1
|
Candelori B, Bardella G, Spinelli I, Ramawat S, Pani P, Ferraina S, Scardapane S. Spatio-temporal transformers for decoding neural movement control. J Neural Eng 2025; 22:016023. [PMID: 39870043 DOI: 10.1088/1741-2552/adaef0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activityin vivoremains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.Approach. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.Main results. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.Significance. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.
Collapse
Affiliation(s)
- Benedetta Candelori
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Indro Spinelli
- Department of Computer Science, Sapienza University of Rome, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Simone Scardapane
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
3
|
Nakano H, Tang Y, Morita T, Naito E. Theoretical proposal for restoration of hand motor function based on plasticity of motor-cortical interhemispheric interaction and its developmental rule. Front Neurol 2024; 15:1408324. [PMID: 39114533 PMCID: PMC11304450 DOI: 10.3389/fneur.2024.1408324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
After stroke, the poorer recovery of motor function of upper extremities compared to other body parts is a longstanding problem. Based on our recent functional MRI evidence on healthy volunteers, this perspective paper proposes systematic hand motor rehabilitation utilizing the plasticity of interhemispheric interaction between motor cortices and following its developmental rule. We first discuss the effectiveness of proprioceptive intervention on the paralyzed (immobile) hand synchronized with voluntary movement of the intact hand to induce muscle activity in the paretic hand. In healthy participants, we show that this bilateral proprioceptive-motor coupling intervention activates the bilateral motor cortices (= bilaterally active mode), facilitates interhemispheric motor-cortical functional connectivity, and augments muscle activity of the passively-moved hand. Next, we propose training both hands to perform different movements, which would be effective for stroke patients who becomes able to manage to move the paretic hand. This bilaterally different movement training may guide the motor cortices into left-right independent mode to improve interhemispheric inhibition and hand dexterity, because we have shown in healthy older adults that this training reactivates motor-cortical interhemispheric inhibition (= left-right independent mode) declined with age, and can improve hand dexterity. Transition of both motor cortices from the bilaterally active mode to the left-right independent mode is a developmental rule of hand motor function and a common feature of motor function recovery after stroke. Hence, incorporating the brain's inherent capacity for spontaneous recovery and adhering to developmental principles may be crucial considerations in designing effective rehabilitation strategies.
Collapse
Affiliation(s)
- Hideki Nakano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Yandi Tang
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
García-Córdova F, Guerrero-González A, Zueco J, Cabrera-Lozoya A. Simultaneous Sensing and Actuating Capabilities of a Triple-Layer Biomimetic Muscle for Soft Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:9132. [PMID: 38005519 PMCID: PMC10674967 DOI: 10.3390/s23229132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
This work presents the fabrication and characterization of a triple-layered biomimetic muscle constituted by polypyrrole (PPy)-dodecylbenzenesulfonate (DBS)/adhesive tape/PPy-DBS demonstrating simultaneous sensing and actuation capabilities. The muscle was controlled by a neurobiologically inspired cortical neural network sending agonist and antagonist signals to the conducting polymeric layers. Experiments consisted of controlled voluntary movements of the free end of the muscle at angles of ±20°, ±30°, and ±40° while monitoring the muscle's potential response. Results show the muscle's potential varies linearly with applied current amplitude during actuation, enabling current sensing. A linear dependence between muscle potential and temperature enabled temperature sensing. Electrolyte concentration changes also induced exponential variations in the muscle's potential, allowing for concentration sensing. Additionally, the influence of the electric current density on the angular velocity, the electric charge density, and the desired angle was studied. Overall, the conducting polymer-based soft biomimetic muscle replicates properties of natural muscles, permitting simultaneous motion control, current, temperature, and concentration sensing. The integrated neural control system exhibits key features of biological motion regulation. This muscle actuator with its integrated sensing and control represents an advance for soft robotics, prosthetics, and biomedical devices requiring biomimetic multifunctionality.
Collapse
Affiliation(s)
- Francisco García-Córdova
- Department of Thermal and Fluid Engineering, Polytechnic University of Cartagena, Campus Muralla del Mar, 30203 Cartagena, Spain; (F.G.-C.); (J.Z.)
| | - Antonio Guerrero-González
- Department of Automation, Electrical Engineering and Electronic Technology, Polytechnic University of Cartagena, Campus Muralla del Mar, 30203 Cartagena, Spain
| | - Joaquín Zueco
- Department of Thermal and Fluid Engineering, Polytechnic University of Cartagena, Campus Muralla del Mar, 30203 Cartagena, Spain; (F.G.-C.); (J.Z.)
| | - Andrés Cabrera-Lozoya
- Department of Applied Physics and Naval Technology, Polytechnic University of Cartagena, Campus Muralla del Mar, 30203 Cartagena, Spain;
| |
Collapse
|
5
|
Maurus P, Jackson K, Cashaback JG, Cluff T. The nervous system tunes sensorimotor gains when reaching in variable mechanical environments. iScience 2023; 26:106756. [PMID: 37213228 PMCID: PMC10197011 DOI: 10.1016/j.isci.2023.106756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Humans often move in the presence of mechanical disturbances that can vary in direction and amplitude throughout movement. These disturbances can jeopardize the outcomes of our actions, such as when drinking from a glass of water on a turbulent flight or carrying a cup of coffee while walking on a busy sidewalk. Here, we examine control strategies that allow the nervous system to maintain performance when reaching in the presence of mechanical disturbances that vary randomly throughout movement. Healthy participants altered their control strategies to make movements more robust against disturbances. The change in control was associated with faster reaching movements and increased responses to proprioceptive and visual feedback that were tuned to the variability of the disturbances. Our findings highlight that the nervous system exploits a continuum of control strategies to increase its responsiveness to sensory feedback when reaching in the presence of increasingly variable physical disturbances.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Kuira Jackson
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua G.A. Cashaback
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Corresponding author
| |
Collapse
|
6
|
Ramu V, Lakshminarayanan K. Enhanced motor imagery of digits within the same hand via vibrotactile stimulation. Front Neurosci 2023; 17:1152563. [PMID: 37360173 PMCID: PMC10289883 DOI: 10.3389/fnins.2023.1152563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose The aim of the present study is to evaluate the effect of vibrotactile stimulation prior to repeated complex motor imagery of finger movements using the non-dominant hand on motor imagery (MI) performance. Methods Ten healthy right-handed adults (4 females and 6 males) participated in the study. The subjects performed motor imagery tasks with and without a brief vibrotactile sensory stimulation prior to performing motor imagery using either their left-hand index, middle, or thumb digits. Mu- and beta-band event-related desynchronization (ERD) at the sensorimotor cortex and an artificial neural network-based digit classification was evaluated. Results The ERD and digit discrimination results from our study showed that ERD was significantly different between the vibration conditions for the index, middle, and thumb. It was also found that digit classification accuracy with-vibration (mean ± SD = 66.31 ± 3.79%) was significantly higher than without-vibration (mean ± SD = 62.68 ± 6.58%). Conclusion The results showed that a brief vibration was more effective at improving MI-based brain-computer interface classification of digits within a single limb through increased ERD compared to performing MI without vibrotactile stimulation.
Collapse
|
7
|
Lakshminarayanan K, Shah R, Daulat SR, Moodley V, Yao Y, Sengupta P, Ramu V, Madathil D. Evaluation of EEG Oscillatory Patterns and Classification of Compound Limb Tactile Imagery. Brain Sci 2023; 13:brainsci13040656. [PMID: 37190621 DOI: 10.3390/brainsci13040656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Objective: The purpose of this study was to investigate the cortical activity and digit classification performance during tactile imagery (TI) of a vibratory stimulus at the index, middle, and thumb digits within the left hand in healthy individuals. Furthermore, the cortical activities and classification performance of the compound TI were compared with similar compound motor imagery (MI) with the same digits as TI in the same subjects. Methods: Twelve healthy right-handed adults with no history of upper limb injury, musculoskeletal condition, or neurological disorder participated in the study. The study evaluated the event-related desynchronization (ERD) response and brain-computer interface (BCI) classification performance on discriminating between the digits in the left-hand during the imagery of vibrotactile stimuli to either the index, middle, or thumb finger pads for TI and while performing a motor activity with the same digits for MI. A supervised machine learning technique was applied to discriminate between the digits within the same given limb for both imagery conditions. Results: Both TI and MI exhibited similar patterns of ERD in the alpha and beta bands at the index, middle, and thumb digits within the left hand. While TI had significantly lower ERD for all three digits in both bands, the classification performance of TI-based BCI (77.74 ± 6.98%) was found to be similar to the MI-based BCI (78.36 ± 5.38%). Conclusions: The results of this study suggest that compound tactile imagery can be a viable alternative to MI for BCI classification. The study contributes to the growing body of evidence supporting the use of TI in BCI applications, and future research can build on this work to explore the potential of TI-based BCI for motor rehabilitation and the control of external devices.
Collapse
Affiliation(s)
- Kishor Lakshminarayanan
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Rakshit Shah
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Sohail R Daulat
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Viashen Moodley
- Arizona Center for Hand to Shoulder Surgery, Phoenix, AZ 85004, USA
| | - Yifei Yao
- Soft Tissue Biomechanics Laboratory, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Puja Sengupta
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vadivelan Ramu
- Neuro-Rehabilitation Lab, Department of Sensors and Biomedical Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O. P. Jindal Global University, Sonipat 131001, Haryana, India
| |
Collapse
|
8
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
9
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Assistive Loading Promotes Goal-Directed Tuning of Stretch Reflex Gains. eNeuro 2023; 10:ENEURO.0438-22.2023. [PMID: 36781230 PMCID: PMC9972504 DOI: 10.1523/eneuro.0438-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, D-80992 Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, D-80992 Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
10
|
Proprioceptive and Visual Feedback Responses in Macaques Exploit Goal Redundancy. J Neurosci 2023; 43:787-802. [PMID: 36535766 PMCID: PMC9899082 DOI: 10.1523/jneurosci.1332-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
A common problem in motor control concerns how to generate patterns of muscle activity when there are redundant solutions to attain a behavioral goal. Optimal feedback control is a theory that has guided many behavioral studies exploring how the motor system incorporates task redundancy. This theory predicts that kinematic errors that deviate the limb should not be corrected if one can still attain the behavioral goal. Studies in humans demonstrate that the motor system can flexibly integrate visual and proprioceptive feedback of the limb with goal redundancy within 90 ms and 70 ms, respectively. Here, we show monkeys (Macaca mulatta) demonstrate similar abilities to exploit goal redundancy. We trained four male monkeys to reach for a goal that was either a narrow square or a wide, spatially redundant rectangle. Monkeys exhibited greater trial-by-trial variability when reaching to the wide goal consistent with exploiting goal redundancy. On random trials we jumped the visual feedback of the hand and found monkeys corrected for the jump when reaching to the narrow goal and largely ignored the jump when reaching for the wide goal. In a separate set of experiments, we applied mechanical loads to the arm of the monkey and found similar corrective responses based on goal shape. Muscle activity reflecting these different corrective responses were detected for the visual and mechanical perturbations starting at ∼90 and ∼70 ms, respectively. Thus, rapid motor responses in macaques can exploit goal redundancy similar to humans, creating a paradigm to study the neural basis of goal-directed motor action and motor redundancy.SIGNIFICANCE STATEMENT Moving in the world requires selecting from an infinite set of possible motor commands. Theories predict that motor commands are selected that exploit redundancies. Corrective responses in humans to either visual or proprioceptive disturbances of the limb can rapidly exploit redundant trajectories to a goal in <100 ms after a disturbance. However, uncovering the neural correlates generating these rapid motor corrections has been hampered by the absence of an animal model. We developed a behavioral paradigm in monkeys that incorporates redundancy in the form of the shape of the goal. Critically, monkeys exhibit corrective responses and timings similar to humans performing the same task. Our paradigm provides a model for investigating the neural correlates of sophisticated rapid motor corrections.
Collapse
|
11
|
Codol O, Kashefi M, Forgaard CJ, Galea JM, Pruszynski JA, Gribble PL. Sensorimotor feedback loops are selectively sensitive to reward. eLife 2023; 12:81325. [PMID: 36637162 PMCID: PMC9910828 DOI: 10.7554/elife.81325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Although it is well established that motivational factors such as earning more money for performing well improve motor performance, how the motor system implements this improvement remains unclear. For instance, feedback-based control, which uses sensory feedback from the body to correct for errors in movement, improves with greater reward. But feedback control encompasses many feedback loops with diverse characteristics such as the brain regions involved and their response time. Which specific loops drive these performance improvements with reward is unknown, even though their diversity makes it unlikely that they are contributing uniformly. We systematically tested the effect of reward on the latency (how long for a corrective response to arise?) and gain (how large is the corrective response?) of seven distinct sensorimotor feedback loops in humans. Only the fastest feedback loops were insensitive to reward, and the earliest reward-driven changes were consistently an increase in feedback gains, not a reduction in latency. Rather, a reduction of response latencies only tended to occur in slower feedback loops. These observations were similar across sensory modalities (vision and proprioception). Our results may have implications regarding feedback control performance in athletic coaching. For instance, coaching methodologies that rely on reinforcement or 'reward shaping' may need to specifically target aspects of movement that rely on reward-sensitive feedback responses.
Collapse
Affiliation(s)
- Olivier Codol
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Mehrdad Kashefi
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Christopher J Forgaard
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
| | - Joseph M Galea
- School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - J Andrew Pruszynski
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Robarts Research Institute, University of Western OntarioLondonCanada
| | - Paul L Gribble
- Brain and Mind Institute, University of Western OntarioLondonCanada
- Department of Psychology, University of Western OntarioLondonCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, University of Western OntarioOntarioCanada
- Haskins LaboratoriesNew HavenUnited States
| |
Collapse
|
12
|
The Effects of Subthreshold Vibratory Noise on Cortical Activity During Motor Imagery. Motor Control 2023:1-14. [PMID: 36801814 DOI: 10.1123/mc.2022-0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/04/2022] [Accepted: 01/08/2023] [Indexed: 02/19/2023]
Abstract
Previous studies have demonstrated that both visual and proprioceptive feedback play vital roles in mental practice of movements. Tactile sensation has been shown to improve with peripheral sensory stimulation via imperceptible vibratory noise by stimulating the sensorimotor cortex. With both proprioception and tactile sensation sharing the same population of posterior parietal neurons encoding within high-level spatial representations, the effect of imperceptible vibratory noise on motor imagery-based brain-computer interface is unknown. The objective of this study was to investigate the effects of this sensory stimulation via imperceptible vibratory noise applied to the index fingertip in improving motor imagery-based brain-computer interface performance. Fifteen healthy adults (nine males and six females) were studied. Each subject performed three motor imagery tasks, namely drinking, grabbing, and flexion-extension of the wrist, with and without sensory stimulation while being presented a rich immersive visual scenario through a virtual reality headset. Results showed that vibratory noise increased event-related desynchronization during motor imagery compared with no vibration. Furthermore, the task classification percentage was higher with vibration when the tasks were discriminated using a machine learning algorithm. In conclusion, subthreshold random frequency vibration affected motor imagery-related event-related desynchronization and improved task classification performance.
Collapse
|
13
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
14
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Abstract
Many of us know about stretch reflexes from the doctor's office, when a physician taps the tendon near our kneecap to elicit a quick knee extension. This procedure is used as a diagnostic tool to determine the integrity of the spinal cord and the extension response it elicits may seem otherwise useless. In fact, the tendon tap taps into one aspect of a critical building block of mammalian motor control, the stretch reflexes. Stretch reflexes are often thought to quickly resist unexpected changes in muscle length via a very simple circuit in the spinal cord, and this is one circuit that the tendon tap engages. It turns out, however, that stretch reflexes support a myriad of functions and are highly flexible. Under naturalistic conditions, stretch reflexes are shaped by peripheral physiology and engage neural circuits spanning the spinal cord, brainstem and cerebral cortex. In this Primer, we outline what is currently known about stretch reflex function and its underlying mechanisms, with a specific focus on how the cascade of nested responses collectively known as stretch reflexes interact with and build off of one another to support real-world motor behavior.
Collapse
Affiliation(s)
- Sasha Reschechtko
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
16
|
Maurus P, Kurtzer I, Antonawich R, Cluff T. Similar stretch reflexes and behavioral patterns are expressed by the dominant and nondominant arms during postural control. J Neurophysiol 2021; 126:743-762. [PMID: 34320868 DOI: 10.1152/jn.00152.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb dominance is evident in many daily activities, leading to the prominent idea that each hemisphere of the brain specializes in controlling different aspects of movement. Past studies suggest that the dominant arm is primarily controlled via an internal model of limb dynamics that enables the nervous system to produce efficient movements. In contrast, the nondominant arm may be primarily controlled via impedance mechanisms that rely on the strong modulation of sensory feedback from individual joints to control limb posture. We tested whether such differences are evident in behavioral responses and stretch reflexes following sudden displacement of the arm during posture control. Experiment 1 applied specific combinations of elbow-shoulder torque perturbations (the same for all participants). Peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles were not statistically different between the two arms. Experiment 2 induced specific combinations of joint motion (the same for all participants). Again, peak joint displacements, return times, end point accuracy, and the directional tuning and amplitude of stretch reflexes in nearly all muscles did not differ statistically when countering the imposed loads with each arm. Moderate to strong correlations were found between stretch reflexes and behavioral responses to the perturbations with the two arms across both experiments. Collectively, the results do not support the idea that the dominant arm specializes in exploiting internal models and the nondominant arm in impedance control by increasing reflex gains to counter sudden loads imposed on the arms during posture control.NEW & NOTEWORTHY A prominent hypothesis is that the nervous system controls the dominant arm through predictive internal models and the nondominant arm through impedance mechanisms. We tested whether stretch reflexes of muscles in the two arms also display such specialization during posture control. Nearly all behavioral responses and stretch reflexes did not differ statistically but were strongly correlated between the arms. The results indicate individual signatures of feedback control that are common for the two arms.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Ryan Antonawich
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Tremor and Dysmetria in Multiple Sclerosis: A Neurophysiological Study. Tremor Other Hyperkinet Mov (N Y) 2021; 11:30. [PMID: 34395055 PMCID: PMC8323523 DOI: 10.5334/tohm.598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Objective The mechanisms contributing to the pathogenesis of tremor and/or dysmetria in multiple sclerosis (MS) are poorly understood. Abnormal oscillations within the olivo-cerebello-thalamo-cortical networks are believed to play an important part in tremor aetiology, but could also contribute to intention dysmetria due to disruptions in motor timing. Conversely, delayed central motor conduction times are a common feature of ataxias, but could also contribute to the expression of dysmetria in MS. This study examined the roles of central conduction delays in the manifestation of tremor and/or dysmetria in MS. Methods Twenty-three individuals with MS participated: 8 with no movement disorder, 6 with tremor, 4 with pure dysmetria and 5 with both tremor and dysmetria. Median nerve somatosensory evoked potentials (SEPs), transcranial magnetic stimulation (TMS) over the motor cortex and cervical spine, stretch reflexes were used assess sensory and motor conduction times. Results Central, but not peripheral, sensory conductions time were significantly delayed in participants with dysmetria, regardless of the presence of tremor. Similarly, the TMS evoked muscles responses and the long-latency component of stretch reflexes were significantly delayed in those with dysmetria, but not pure tremor. Conclusion Dysmetria in MS is associated with delays in central conduction of sensory or motor pathways, or both, likely leading to disruption of muscle activation timing and terminal oscillations that contribute to dysmetria. Significance The presence of dysmetria in MS is associated with decreased conduction velocities in central sensory and/or motor pathways likely reflects greater demyelination of these axons compared to those with no movement disorder or pure tremor.
Collapse
|
18
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Poscente SV, Peters RM, Cashaback JGA, Cluff T. Rapid Feedback Responses Parallel the Urgency of Voluntary Reaching Movements. Neuroscience 2021; 475:163-184. [PMID: 34302907 DOI: 10.1016/j.neuroscience.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
Optimal feedback control is a prominent theory used to interpret human motor behaviour. The theory posits that skilled actions emerge from control policies that link voluntary motor control (feedforward) with flexible feedback corrections (feedback control). It is clear the nervous system can generate flexible motor corrections (reflexes) when performing actions with different goals. We know little, however, about shared features of voluntary actions and feedback control in human movement. Here we reveal a link between the timing demands of voluntary actions and flexible responses to mechanical perturbations. In two experiments, 40 human participants (21 females) made reaching movements with different timing demands. We disturbed the arm with mechanical perturbations at movement onset (Experiment 1) and at locations ranging from movement onset to completion (Experiment 2). We used the resulting muscle responses and limb displacements as a proxy for the control policies that support voluntary reaching movements. We observed an increase in the sensitivity of elbow and shoulder muscle responses and a reduction in limb motion when the task imposed greater urgency to respond to the same perturbations. The results reveal a relationship between voluntary actions and feedback control as the limb was displaced less when moving faster in perturbation trials. Muscle responses scaled with changes in the displacement of the limb in perturbation trials within each timing condition. Across both experiments, human behaviour was captured by simulations based on stochastic optimal feedback control. Taken together, the results highlight flexible control that links sensory processing with features of human reaching movements.
Collapse
Affiliation(s)
- Sophia V Poscente
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Joshua G A Cashaback
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE 19716, USA
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
20
|
van den Boom M, Miller KJ, Gregg NM, Ojeda Valencia G, Lee KH, Richner TJ, Ramsey NF, Worrell GA, Hermes D. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neuroimage Clin 2021; 31:102728. [PMID: 34182408 PMCID: PMC8253998 DOI: 10.1016/j.nicl.2021.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022]
Abstract
Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.
Collapse
Affiliation(s)
- Max van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas J Richner
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nick F Ramsey
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Greg A Worrell
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Forgaard CJ, Reschechtko S, Gribble PL, Pruszynski JA. Skin and muscle receptors shape coordinated fast feedback responses in the upper limb. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Transient deactivation of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques. Curr Biol 2021; 31:1476-1487.e5. [PMID: 33592191 DOI: 10.1016/j.cub.2021.01.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
We can generate goal-directed motor corrections with surprising speed, but their neural basis is poorly understood. Here, we show that temporary cooling of dorsal premotor cortex (PMd) impaired both spatial accuracy and the speed of corrective responses, whereas cooling parietal area 5 (A5) impaired only spatial accuracy. Simulations based on optimal feedback control (OFC) models demonstrated that "deactivation" of the control policy (reduction in feedback gain) and state estimation (reduction in Kalman gain) caused impairments similar to that observed for PMd and A5 cooling, respectively. Furthermore, combined deactivation of both cortical regions led to additive impairments of individual deactivations, whereas reducing the amount of cooling to PMd led to impairments in response speed but not spatial accuracy, both also predicted by OFC models. These results provide causal support that frontoparietal circuits beyond primary somatosensory and motor cortices are involved in generating goal-directed motor corrections.
Collapse
|
23
|
Griffin DM, Strick PL. The motor cortex uses active suppression to sculpt movement. SCIENCE ADVANCES 2020; 6:6/34/eabb8395. [PMID: 32937371 PMCID: PMC7442473 DOI: 10.1126/sciadv.abb8395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Even the simplest movements are generated by a remarkably complex pattern of muscle activity. Fast, accurate movements at a single joint are produced by a stereotyped pattern that includes a decrease in any preexisting activity in antagonist muscles. This premovement suppression is necessary to prevent the antagonist muscle from opposing movement generated by the agonist muscle. Here, we provide evidence that the primary motor cortex (M1) sends a command signal that generates this premovement suppression. Thus, output neurons in M1 sculpt complex spatiotemporal patterns of motor output not only by actively turning on muscles but also by actively turning them off.
Collapse
Affiliation(s)
- Darcy M Griffin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Systems Neuroscience Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter L Strick
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Systems Neuroscience Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Tian R, Dewald JPA, Sinha N, Yang Y. Assessing Neural Connectivity and Associated Time Delays of Muscle Responses to Continuous Position Perturbations. Ann Biomed Eng 2020; 49:432-440. [PMID: 32705425 DOI: 10.1007/s10439-020-02573-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
Both linear and nonlinear electromyographic (EMG) connectivity has been reported during the expression of stretch reflexes, though it is not clear whether they are generated by the same neural pathways. To answer this question, we aim to distinguish linear and nonlinear connectivity, as well as their delays in muscle responses, resulting from continuous elbow joint perturbations. We recorded EMG from Biceps Brachii muscle when eight able-bodied participants were performing a steady elbow flexion torque while simultaneously receiving a continuous position perturbation. Using a recently developed phase coupling metric, we estimated linear and nonlinear connectivity as well as their associated delays between Biceps EMG responses and perturbations. We found that the time delay for linear connectivity (24.5 ± 5.4 ms) is in the range of short-latency stretch reflex period (< 35 ms), while that for nonlinear connectivity (53.8 ± 3.2 ms) is in the range of long-latency stretch reflex period (40-70 ms). These results suggest that the estimated linear connectivity between EMG and perturbations is very likely generated by the mono-synaptic spinal stretch reflex loop, while the nonlinear connectivity may be associated with multi-synaptic supraspinal stretch reflex loops. As such, this study provides new evidence of the nature of neural connectivity related to the stretch reflex.
Collapse
Affiliation(s)
- Runfeng Tian
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA. .,Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK, USA.
| |
Collapse
|
25
|
Rogić Vidaković M, Kostović A, Jerković A, Šoda J, Russo M, Stella M, Knežić A, Vujović I, Mihalj M, Baban J, Ljubenkov D, Peko M, Benzon B, Hagelien MV, Đogaš Z. Using Cutaneous Receptor Vibration to Uncover the Effect of Transcranial Magnetic Stimulation (TMS) on Motor Cortical Excitability. Med Sci Monit 2020; 26:e923166. [PMID: 32459795 PMCID: PMC7275644 DOI: 10.12659/msm.923166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Little is known about how vibrational stimuli applied to hand digits affect motor cortical excitability. The present transcranial magnetic stimulation (TMS) study investigated motor evoked potentials (MEPs) in the upper extremity muscle following high-frequency vibratory digit stimulation. Material/Methods High-frequency vibration was applied to the upper extremity digit II utilizing a miniature electromagnetic solenoid-type stimulator-tactor in 11 healthy study participants. The conditioning stimulation (C) preceded the test magnetic stimulation (T) by inter-stimulus intervals (ISIs) of 5–500 ms in 2 experimental sessions. The TMS was applied over the primary motor cortex for the hand abductor pollicis-brevis (APB) muscle. Results Dunnett’s multiple comparisons test indicated significant suppression of MEP amplitudes at ISIs of 200 ms (P=0.001), 300 ms (P=0.023), and 400 ms (P=0.029) compared to control. Conclusions MEP amplitude suppression was observed in the APB muscle at ISIs of 200–400 ms, applying afferent signaling that originates in skin receptors following the vibratory stimuli. The study provides novel insight on the time course and MEP modulation following cutaneous receptor vibration of the hand digit. The results of the study may have implications in neurology in the neurorehabilitation of patients with increased amplitude of MEPs.
Collapse
Affiliation(s)
- Maja Rogić Vidaković
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| | - Ana Kostović
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| | - Ana Jerković
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| | - Joško Šoda
- Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split Faculty of Maritime Studies, Split, Croatia
| | - Mladen Russo
- Department of Electronics, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Maja Stella
- Department of Electronics, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Ante Knežić
- Department of Electronics, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Igor Vujović
- Signal Processing, Analysis and Advanced Diagnostics Research and Education Laboratory (SPAADREL), University of Split Faculty of Maritime Studies, Split, Croatia
| | - Mario Mihalj
- Department of Neurology, Laboratory of Electromyoneurography, University Hospital of Split, Split, Croatia
| | - Jure Baban
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Davor Ljubenkov
- Department of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marin Peko
- Department of Electronics, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Benjamin Benzon
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| | - Maximilian Vincent Hagelien
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| | - Zoran Đogaš
- Department of Neuroscience, Laboratory for Human and Experimental Neurophysiology (LAHEN), University of Split School of Medicine, Split, Croatia
| |
Collapse
|
26
|
Linn-Evans ME, Petrucci MN, Amundsen Huffmaster SL, Chung JW, Tuite PJ, Howell MJ, Videnovic A, MacKinnon CD. REM sleep without atonia is associated with increased rigidity in patients with mild to moderate Parkinson's disease. Clin Neurophysiol 2020; 131:2008-2016. [PMID: 32451296 DOI: 10.1016/j.clinph.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Increased muscle activity during rapid eye movement (REM) sleep (i.e. REM sleep without atonia) is common in people with Parkinson's disease (PD). This study tested the hypotheses that people with PD and REM sleep without atonia (RSWA) would present with more severe and symmetric rigidity compared to individuals with PD without RSWA and age-matched controls. METHODS Sixty-one individuals participated in this study (41 PD, 20 controls). An overnight sleep study was used to classify participants with PD as having either elevated (PD-RSWA+) or normal muscle activity (PD-RSWA-) during REM sleep. Quantitative measures of rigidity were obtained using a robotic manipulandum that passively pronated and supinated the forearm. RESULTS Quantitative measures of forearm rigidity were significantly higher in the PD-RSWA+ group compared to the control group. Rigidity was significantly more asymmetric between limbs in the PD-RSWA- group compared with controls, while there was no significant difference in symmetry between the control and PD-RSWA+ groups. CONCLUSION In people with mild to moderate PD, RSWA is associated with an increased and more symmetric presentation of upper limb rigidity. SIGNIFICANCE Dysfunction of brainstem systems that control muscle tone during REM sleep may contribute to increased rigidity during wakefulness in people with PD.
Collapse
Affiliation(s)
- Maria E Linn-Evans
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Matthew N Petrucci
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | - Jae Woo Chung
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paul J Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component. J Neurosci 2020; 40:3933-3948. [PMID: 32245828 PMCID: PMC7219296 DOI: 10.1523/jneurosci.1901-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity >200°/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 ± 11.2 ms vs 25.5 ± 10.7 ms, respectively, mean ± SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components. SIGNIFICANCE STATEMENT Following a limb perturbation, multiple reflexes help to restore limb position. Given conduction delays, the earliest part of these reflexes can only arise from spinal circuits. By contrast, long-latency reflex components are typically assumed to originate from supraspinal centers. We recorded from both spinal and motor cortical cells in monkeys responding to index finger perturbations. Many spinal interneurons, including those identified as projecting to motoneurons, responded to the perturbation; the timing of responses was compatible with a contribution to both short- and long-latency reflexes. We conclude that spinal circuits also contribute to long-latency reflexes in distal and forearm muscles, alongside supraspinal regions, such as the motor cortex and brainstem.
Collapse
|
28
|
Oya T, Takei T, Seki K. Distinct sensorimotor feedback loops for dynamic and static control of primate precision grip. Commun Biol 2020; 3:156. [PMID: 32242085 PMCID: PMC7118171 DOI: 10.1038/s42003-020-0861-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/25/2020] [Indexed: 11/09/2022] Open
Abstract
Volitional limb motor control involves dynamic and static muscle actions. It remains elusive how such distinct actions are controlled through separated or shared neural circuits. Here we explored the potential separation for dynamic and static controls in primate hand actions, by investigating the neuronal coherence between local field potentials (LFPs) of the spinal cord and the forelimb electromyographic activity (EMGs), and LFPs of the motor cortex and the EMGs during the performance of a precision grip in macaque monkeys. We observed the emergence of beta-range coherence with EMGs at spinal cord and motor cortex in the separated phases; spinal coherence during the grip phase and cortical coherence during the hold phase. Further, both of the coherences were influenced by bidirectional interactions with reasonable latencies as beta oscillatory cycles. These results indicate that dedicated feedback circuits comprising spinal and cortical structures underlie dynamic and static controls of dexterous hand actions.
Collapse
Affiliation(s)
- Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan
| | - Tomohiko Takei
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan.,Department of Physiology and Neurobiology, Graduate School of Medicine/The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan.
| |
Collapse
|
29
|
Muraoka T, Kurtzer I. Spinal Circuits Mediate a Stretch Reflex Between the Upper Limbs in Humans. Neuroscience 2020; 431:115-127. [PMID: 32062020 DOI: 10.1016/j.neuroscience.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 11/15/2022]
Abstract
Inter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50-100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants. Unexpected torque pulses displaced one or both shoulders while participants adopted a steady posture against background torques. The results demonstrated inter-limb stretch reflexes occurring at short-latency for both shoulder extensors and flexors; the rapid timing (36-50 ms) must involve a spinal linkage for the two arms. Inter-limb stretch reflexes were also observed at long-latency yet they were opposite to the preceding short-latency; when the short-latency stretch reflex was excitatory then the long-latency stretch reflex was inhibitory and vice versa. Comparing the responses to contralateral arm displacement to those during simultaneous displacement of both arms revealed that inhibitory inter-limb stretch reflexes are independent of within-limb stretch reflexes, but that excitatory inter-limb stretch reflexes are suppressed by within-limb stretch reflexes. Our results provide the first demonstration of short-latency inter-limb stretch reflexes in the upper limb of humans and reveal interacting spinal circuits for within-limb and inter-limb stretch reflexes.
Collapse
Affiliation(s)
- Tetsuro Muraoka
- College of Economics, Nihon University, Tokyo, Japan; Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA.
| | - Isaac Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
30
|
Hernandez-Castillo CR, Maeda RS, Pruszynski JA, Diedrichsen J. Sensory information from a slipping object elicits a rapid and automatic shoulder response. J Neurophysiol 2020; 123:1103-1112. [PMID: 32073916 DOI: 10.1152/jn.00672.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humans have the remarkable ability to hold, grasp, and manipulate objects. Previous work has reported rapid and coordinated reactions in hand and shoulder muscles in response to external perturbations to the arm during object manipulation; however, little is known about how somatosensory feedback of an object slipping in the hand influences responses of the arm. We built a handheld device to stimulate the sensation of slipping at all five fingertips. The device was integrated into an exoskeleton robot that supported it against gravity. The setup allowed us to decouple somatosensory stimulation in the fingers from forces applied to the arm, two variables that are highly interdependent in real-world scenarios. Fourteen participants performed three experiments in which we measured their arm feedback responses during slip stimulation. Slip stimulations were applied horizontally in one of two directions, and participants were instructed to either follow the slip direction or move the arm in the opposite direction. Participants showed shoulder muscle responses within ∼67 ms of slip onset when following the direction of slip but significantly slower responses when instructed to move in the opposite direction. Shoulder responses were modulated by the speed but not the distance of the slip. Finally, when slip stimulation was combined with mechanical perturbations to the arm, we found that sensory information from the fingertips significantly modulated the shoulder feedback responses. Overall, the results demonstrate the existence of a rapid feedback system that stabilizes handheld objects.NEW & NOTEWORTHY We tested whether the sensation of an object slipping from the fingers modulates shoulder feedback responses. We found rapid shoulder feedback responses when participants were instructed to follow the slip direction with the arm. Shoulder responses following mechanical joint perturbations were also potentiated when combined with slipping. These results demonstrate the existence of fast and automatic feedback responses in the arm in reaction to sensory input to the fingertips that maintain grip on handheld objects.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| | - Rodrigo S Maeda
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Psychology, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jörn Diedrichsen
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Khong KYW, Galán F, Soteropoulos DS. Rapid crossed responses in an intrinsic hand muscle during perturbed bimanual movements. J Neurophysiol 2019; 123:630-644. [PMID: 31851557 PMCID: PMC7052646 DOI: 10.1152/jn.00282.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mechanical perturbations in one upper limb often elicit corrective responses in both the perturbed as well as its contralateral and unperturbed counterpart. These crossed corrective responses have been shown to be sensitive to the bimanual requirements of the perturbation, but crossed responses (CRs) in hand muscles are far less well studied. Here, we investigate corrective CRs in an intrinsic hand muscle, the first dorsal interosseous (1DI), to clockwise and anticlockwise mechanical perturbations to the contralateral index finger while participants performed a bimanual finger abduction task. We found that the CRs in the unperturbed 1DI were sensitive to the direction of the perturbation of the contralateral index finger. However, the size of the CRs was not sensitive to the amplitude of the contralateral perturbation nor its context within the bimanual task. The onset latency of the CRs was too fast to be purely transcortical (<70 ms) in 12/12 participants. This confirms that during isolated bimanual finger movements, sensory feedback from one hand can influence the other, but the pathways mediating the earliest components of this interaction are likely to involve subcortical systems such as the brainstem or spinal cord, which may afford less flexibility to the task demands.NEW & NOTEWORTHY An intrinsic hand muscle shows a crossed response to a perturbation of the contralateral index finger. The crossed response is dependent on the direction of the contralateral perturbation but not on the amplitude or the bimanual requirements of the movement, suggesting a far less flexible control policy than those governing crossed responses in more proximal muscles. The crossed response is too fast to be purely mediated by transcortical pathways, suggesting subcortical contributions.
Collapse
Affiliation(s)
- Katie Y W Khong
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Queen's University Belfast, Belfast, Northern Ireland
| | - Ferran Galán
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
32
|
Shields RK, Lee J, Buelow A, Petrie M, Dudley-Javoroski S, Cross S, Gutmann L, Nopoulos PC. Myotonic dystrophy type 1 alters muscle twitch properties, spinal reflexes, and perturbation-induced trans-cortical reflexes. Muscle Nerve 2019; 61:205-212. [PMID: 31773755 DOI: 10.1002/mus.26767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neurophysiologic biomarkers are needed for clinical trials of therapies for myotonic dystrophy (DM1). We characterized muscle properties, spinal reflexes (H-reflexes), and trans-cortical long-latency reflexes (LLRs) in a cohort with mild/moderate DM1. METHODS Twenty-four people with DM1 and 25 matched controls underwent assessment of tibial nerve H-reflexes and soleus muscle twitch properties. Quadriceps LLRs were elicited by delivering an unexpected perturbation during a single-limb squat (SLS) visuomotor tracking task. RESULTS DM1 was associated with decreased H-reflex depression. The efficacy of doublet stimulation was enhanced, yielding an elevated double-single twitch ratio. DM1 participants demonstrated greater error during the SLS task. DM1 individuals with the least-robust LLR responses showed the greatest loss of spinal H-reflex depression. CONCLUSIONS DM1 is associated with abnormalities of muscle twitch properties. Co-occurring alterations of spinal and trans-cortical reflex properties underscore the central nervous system manifestations of this disorder and may assist in gauging efficacy during clinical trials.
Collapse
Affiliation(s)
- Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jinhyun Lee
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Aaron Buelow
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael Petrie
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Shauna Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stephen Cross
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Laurie Gutmann
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Peggy C Nopoulos
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
33
|
Snyder DB, Beardsley SA, Schmit BD. Role of the cortex in visuomotor control of arm stability. J Neurophysiol 2019; 122:2156-2172. [PMID: 31553682 DOI: 10.1152/jn.00003.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.
Collapse
Affiliation(s)
- Dylan B Snyder
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
34
|
Kurz A, Leukel C. Excitability of Upper Layer Circuits Relates to Torque Output in Humans. Front Hum Neurosci 2019; 13:359. [PMID: 31649520 PMCID: PMC6794348 DOI: 10.3389/fnhum.2019.00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
The relation between primary motor cortex (M1) activity and (muscular) force output has been studied extensively. Results from previous studies indicate that activity of a part of yet unidentified neurons in M1 are positively correlated with increased force levels. One considerable candidate causing this positive correlation could be circuits at supragranular layers. Here we tested this hypothesis and used the combination of H-reflexes with transcranial magnetic stimulation (TMS) to investigate laminar associations with force output in human subjects. Excitability of different M1 circuits were probed at movement onset and at peak torque while participants performed auxotonic contractions of the wrist with different torque levels. Only at peak torque we found a significant positive correlation between excitability of M1 circuits most likely involving neurons at supragranular layers and joint torque level. We argue that this finding may relate to the special role of upper layer circuits in integrating (force-related) afferent feedback and their connectivity with task-relevant pyramidal and also extrapyramidal pathways projecting to motoneurones in the spinal cord.
Collapse
Affiliation(s)
- Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christian Leukel
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Foysal KMR, Baker SN. A hierarchy of corticospinal plasticity in human hand and forearm muscles. J Physiol 2019; 597:2729-2739. [PMID: 30839110 PMCID: PMC6567854 DOI: 10.1113/jp277462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/27/2019] [Indexed: 02/05/2023] Open
Abstract
Key points Pairing stimulation of a finger flexor or extensor muscle at the motor point with transcranial magnetic stimulation (TMS) of the motor cortex generated plastic changes in motor output. Increases in output were greater in intrinsic hand muscles than in the finger flexor. No changes occurred in the finger extensor. This gradient was seen irrespective of which muscle was stimulated paired with transcranial magnetic stimulation. Intermittent theta‐burst stimulation also produced increases in output, although these were similar across muscles. We suggest that intrinsic hand and flexor muscles have a higher potential to show plasticity than extensors, although only when plasticity is induced by sensory input. This may relate to differences seen in recovery of function in these muscles after injury, such as post‐stroke.
Abstract The ability of the motor system to show plastic change underlies skill learning and also permits recovery after injury. One puzzling observation is that, after stroke, upper limb flexor muscles show good recovery but extensors remain weak, with this being a major contributor to residual disability. We hypothesized that there might be differences in potential for plasticity across hand and forearm muscles. In the present study, we investigated this using two protocols based on transcranial magnetic brain stimulation (TMS) in healthy human subjects. Baseline TMS responses were recorded from two intrinsic hand muscles: flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). In the first study, paired associative stimulation (PAS) was delivered by pairing motor point stimulation of FDS or EDC with TMS. Responses were then remeasured. Increases were greatest in the hand muscles, smaller in FDS and non‐significant in EDC, irrespective of whether stimulation of FDS or EDC was used. In the second study, intermittent theta‐burst rapid rate TMS was applied instead of PAS. In this case, all muscles showed similar increases in TMS responses. We conclude that the potential to show plastic changes in motor cortical output has the gradient: hand muscles > flexors > extensors. However, this was only seen in a protocol that requires integration of sensory input (PAS) and not when plasticity was induced purely by cortical stimulation (rapid rate TMS). This observation may relate to why functional recovery tends to favour flexor and hand muscles over extensors. Pairing stimulation of a finger flexor or extensor muscle at the motor point with transcranial magnetic stimulation (TMS) of the motor cortex generated plastic changes in motor output. Increases in output were greater in intrinsic hand muscles than in the finger flexor. No changes occurred in the finger extensor. This gradient was seen irrespective of which muscle was stimulated paired with transcranial magnetic stimulation. Intermittent theta‐burst stimulation also produced increases in output, although these were similar across muscles. We suggest that intrinsic hand and flexor muscles have a higher potential to show plasticity than extensors, although only when plasticity is induced by sensory input. This may relate to differences seen in recovery of function in these muscles after injury, such as post‐stroke.
Collapse
Affiliation(s)
- K M Riashad Foysal
- Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Stuart N Baker
- Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Weiler J, Gribble PL, Pruszynski JA. Spinal stretch reflexes support efficient hand control. Nat Neurosci 2019; 22:529-533. [DOI: 10.1038/s41593-019-0336-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022]
|
37
|
Kraskov A, Soteropoulos DS, Glover IS, Lemon RN, Baker SN. Slowly-Conducting Pyramidal Tract Neurons in Macaque and Rat. Cereb Cortex 2019; 30:3403-3418. [PMID: 32026928 PMCID: PMC7197198 DOI: 10.1093/cercor/bhz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023] Open
Abstract
Anatomical studies report a large proportion of fine myelinated fibers in the primate pyramidal tract (PT), while very few PT neurons (PTNs) with slow conduction velocities (CV) (<~10 m/s) are reported electrophysiologically. This discrepancy might reflect recording bias toward fast PTNs or prevention of antidromic invasion by recurrent inhibition (RI) of slow PTNs from faster axons. We investigated these factors in recordings made with a polyprobe (32 closely-spaced contacts) from motor cortex of anesthetized rats (n = 2) and macaques (n = 3), concentrating our search on PTNs with long antidromic latencies (ADLs). We identified 21 rat PTNs with ADLs >2.6 ms and estimated CV 3-8 m/s, and 67 macaque PTNs (>3.9 ms, CV 6-12 m/s). Spikes of most slow PTNs were small and present on only some recording contacts, while spikes from simultaneously recorded fast-conducting PTNs were large and appeared on all contacts. Antidromic thresholds were similar for fast and slow PTNS, while spike duration was considerably longer in slow PTNs. Most slow PTNs showed no signs of failure to respond antidromically. A number of tests, including intracortical microinjection of bicuculline (GABAA antagonist), failed to provide any evidence that RI prevented antidromic invasion of slow PTNs. Our results suggest that recording bias is the main reason why previous studies were dominated by fast PTNs.
Collapse
Affiliation(s)
- A Kraskov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - D S Soteropoulos
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - I S Glover
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - R N Lemon
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - S N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
38
|
Kurtzer IL. Shoulder reflexes integrate elbow information at "long-latency" delay throughout a corrective action. J Neurophysiol 2019; 121:549-562. [PMID: 30540519 DOI: 10.1152/jn.00611.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated a progression of function when healthy subjects counter a sudden mechanical load. Short-latency reflexes are linked to local stretch of the particular muscle and its antagonist. Long-latency reflexes integrate stretch information from both local sources and muscles crossing remote joints appropriate for a limb's mechanical interactions. Unresolved is how sensory information is processed throughout the corrective response, since capabilities at some time can be produced by circuits acting at that delay and at briefer delays. One possibility is that local abilities are always expressed at a short-latency delay and integrative abilities are always expressed at a long-latency delay. Alternatively, the neural circuits may be altered over time, leading to a temporal shift in expressing certain abilities; a refractory period could retard integrative responses to a second perturbation, whereas priming could enable integrative responses at short latency. We tested between these three hypotheses in a shoulder muscle by intermixing trials of step torque with either torque pulses ( experiment 1) or double steps of torque ( experiment 2). The second perturbation occurred at 35, 60, and 110 ms after the first perturbation to probe processing throughout the corrective action. The second perturbation reliably evoked short-latency responses in the shoulder muscle linked to only shoulder motion and long-latency responses linked to both shoulder and elbow motion. This pattern is best accounted by the continuous action of controllers with fixed functions. NEW & NOTEWORTHY Sudden displacement of the limb evokes a short-latency reflex, 20-50 ms, based on local muscle stretch and a long-latency reflex based on integrating muscle stretch at different joints. A novel double-perturbation paradigm tested if these abilities are temporally conserved throughout the corrective response or are shifted (retarded or delayed) due to functional changes in the responsible circuits. Multi-joint integration was reliably expressed at a long-latency delay consistent with the continuous operation of circuits with fixed abilities.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
39
|
Crevecoeur F, Kurtzer I. Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. J Neurophysiol 2018; 120:2466-2483. [PMID: 30133376 DOI: 10.1152/jn.00205.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Successful performance in many everyday tasks requires compensating unexpected mechanical disturbance to our limbs and body. The long-latency reflex plays an important role in this process because it is the fastest response to integrate sensory information across several effectors, like when linking the elbow and shoulder or the arm and body. Despite the dozens of studies on inter-effector long-latency reflexes, there has not been a comprehensive treatment of how these reveal the basic control organization that sets constraints on any candidate model of neural feedback control such as optimal feedback control. We considered three contrasting ways that controllers can be organized: multiple independent controllers vs. a multiple-input multiple-output (MIMO) controller, a continuous feedback controller vs. an intermittent feedback controller, and a direct MIMO controller vs. a state feedback controller. Following a primer on control theory and review of the relevant evidence, we conclude that continuous state feedback control best describes the organization of inter-effector coordination by the long-latency reflex.
Collapse
Affiliation(s)
- Frederic Crevecoeur
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium.,Institute of Neuroscience, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Isaac Kurtzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
40
|
Reflex Circuits and Their Modulation in Motor Control: A Historical Perspective and Current View. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Weiler J, Gribble PL, Pruszynski JA. Rapid feedback responses are flexibly coordinated across arm muscles to support goal-directed reaching. J Neurophysiol 2017; 119:537-547. [PMID: 29118199 DOI: 10.1152/jn.00664.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A transcortical pathway helps support goal-directed reaching by processing somatosensory information to produce rapid feedback responses across multiple joints and muscles. Here, we tested whether such feedback responses can account for changes in arm configuration and for arbitrary visuomotor transformations-two manipulations that alter how muscles at the elbow and wrist need to be coordinated to achieve task success. Participants used a planar three degree-of-freedom exoskeleton robot to move a cursor to a target following a mechanical perturbation that flexed the elbow. In our first experiment, the cursor was mapped to the veridical position of the robot handle, but participants grasped the handle with two different hand orientations (thumb pointing upward or thumb pointing downward). We found that large rapid feedback responses were evoked in wrist extensor muscles when wrist extension helped move the cursor to the target (i.e., thumb upward), and in wrist flexor muscles when wrist flexion helped move the cursor to the target (i.e., thumb downward). In our second experiment, participants grasped the robot handle with their thumb pointing upward, but the cursor's movement was either veridical or was mirrored such that flexing the wrist moved the cursor as if the participant extended their wrist, and vice versa. After extensive practice, we found that rapid feedback responses were appropriately tuned to the wrist muscles that supported moving the cursor to the target when the cursor was mapped to the mirrored movement of the wrist, but were not tuned to the appropriate wrist muscles when the cursor was remapped to the wrist's veridical movement. NEW & NOTEWORTHY We show that rapid feedback responses were evoked in different wrist muscles depending on the arm's orientation, and this muscle activity was appropriate to generate the wrist motion that supported a reaching action. Notably, we also show that these rapid feedback responses can be evoked in wrist muscles that are detrimental to a reaching action if a nonveridical mapping between wrist and hand motion is extensively learned.
Collapse
Affiliation(s)
- Jeffrey Weiler
- Brain and Mind Institute, Western University , London, Ontario , Canada.,Department of Psychology, Western University , London, Ontario , Canada.,Department of Physiology and Pharmacology, Western University , London, Ontario , Canada
| | - Paul L Gribble
- Brain and Mind Institute, Western University , London, Ontario , Canada.,Department of Psychology, Western University , London, Ontario , Canada.,Department of Physiology and Pharmacology, Western University , London, Ontario , Canada
| | - J Andrew Pruszynski
- Brain and Mind Institute, Western University , London, Ontario , Canada.,Department of Psychology, Western University , London, Ontario , Canada.,Department of Physiology and Pharmacology, Western University , London, Ontario , Canada.,Robarts Research Institute, Western University , London, Ontario , Canada
| |
Collapse
|
42
|
Carvalho WA, Bahia CP, Teixeira JC, Gomes-Leal W, Pereira A. Interlimb Dynamic after Unilateral Focal Lesion of the Cervical Dorsal Corticospinal Tract with Endothelin-1. Front Neuroanat 2017; 11:89. [PMID: 29081738 PMCID: PMC5645515 DOI: 10.3389/fnana.2017.00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022] Open
Abstract
Handedness is one of the most recognized lateralized behavior in humans. Usually, it is associated with manual superiority regarding performance proficiency. For instance, more than 90% of the human population is considered more skilled with the right hand, which is controlled by the left hemisphere, than with the left. However, during the performance of bimanual tasks, the two hands usually assume asymmetric roles, with one hand acting on objects while the other provides support, stabilizing the object. Traditionally, the role of the two hands is viewed as fixed. However, several studies support an alternate view with flexible assignments for the two hands depending on the task. The supporting role of the hand depends on a closed loop pathway based on proprioceptive inputs from the periphery. The circuit’s efferent arm courses through the dorsal corticospinal tract (dCST) in rodents and terminate on spinal cord interneurons which modulate the excitability of motoneurons in the ventral horn. In the present work, we developed an experimental model of unilateral lesion targeting the cervical dCST with microinjections of the vasoconstrictor endothelin-1 (ET-1) to evaluate the degree of flexibility of forelimb assignment during a food manipulation task. Our results show that just 3 days after unilateral corticospinal tract (CST) injury in the cervical region, rats display severe motor impairment of the ipsilateral forepaw together with a remarkable reversal of motor assignment between the forelimbs.
Collapse
Affiliation(s)
- Walther A Carvalho
- Pará State University Center, Belém, Brazil.,Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Carlomagno P Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Jéssica C Teixeira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Walace Gomes-Leal
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Antonio Pereira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará (UFPA), Belém, Brazil.,Institute of Technology, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
43
|
Yang Y, Guliyev B, Schouten AC. Dynamic Causal Modeling of the Cortical Responses to Wrist Perturbations. Front Neurosci 2017; 11:518. [PMID: 28955197 PMCID: PMC5601387 DOI: 10.3389/fnins.2017.00518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Mechanical perturbations applied to the wrist joint typically evoke a stereotypical sequence of cortical and muscle responses. The early cortical responses (<100 ms) are thought be involved in the "rapid" transcortical reaction to the perturbation while the late cortical responses (>100 ms) are related to the "slow" transcortical reaction. Although previous studies indicated that both responses involve the primary motor cortex, it remains unclear if both responses are engaged by the same effective connectivity in the cortical network. To answer this question, we investigated the effective connectivity cortical network after a "ramp-and-hold" mechanical perturbation, in both the early (<100 ms) and late (>100 ms) periods, using dynamic causal modeling. Ramp-and-hold perturbations were applied to the wrist joint while the subject maintained an isometric wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram (EEG). We investigated how the perturbation modulated the effective connectivity for the early and late periods. Bayesian model comparisons suggested that different effective connectivity networks are engaged in these two periods. For the early period, we found that only a few cortico-cortical connections were modulated, while more complicated connectivity was identified in the cortical network during the late period with multiple modulated cortico-cortical connections. The limited early cortical network likely allows for a rapid muscle response without involving high-level cognitive processes, while the complexity of the late network may facilitate coordinated responses.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, United States
| | - Bekir Guliyev
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands.,Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of TwenteEnschede, Netherlands
| |
Collapse
|
44
|
Dhawale AK, Poddar R, Wolff SB, Normand VA, Kopelowitz E, Ölveczky BP. Automated long-term recording and analysis of neural activity in behaving animals. eLife 2017; 6:27702. [PMID: 28885141 PMCID: PMC5619984 DOI: 10.7554/elife.27702] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/24/2017] [Indexed: 12/26/2022] Open
Abstract
Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons in experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving rodents. An unsupervised algorithm identifies and tracks the activity of single units over weeks of recording, dramatically simplifying the analysis of large datasets. Months-long recordings from motor cortex and striatum made and analyzed with our system revealed remarkable stability in basic neuronal properties, such as firing rates and inter-spike interval distributions. Interneuronal correlations and the representation of different movements and behaviors were similarly stable. This establishes the feasibility of high-throughput long-term extracellular recordings in behaving animals.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Rajesh Poddar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Steffen Be Wolff
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Valentin A Normand
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Evi Kopelowitz
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
45
|
Perich MG, Miller LE. Altered tuning in primary motor cortex does not account for behavioral adaptation during force field learning. Exp Brain Res 2017; 235:2689-2704. [PMID: 28589233 PMCID: PMC5709199 DOI: 10.1007/s00221-017-4997-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
Although primary motor cortex (M1) is intimately involved in the dynamics of limb movement, its inputs may be more closely related to higher-order aspects of movement and multi-modal sensory feedback. Motor learning is thought to result from the adaption of internal models that compute transformations between these representations. While the psychophysics of motor learning has been studied in many experiments, the particular role of M1 in the process remains the subject of debate. Studies of learning-related changes in the spatial tuning of M1 neurons have yielded conflicting results. To resolve the discrepancies, we recorded from M1 during curl field adaptation in a reaching task. Our results suggest that aside from the addition of the load itself, the relation of M1 to movement dynamics remains unchanged as monkeys adapt behaviorally. Accordingly, we implemented a musculoskeletal model to generate synthetic neural activity having a fixed dynamical relation to movement and showed that these simulated neurons reproduced the observed behavior of the recorded M1 neurons. The stable representation of movement dynamics in M1 suggests that behavioral changes are mediated through progressively altered recruitment of M1 neurons, while the output effect of those neurons remained largely unchanged.
Collapse
Affiliation(s)
- Matthew G Perich
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee E Miller
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
46
|
Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD. Perspectives on classical controversies about the motor cortex. J Neurophysiol 2017; 118:1828-1848. [PMID: 28615340 PMCID: PMC5599665 DOI: 10.1152/jn.00795.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Primary motor cortex has been studied for more than a century, yet a consensus on its functional contribution to movement control is still out of reach. In particular, there remains controversy as to the level of control produced by motor cortex ("low-level" movement dynamics vs. "high-level" movement kinematics) and the role of sensory feedback. In this review, we present different perspectives on the two following questions: What does activity in motor cortex reflect? and How do planned motor commands interact with incoming sensory feedback during movement? The four authors each present their independent views on how they think the primary motor cortex (M1) controls movement. At the end, we present a dialogue in which the authors synthesize their views and suggest possibilities for moving the field forward. While there is not yet a consensus on the role of M1 or sensory feedback in the control of upper limb movements, such dialogues are essential to take us closer to one.
Collapse
Affiliation(s)
- Mohsen Omrani
- Brain Health Institute, Rutgers University, Piscataway, New Jersey;
| | | | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, Committees on Computational Neuroscience and Neurobiology, University of Chicago, Chicago, Illinois; and
| | - Paul D Cheney
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
47
|
Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device. J Neurosci 2017; 36:10823-10830. [PMID: 27798137 DOI: 10.1523/jneurosci.1414-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/27/2016] [Indexed: 11/21/2022] Open
Abstract
The long-latency stretch reflex (LLSR) in human elbow muscles probably depends on multiple pathways; one possible contributor is the reticulospinal tract. Here we attempted to induce plastic changes in the LLSR by pairing noninvasive stimuli that are known to activate reticulospinal pathways, at timings predicted to cause spike timing-dependent plasticity in the brainstem. In healthy human subjects, reflex responses in flexor muscles were recorded following extension perturbations at the elbow. Subjects were then fitted with a portable device that delivered auditory click stimuli through an earpiece, and electrical stimuli around motor threshold to the biceps muscle via surface electrodes. We tested the following four paradigms: biceps stimulus 10 ms before click (Bi-10ms-C); click 25 ms before biceps (C-25ms-Bi); click alone (C only); and biceps alone (Bi only). The average stimulus rate was 0.67 Hz. Subjects left the laboratory wearing the device and performed normal daily activities. Approximately 7 h later, they returned, and stretch reflexes were remeasured. The LLSR was significantly enhanced in the biceps muscle (on average by 49%) after the Bi-10ms-C paradigm, but was suppressed for C-25ms-Bi (by 31%); it was unchanged for Bi only and C only. No paradigm induced LLSR changes in the unstimulated brachioradialis muscle. Although we cannot exclude contributions from spinal or cortical pathways, our results are consistent with spike timing-dependent plasticity in reticulospinal circuits, specific to the stimulated muscle. This is the first demonstration that the LLSR can be modified via paired-pulse methods, and may open up new possibilities in motor systems neuroscience and rehabilitation. SIGNIFICANCE STATEMENT This report is the first demonstration that the long-latency stretch reflex can be modified by repeated, precisely timed pairing of stimuli known to activate brainstem pathways. Furthermore, pairing was achieved with a portable electronic device capable of delivering many more stimulus repetitions than conventional laboratory studies. Our findings open up new possibilities for basic research into these underinvestigated pathways, which are important for motor control in healthy individuals. They may also lead to paradigms capable of enhancing rehabilitation in patients recovering from damage, such as after stroke or spinal cord injury.
Collapse
|
48
|
Kobayashi K, Chien JH, Kim JH, Lenz FA. Sensory, Motor and Intrinsic Mechanisms of Thalamic Activity related to Organic and Psychogenic Dystonia. ACTA ACUST UNITED AC 2017; 7. [PMID: 28944096 PMCID: PMC5609466 DOI: 10.4172/2161-0460.1000324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thalamus is a critical module in the circuit which has been associated with movement disorders including dystonia. This circuit extends from cortex to striatum to pallidum to the thalamic nucleus Ventral Lateral anterior (VLa) to cortex and can be studied by activity recorded during thalamic stereotactic surgery for the treatment of dystonia. Neuronal recordings in the VLa nucleus show low frequency modulation of firing that is correlated with and leads the low frequency modulation of EMG activity; this EMG activity is characteristic of dystonia. Immediately posterior is the Ventral Lateral posterior (VLp) nucleus which, in controls (patients with tremor or chronic pain), is characterized by deep sensory cells which fire at short latency in response to movement of a single joint or to stimulation of deep structures, such as muscles, tendons and joints. In patients with dystonia, neurons with this sensory activity are much more common than in controls and single neurons often respond to movement of multiple joints. In controls operated for the treatment of tremor or chronic pain many neurons in both nuclei are activated during active or involuntary joint movements, such as tremor or dystonia. The active joint movement related to the firing of a cell is usually in the opposite direction to the passive joint movement which causes that cell to fire. This linkage of active or involuntary and passive joint movement is unfocussed in dystonia. The involuntary dystonic joint movement best correlated with firing of a neuron may not activate the neuron when it occurs as a passive movement, while multiple other passive movements will activate the neuron. These linkages may explain the overflow of isolated voluntary activity to multiple other muscles that is seen in dystonia. The activity of either nucleus may have a critical role in dystonia since their disruption by stimulation or lesioning can decrease dystonia.
Collapse
Affiliation(s)
- K Kobayashi
- Departments of Neurosurgery and Neurology Johns Hopkins Hospital, Baltimore, MD, USA.,Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - J H Chien
- Departments of Neurosurgery and Neurology Johns Hopkins Hospital, Baltimore, MD, USA
| | - J H Kim
- Departments of Neurosurgery and Neurology Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Neurosurgery, Korea University Guro Hospital, Seoul, Korea
| | - F A Lenz
- Departments of Neurosurgery and Neurology Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
49
|
Tseng SC, Cole KR, Shaffer MA, Petrie MA, Yen CL, Shields RK. Speed, resistance, and unexpected accelerations modulate feed forward and feedback control during a novel weight bearing task. Gait Posture 2017; 52:345-353. [PMID: 28043056 PMCID: PMC5337176 DOI: 10.1016/j.gaitpost.2016.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
We developed a method to investigate feed-forward and feedback movement control during a weight bearing visuomotor knee tracking task. We hypothesized that a systematic increase in speed and resistance would show a linear decrease in movement accuracy, while unexpected perturbations would induce a velocity-dependent decrease in movement accuracy. We determined the effects of manipulating the speed, resistance, and unexpected events on error during a functional weight bearing task. Our long term objective is to benchmark neuromuscular control performance across various groups based on age, injury, disease, rehabilitation status, and/or training. Twenty-six healthy adults between the ages of 19-45 participated in this study. The study involved a single session using a custom designed apparatus to perform a single limb weight bearing task under nine testing conditions: three movement speeds (0.2, 0.4, and 0.6Hz) in combination with three levels of brake resistance (5%, 10%, and 15% of individual's body weight). Individuals were to perform the task according to a target with a fixed trajectory across all speeds, corresponding to a∼0 (extension) to 30° (flexion) of knee motion. An increase in error occurred with speed (p<0.0001, effect size (eta2): η2=0.50) and resistance (p<0.0001, η2=0.01). Likewise, during unexpected perturbations, the ratio of perturbed/non-perturbed error increased with each increment in velocity (p<0.0014, η2=0.08), and resistance (p<0.0001, η2=0.11). The hierarchical framework of these measurements offers a standardized functional weight bearing strategy to assess impaired neuro-muscular control and/or test the efficacy of therapeutic rehabilitation interventions designed to influence neuromuscular control of the knee.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Keith R Cole
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Shaffer
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Michael A Petrie
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Chu-Ling Yen
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States
| | - Richard K Shields
- Department of Physical Therapy & Rehabilitation Science, University of Iowa Carver College of Medicine, 1-252 MEB, Iowa City, IA, 52242, United States.
| |
Collapse
|
50
|
Brown KI, Williams ER, de Carvalho F, Baker SN. Plastic Changes in Human Motor Cortical Output Induced by Random but not Closed-Loop Peripheral Stimulation: the Curse of Causality. Front Hum Neurosci 2016; 10:590. [PMID: 27895572 PMCID: PMC5108789 DOI: 10.3389/fnhum.2016.00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Previous work showed that repetitive peripheral nerve stimulation can induce plastic changes in motor cortical output. Triggering electrical stimulation of central structures from natural activity can also generate plasticity. In this study, we tested whether triggering peripheral nerve stimulation from muscle activity would likewise induce changes in motor output. We developed a wearable electronic device capable of recording electromyogram (EMG) and delivering electrical stimulation under closed-loop control. This allowed paired stimuli to be delivered over longer periods than standard laboratory-based protocols. We tested this device in healthy human volunteers. Motor cortical output in relaxed thenar muscles was first assessed via the recruitment curve of responses to contralateral transcranial magnetic stimulation. The wearable device was then configured to record thenar EMG and stimulate the median nerve at the wrist (intensity around motor threshold, rate ~0.66 Hz). Subjects carried out normal daily activities for 4-7 h, before returning to the laboratory for repeated recruitment curve assessment. Four stimulation protocols were tested (9-14 subjects each): No Stim, no stimuli delivered; Activity, stimuli triggered by EMG activity above threshold; Saved, stimuli timed according to a previous Activity session in the same subject; Rest, stimuli given when EMG was silent. As expected, No Stim did not modify the recruitment curve. Activity and Rest conditions produced no significant effects across subjects, although there were changes in some individuals. Saved produced a significant and substantial increase, with average responses 2.14 times larger at 30% stimulator intensity above threshold. We argue that unavoidable delays in the closed loop feedback, due mainly to central and peripheral conduction times, mean that stimuli in the Activity paradigm arrived too late after cortical activation to generate consistent plastic changes. By contrast, stimuli delivered essentially at random during the Saved paradigm may have caused a generalized increase in cortical excitability akin to stochastic resonance, leading to plastic changes in corticospinal output. Our study demonstrates that non-invasive closed loop stimulation may be critically limited by conduction delays and the unavoidable constraint of causality.
Collapse
Affiliation(s)
- Kenneth I Brown
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| | | | | | - Stuart N Baker
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|