s)
- B Santoro
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M, Giunti G, Mugelli A. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 1997; 95:568-71. [PMID: 9024140 DOI: 10.1161/01.cir.95.3.568] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Disease-associated electrophysiological alterations may contribute to the increased predisposition to arrhythmias of the hypertrophied or failing myocardium. An I(f)-like current is expressed in rat left ventricular myocytes (LVMs), its amplitude being linearly related to the severity of cardiac hypertrophy. Here, we report the occurrence and electrophysiological properties of I(f) in human LVMs. METHODS AND RESULTS LVMs were isolated from hearts of three male patients undergoing cardiac transplantation for terminal heart failure due to ischemic dilated cardiomyopathy. The patch-clamp technique was used to record I(f), ie, a barium-insensitive, cesium-sensitive, time-dependent increasing inward current elicited on hyperpolarization. Membrane capacitance was 244 +/- 27 pF (n = 25). I(f) occurred in all cells tested; its density measured at -120 mV was 2.1 +/- 0.3 pA/pF. Activation curves of I(f) (n = 24) were fitted by a Boltzmann function; the threshold was -55 mV; midpoint, -70.9 +/- 2.1 mV; slope, -5.4 +/- 0.3 mV; and maximal specific conductance, 19.6 +/- 2.5 pS/pF. I(f) blockade by extracellular cesium was voltage dependent. Reducing extracellular potassium concentration from 25 to 5.4 mmol/L caused a shift of the reversal potential from -12.7 +/- 0.5 to -24.8 +/- 2.1 mV and a 64% decrease of current conductance. CONCLUSIONS I(f) is present in human LVMs. Its electrophysiological characteristics resemble those previously described in hypertrophied rat LVMs and suggest that I(f) could be an arrhythmogenic mechanism in patients with severe heart failure.
Collapse
Affiliation(s)
- E Cerbai
- Department of Pharmacology, University of Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pfeiffer-Linn CL, Perlman I, Lasater EM. Sodium dependency of the inward potassium rectifier in horizontal cells isolated from the white bass retina. Brain Res 1995; 701:81-8. [PMID: 8925302 DOI: 10.1016/0006-8993(95)00964-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ionic properties underlying the inwardly rectifying potassium current in cultured voltage-clamped white bass horizontal cells were studied. Anomalous rectification was apparent upon membrane hyperpolarization with a reversal potential depolarized from the predicted value of EK. In raised extracellular potassium, the current increased and the reversal potential shifted toward a more depolarized membrane potential. Solutions containing decreased sodium caused a rapid decrease in the inward rectifier current but only slightly affected the reversal potential. Extracellular cesium or barium caused a reversible voltage-dependent reduction of the inward current. We interpret these results to mean that the inward rectifying channel in white bass horizontal cells is mainly permeable to potassium ions, but is sodium dependent. It may shape the photoresponses of the horizontal cells and may contribute to a hyperpolarization activated conductance increase measured in situ.
Collapse
Affiliation(s)
- C L Pfeiffer-Linn
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
37
|
Ono K, Maruoka F, Noma A. Voltage- and time-dependent block of I(f) by Sr2+ in rabbit sino-atrial node cells. Pflugers Arch 1994; 427:437-43. [PMID: 7526332 DOI: 10.1007/bf00374258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hyperpolarization-activated cation current (I(f)) was recorded in single myocytes dissociated from the rabbit sino-atrial node and the Sr(2+)-mediated block of I(f) examined. In the presence of 0.1-10 mM Sr2+, the activation phase of I(f) was followed by a slower decay during hyperpolarization. In the steady state I/V diagram, the Sr2+ block progressed with increasing hyperpolarization. Ba2+ also blocked I(f), but no time dependency could be observed. The blocking effect of Ca2+ was weak, and Mg2+ had little effect on I(f). The relationship between extracellular Sr2+ concentration [Sr2+]o and the block was described by a Hill coefficient of 1. The half-saturating [Sr2+]o were 2.0, 1.6, 1.1 and 0.65 mM at -90, -100, -110 and -120 mV, respectively. The rapid application of Sr2+ during the full activation of I(f) using the jet-stream method induced an exponential decline of I(f). The reciprocal time constants were linearly correlated to [Sr2+]o, suggesting 1:1 binding stoichiometry. The fractional electrical distance for the binding site was approximately 0.5 from the external side of the channel. Based on the multiple closed and open states for the I(f) channel, a mathematical model for the Sr2+ block was constructed in which the time course of I(f) in the presence of Sr2+ was described by the sum of three exponential functions. Fitting the model to the original traces revealed blocking and unblocking rates similar to those obtained from the jet-stream method. At -110 mV, the blocking rate was 410 M-1 s-1 while the unblocking rate was 0.16 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Ono
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
38
|
Maruoka F, Nakashima Y, Takano M, Ono K, Noma A. Cation-dependent gating of the hyperpolarization-activated cation current in the rabbit sino-atrial node cells. J Physiol 1994; 477 ( Pt 3):423-35. [PMID: 7932232 PMCID: PMC1155607 DOI: 10.1113/jphysiol.1994.sp020204] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The gating properties of the hyperpolarization-activated cation current (I(f) or Ih) were investigated in single pacemaker cells dissociated from the rabbit sino-atrial node. 2. The whole-cell I(f) was recorded in the presence of different external cations. The inward I(f) was increased when external Na+ was replaced with K+, and was decreased in Li+ or Rb+ solution. In Tris+ and Cs+ solutions, the inward I(f) was negligible. The outward tail current recorded upon depolarization was largest in Li+ solution and smaller in a sequence of Na+, Tris+ and K+ solutions. In Rb+ and Cs+ solutions, only a small tail current was recorded. 3. The outward tail current had a 'shoulder' in Na+ solution, which was much delayed by replacing Na+ with Li+. In K+ solution, the decay of the tail current was much faster, and no obvious shoulder was recorded. The tail current was slowest in Li(+)-rich and 0 mM K+ solution, and was progressively accelerated by adding K+ over the range from 0 to 3 mM. The tail current at 30 mM [K+]o showed only a small shoulder. A common binding site to modulate the I(f) deactivation was suggested for monovalent cations. 4. The shoulder of the I(f) tail became more evident as I(f) was activated to a larger extent either by prolonging the duration or by increasing the amplitude of the preceding hyperpolarization in both Na+ and Li+ solutions. 5. The I(f) was first activated by hyperpolarizing the membrane to -110 mV, and then deactivated by depolarization. The inward tail current at -50 mV showed a single exponential decay. At more positive potentials, the shoulder of the outward tail currents became more evident and the rate of the final decay was increased. 6. The time course of I(f) activation was well fitted with the sum of two exponential functions. Time constants of both components were not affected by the external cation (Na+, K+ or Li+) replacement. Likewise, the quasi-steady state activation was conserved when external Na+ was replaced with Li+. 7. Two closed and three open states were assumed in a sequential state model of the I(f) channel. The cation effects were well simulated by assuming that the deactivation rate was selectively modulated. The flow of I(f) during the spontaneous action potential was calculated. The activation of I(f) started on repolarization to the maximum diastolic potential and reached a maximum in the middle of the diastolic period. Its peak amplitude was 14% of the net inward current during the diastolic period.
Collapse
Affiliation(s)
- F Maruoka
- Department of Physiology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
39
|
Solomon JS, Nerbonne JM. Two kinetically distinct components of hyperpolarization-activated current in rat superior colliculus-projecting neurons. J Physiol 1993; 469:291-313. [PMID: 7505823 PMCID: PMC1143872 DOI: 10.1113/jphysiol.1993.sp019815] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. Whole-cell and perforated patch recording techniques were used to examine the activation, deactivation and inactivation of the time-dependent hyperpolarization-activated inward currents (Ih) in isolated superior colliculus-projecting (SCP) neurons from rat primary visual cortex. 2. Examination of inward current waveforms revealed the presence of two kinetically distinct components of Ih: one that activates with a time constant of the order of hundreds of milliseconds, and one that activates with a time constant of the order of seconds. We have termed these Ih,f and Ih,s, to denote the fast and slow components, respectively, of current activation. The time constants of activation of both Ih,f and Ih,s decrease with increasing membrane hyperpolarization. 3. Following the onset of hyperpolarizing voltage steps, a delay is evident prior to time-dependent inward current activation. This delay is voltage dependent and decreases with increasing membrane hyperpolarization. 4. The sigmoidal inward current waveforms are well fitted by the sum of two exponentials in which the faster term, corresponding to the activation of Ih,f, is raised to the power 1.34 +/- 0.26 (mean +/- S.D.). The non-integral exponent suggests that Ih,f activation involves at least two energetically non-equivalent gating transitions prior to channel opening. 5. Over a limited voltage range, tail currents could also be resolved into two distinct components. The faster component, which corresponds to the deactivation of Ih,f, decayed over a single exponential time course with a mean (+/- S.D.) time constant of 355 +/- 161 ms at -70 mV. Ih,s decay also followed a single exponential time course with a mean (+/- S.D.) time constant of 2428 +/- 1285 ms at -70 mV. Both deactivation time constants decreased with increasing depolarization. 6. The separation of inward current activation and deactivation into two distinct components and the lack of correlation between the relative amplitudes of these components suggest that Ih,f and Ih,s reflect the presence of two functionally distinct channel populations. 7. No decrements in time-dependent hyperpolarization-activated inward currents were observed during hyperpolarizations lasting up to 18 s, suggesting that neither Ih,f nor Ih,s inactivates from the open state. In addition, 10 s depolarizations to 0 mV prior to activation did not alter the waveforms of the inward currents activated directly from -40 mV, suggesting that Ih,f and Ih,s also do not inactivate from closed states. 8. The hyperpolarization-activated currents in rat SCP neurons are ideally suited to contribute to the control of the resting membrane potential and input resistance.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J S Solomon
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
40
|
Noulin JF, Joffre M. Characterization and cyclic AMP-dependence of a hyperpolarization-activated chloride conductance in Leydig cells from mature rat testis. J Membr Biol 1993; 133:1-15. [PMID: 8391581 DOI: 10.1007/bf00231873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We recently described a cyclic AMP-activated current in the membrane of Leydig cells from mature rat testis by using the whole-cell configuration of the patch-clamp technique (Noulin & Joffre, 1992a). In the present study, further experiments were performed in symmetrical CsCl solutions. We show that this current corresponds to a hyperpolarization-activated chloride conductance. Voltage jumps to negative potentials, applied from a holding potential of +60 mV, activated a time-dependent inward current. In control cells, the curve of steady-state current activation typically ranged from +60 mV (0) to -120 mV (1) and had its midpoint at -40 mV. Deactivation at positive potential was characterized by an instantaneous outwardly rectifying current which decayed with time. The kinetics of activation and deactivation were described by a double and a single exponential, respectively. Cyclic AMP, added to the pipette solution, increased both the inward rectification and the amplitude of the steady-state current in the range of 0 to -60 mV. The activation threshold was unchanged, while the V0.5 of the activation curve was shifted by 24 mV to more positive potentials. Consequently, the activation curve was steeper. The two rate constants of activation were increased and were strongly voltage dependent. In parallel, the amplitude of the instantaneous outward current and the rate constant of deactivation were increased. The reversal potential of this current was close to ECl. It did not change with equimolar replacement of cesium by TEA, and shifted with the chloride concentration gradient. This current was inhibited by chloride channel blockers. These results indicate a hyperpolarization-activated chloride conductance in the membrane of Leydig cells which is modulated by cyclic AMP. This nucleotide acts by modifying the kinetics of inward current and both the kinetics and the amplitude of deactivating outward current.
Collapse
Affiliation(s)
- J F Noulin
- Laboratoire de Physiologie Animale-URA CNRS 290 Biomembranes, UFR Sciences, Poitiers, France
| | | |
Collapse
|
41
|
Wilson M, Gleason E. An unusual voltage-gated anion channel found in the cone cells of the chicken retina. Vis Neurosci 1991; 6:19-23. [PMID: 1709043 DOI: 10.1017/s0952523800000870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using the whole-cell patch clamp technique, we have examined the voltage-gated currents present in adult chicken cone cells. When calcium and calcium-gated currents are blocked, hyperpolarizing voltage steps elicit slowly increasing inward currents as has been shown for photoreceptors in other species. Unlike the case for other species, chicken cones appear to lack the inward-rectifying cationic current Ih that contributes to the shaping of the photovoltage. Instead of Ih, these cones possess an anionic inward-rectifying current that in kinetics, activation range and probably function is remarkably similar to Ih. This anion channel is unusual in that both nitrate and acetate are more permanent than chloride ions.
Collapse
Affiliation(s)
- M Wilson
- Department of Zoology, University of California, Davis 95616
| | | |
Collapse
|
42
|
Bois P, Lenfant J. Isolated cells of the frog sinus venosus: properties of the inward current activated during hyperpolarization. Pflugers Arch 1990; 416:339-46. [PMID: 2381767 DOI: 10.1007/bf00392071] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single sinus venosus cells from frog, Rana esculenta, were isolated using an enzymic dispersion procedure, involving applications of collagenase and protease. About 40%-60% of the cells showed spontaneous contractions. Isolated cells were studied in the whole-cell configuration. Regenerative action potentials were tetrodotoxin-insensitive and similar to those recorded in multicellular preparations. Hyperpolarizing pulses in the voltage range negative to -50 mV induced the activation of a time-dependent inward current, which was blocked by 4 mM caesium but less affected by barium ions. A lower concentration of caesium (1 mM) exerted a voltage-dependent reduction of the current and decreased the spontaneous pacing rate. The activation range of the hyperpolarization-activated current approximately extended from -50 mV to -110 mV, but varied from cell to cell. A high variability was observed in the behaviour of the activation kinetics. The current had a reversal potential near -20 mV that was shifted positively by increasing the external potassium concentration (from 3 mM to 30 mM) and negatively by reducing the external sodium concentration (from 115 mM to 30 mM). The hyperpolarization-activated inward current of the frog sinus venosus cell appears to be carried by both sodium and potassium ions. It shows electrophysiological properties similar to those of the If current of the mammalian heart. The role of the current in the spontaneous activity is discussed.
Collapse
Affiliation(s)
- P Bois
- Laboratoire de Physiologie Générale, U.R.A. CNRS no 290, Faculté des Sciences, Université de Poitiers, France
| | | |
Collapse
|
43
|
Tokimasa T, Akasu T. Cyclic AMP regulates an inward rectifying sodium-potassium current in dissociated bull-frog sympathetic neurones. J Physiol 1990; 420:409-29. [PMID: 1691292 PMCID: PMC1190057 DOI: 10.1113/jphysiol.1990.sp017920] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Bull-frog sympathetic neurones in primary culture were voltage clamped in the whole-cell configuration. The pipette solution contained ATP (5 mM). 2. A hyperpolarization-activated sodium-potassium current (H-current: IH) was separated from other membrane currents in a nominally calcium-free solution containing cobalt (2 mM), magnesium (4 mM), barium (2 mM), tetraethylammonium (20 mM), tetrodotoxin (3 microM), apamin (30 nM) and 4-aminopyridine (1 mM). IH was selectively blocked by caesium (10-300 microM). 3. The steady-state activation of IH occurred between -60 and -130 mV. The H-conductance was 4.1-6.6 nS at the half-activation voltage of -90 mV. With the concentrations of potassium and sodium ions in the superfusate at 20 and 70 mM, respectively, the reversal potential of IH was about -20 mV. IH was activated with a time constant of 2.8 s at -90 mV and 22 degrees C. The Q10 between 16 and 26 degrees C was 4.3. 4. A non-hydrolysable ATP analogue in the pipette solution did not support IH activation. Intracellular 'loading' of GTP-gamma-S (30-500 microM) led to a progressive activation of IH. 5. Forskolin (10 microM) increased the maximum conductance of IH by 70%. This was associated with a depolarizing shift in the half-activation voltage (5-10 mV) and in the voltage dependence of the activation/deactivation time constant of IH. 6. Essentially the same results as with forskolin were obtained by intracellular 'loading' with cyclic AMP (3-10 microM) or bath application of 8-bromo cyclic AMP (0.1-1 mM), dibutyryl cyclic AMP (1 mM) and 3-isobutyl-1-methylxanthine (0.1-1 mM). 7. The protein kinase inhibitor H-8 (1-10 microM) decreased the peak amplitude of IH. Phorbol 12-myristate 13-acetate (10 microM), a protein kinase C activator, was without effect. 8. It is concluded that a voltage-dependent cation current can be regulated by the basal activity of adenylate cyclase, presumably through protein kinase A, in vertebrate sympathetic neurones.
Collapse
Affiliation(s)
- T Tokimasa
- Department of Physiology, Kurume University School of Medicine, Japan
| | | |
Collapse
|
44
|
Cerbai E, De Bonfioli Cavalcabó P, Masini I, Porciatti F, Mugelli A. Antiarrhythmic properties of naloxone: an electrophysiological study on sheep cardiac Purkinje fibers. Eur J Pharmacol 1989; 162:491-500. [PMID: 2744082 DOI: 10.1016/0014-2999(89)90340-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent data suggest that the opioid antagonist naloxone may exert an antiarrhythmic action on arrhythmias caused by coronary artery occlusion and reperfusion in experimental animals. We used intracellular microelectrodes to study the direct electrophysiological properties of naloxone. Experiments were carried out on sheep cardiac Purkinje fibers, the electrical and mechanical activity of which were recorded simultaneously. Naloxone (10(-7)-10(-4) M) caused a prolongation of the action potential duration, a decrease in the maximum rate of depolarization, a flattening of the slope of diastolic depolarization and a decrease in contractility. Naloxone at 10(-6) M significantly reduced the rate of spontaneously beating Purkinje fibers and at 10(-5) M completely blocked normal automaticity. Naloxone had, however, intriguing effect on the oscillatory afterpotentials, which is a relevant arrhythmogenic mechanism. While naloxone (10(-7)-10(-4) M) did not affect the digitalis-induced oscillatory afterpotentials, it increased the amplitude of the barium-induced oscillatory afterpotentials at lower concentrations (10(-7) M) and decreased the amplitude of these potentials at high concentrations (10(-6)-10(-4) M). It is concluded that naloxone exerts a direct electrophysiological effect on cardiac cells and that this effect is probably important for explaining the antiarrhythmic action of naloxone.
Collapse
Affiliation(s)
- E Cerbai
- Department of Preclinical and Clinical Pharmacology, University of Firenze, Italy
| | | | | | | | | |
Collapse
|
45
|
Allen JM, McHale NG. The effect of known K+-channel blockers on the electrical activity of bovine lymphatic smooth muscle. Pflugers Arch 1988; 411:167-72. [PMID: 2451804 DOI: 10.1007/bf00582310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of known K+-channel blockers on the electrical properties of bovine lymphatic smooth muscle were investigated using the double sucrose-gap technique. Constant current anodal pulses elicited hyperpolarizing electrotonic potentials (EP's) which were characterised by a "sag" in the potential record. Current/voltage relationship (I/V), which were examined by measuring EP amplitude at the end of 5 s anodal pulses (less than 30 microA), showed an apparent increase in conductance with increasing hyperpolarization. In the presence of caesium (10 mM), 4-aminopyridine (10 mM) or in the absence of external K+ the sag in the EP was lost and the inward rectification characteristic of the control I/V relationship was abolished. Barium (2.5 mM) also abolished in sag in the EP although TEA (10 mM) had no effect on either EP shape or I/V relationship. Thus it would appear that lymphatic smooth muscle shows inward rectification which is slowly activating and is blocked by some of the known K+-channel blockers or by the removal of external K+.
Collapse
Affiliation(s)
- J M Allen
- Biomedical Sciences Research Centre, University of Ulster, Northern Ireland
| | | |
Collapse
|
46
|
Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1988; 52:165-247. [PMID: 2477870 DOI: 10.1016/0079-6107(88)90014-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Snyders DJ, Van Bogaert PP. Alinidine modifies the pacemaker current in sheep Purkinje fibers. Pflugers Arch 1987; 410:83-91. [PMID: 3684510 DOI: 10.1007/bf00581900] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
(1) The "specific bradycardic agent" alinidine reduces the slope of the diastolic depolarization in sinoatrial tissue and Purkinje fibers. In short Purkinje fibers of sheep, alinidine (28 microM) decreased the pacemaker current by a dual action. The voltage dependence of if activation was shifted in the hyperpolarizing direction by 7.8 +/- 0.6 mV (n = 18, p less than 0.001) and the conductance of the fully activated if current was reduced to 73 +/- 2% (n = 18, p less than 0.001) of its control value. These effects were reversible and dose-dependent. (2) Ionophoretic injections of alinidine caused reversible reductions of the diastolic depolarization rate and simultaneous transient hyperpolarizing shifts of the if activation range. (3) Some prolongation of the action potential duration was observed at 28 microM and more pronounced at higher concentration. This was presumably the consequence of a reduction by alinidine of outward repolarizing current carried by the background inward rectifier and plateau current ix. (4) The action of alinidine on if resulted in a slower activation of a reduced fraction of the pacemaker current at the maximal diastolic potential level. This explains the decrease of the diastolic depolarization rate observed in Purkinje fibers.
Collapse
Affiliation(s)
- D J Snyders
- Department of Physiology, University of Antwerp (R.U.C.A.), Belgium
| | | |
Collapse
|
48
|
Edman A, Gestrelius S, Grampp W. Current activation by membrane hyperpolarization in the slowly adapting lobster stretch receptor neurone. J Physiol 1987; 384:671-90. [PMID: 2443664 PMCID: PMC1192284 DOI: 10.1113/jphysiol.1987.sp016476] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. A polarization-induced membrane current, IQ, was investigated in the slowly adapting lobster stretch receptor neurone using conventional electrophysiological techniques including intracellular ion measurements. 2. The current was readily blocked by Cs+ in a voltage-dependent manner, but proved to be unaffected by tetrodotoxin, tetraethylammonium and 4-aminopyridine. 3. From an analysis of the ionic basis of IQ, it appeared that the current is carried by both Na+ and K+ through a membrane channel whose permeability for K+ is about six times larger than that for Na+ in a normal ionic environment. In the presence of reduced external Na+ concentration the Q-channel increases its permeability for both Na+ and K+, but more so for Na+ than for K+. 4. Kinetically, IQ was found to be characterized by a steep sigmoidal relationship between membrane voltage and steady-state current activation, and by a bell-shaped relationship between membrane voltage and the time constant of the exponential phase of current activation or deactivation. A significant feature of the latter relationship is a tendency to level off at finite time-constant values in both strongly hyperpolarizing and strongly depolarizing voltage regions. 5. From the experiments a mathematical IQ model was inferred. This model was based on constant-field and channel-gating kinetics involving a voltage-dependent reaction step in series with a voltage-independent reaction step. The model was found to successfully reproduce IQ behaviour in the living preparation. 6. Functionally, the activation of IQ was found to play a role in setting the cell's resting polarization and membrane excitability. This function was inferred from experiments on unimpaled cells in which it was possible to demonstrate some overlap between the voltage ranges of IQ activation and impulse initiation. In addition, in impaled cells the activation of IQ was found to cause some shortening of post-tetanic membrane hyperpolarization and to accelerate, thereby, the post-tetanic restoration of membrane excitability to control levels.
Collapse
Affiliation(s)
- A Edman
- Department of Physiology and Biophysics, University of Lund, Sweden
| | | | | |
Collapse
|
49
|
Boyett MR, Hart G, Levi AJ. Factors affecting intracellular sodium during repetitive activity in isolated sheep Purkinje fibres. J Physiol 1987; 384:405-29. [PMID: 2443663 PMCID: PMC1192269 DOI: 10.1113/jphysiol.1987.sp016461] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Intracellular Na+ activity (aiNa) was measured using neutral-carrier Na+-sensitive micro-electrodes in voltage-clamped sheep Purkinje fibres during and after 4 min sequences of depolarizing pulses applied to around 0 mV, at a rate of 2.5 Hz. After trains of pulse duration 50 ms the mean increase in aiNa was 0.65 +/- 0.3 mM (mean +/- S.D., n = 18) whereas with longer pulse durations this rise became progressively smaller. At pulse durations of 300 ms a fall in aiNa was usually found. 2. Recovery of aiNa after a pulse sequence followed a roughly exponential time course. The half-time of decline after a rise in aiNa using 50 ms pulses was 111 +/- 52 s (n = 10), compared with a half-time of 318 +/- 116 s (n = 6) for recovery from a fall in aiNa during a sequence of 300 ms pulses. 3. Application of 2 mM-Cs+ to block the pace-maker current (if) resulted in a decrease in resting aiNa by 0.85 +/- 0.45 mM (n = 6) and an outward current shift. Na+ loading during a depolarizing pulse train was greater in 2 mM-Cs+ than in control solution. The rise in aiNa produced by a train of 50 ms pulses in Cs+ was 1.15 +/- 0.4 mM (n = 10). At short pulse durations in the presence of Cs+, Na+ loading at the end of a pulse train increased as a function of pulse duration, becoming maximal at a duration of approximately 50 ms and then diminishing at longer pulse durations. 4. Application of 2.5 X 10(-5) M-tetrodotoxin (TTX) produced a fall in resting aiNa of 0.55 +/- 0.2 mM (n = 6) and an outward current shift, suggesting that a TTX-sensitive component of steady-state Na+ current exists at potentials in the region -65 to -80 mV. 5. TTX greatly reduced the rise in aiNa during a depolarizing pulse train at all pulse durations tested. A fall in aiNa was now found after trains of shorter pulse duration than in control solution. Similar results were obtained in the absence of TTX if the pulse train was initiated from a holding potential which was positive to the Na+ current (iNa) threshold. When iNa had been blocked, using either TTX or a low holding potential, the mean rise in aiNa after a train of 50 ms pulses was 0.25 +/- 0.2 mM (n = 8).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Boyett
- Department of Physiology, University of Leeds
| | | | | |
Collapse
|
50
|
DiFrancesco D, Ferroni A, Mazzanti M, Tromba C. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J Physiol 1986; 377:61-88. [PMID: 2432247 PMCID: PMC1182823 DOI: 10.1113/jphysiol.1986.sp016177] [Citation(s) in RCA: 336] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Individual cells were isolated from the sino-atrial node area of the rabbit heart using an enzyme medium containing collagenase and elastase. After enzymatic treatment the cells were placed in normal Tyrode solution, where beating resumed in a fraction of them. Isolated cells were studied in the whole cell configuration. Action potentials as well as membrane currents under voltage-clamp conditions were similar to those in multicellular preparations. Pulses to voltages more negative than about -50 mV caused activation of the hyperpolarizing-activated current, if. Investigation of the properties of this current was carried out under conditions that limited the influence of other current systems during voltage clamp. The if current activation range usually extended approximately from -50 to -100 mV, but varied from cell to cell. In several cases, pulsing to the region of -40 mV elicited a sizeable if. Both current activation and deactivation during voltage steps had S-shaped time courses. A high variability was however observed in the sigmoidal behaviour of if kinetics. Plots of the fully-activated current-voltage (I-V) relation in different extracellular Na and K concentrations showed that both ions carry the current if. While changes in the external Na concentration caused the current I-V relation to undergo simple shifts along the voltage axis, changes in extracellular K concentration were also associated with changes in its slope. Again, a large variability was observed in the increase of I-V slope on raising the external K concentration. The current if was strongly depressed by Cs, and the block induced by 5 mM-Cs was markedly voltage dependent. Adrenaline (1-5 microM) and noradrenaline (1 microM) increased the current if around the half-activation voltage range and accelerated its activation at more negative voltages. Often, however, drug application failed to elicit any modification of if. Current run-down was observed in nearly all cells, although at a highly variable rate. It was accelerated by raising the extracellular K concentration but did not show a marked use dependence. Both the if activation curve and the fully activated I-V relation were affected by run-down, the former being shifted to more negative values along the voltage axis and the latter being depressed with no apparent change of the if reversal potential.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|