1
|
Stark DA, Coffey NJ, Pancoast HR, Arnold LL, Walker JPD, Vallée J, Robitaille R, Garcia ML, Cornelison DDW. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation. J Cell Biol 2015; 211:1077-91. [PMID: 26644518 PMCID: PMC4674275 DOI: 10.1083/jcb.201502036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022] Open
Abstract
Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Nathan J Coffey
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Hannah R Pancoast
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - J Peyton D Walker
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Joanne Vallée
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Richard Robitaille
- Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michael L Garcia
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| |
Collapse
|
2
|
Yan M, Cheng C, Ding F, Jiang J, Gao L, Xia C, Shen A. The expression patterns of beta1,4 galactosyltransferase I and V mRNAs, and Galbeta1-4GlcNAc group in rat gastrocnemius muscles post sciatic nerve injury. Glycoconj J 2008; 25:685-701. [PMID: 18512149 DOI: 10.1007/s10719-008-9129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of beta1,4-galactosylation is performed by a family of beta1,4-galactosyltransferases (beta1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. beta1,4-GalT I and V are involved in the biosynthesis of N-linked oligosaccharides and play roles in sciatic nerve regeneration after sciatic nerve injury. In the present study, the expression of beta1,4-galactosyltransferase (beta1,4-GalT) I, V mRNAs and Galbeta1-4GlcNAc group were examined in rat gastrocnemius muscles after sciatic nerve crush and transection. Real time PCR revealed that beta1,4-GalT I and V mRNAs expressed at a high level in normal gastrocnemius muscles and decreased gradually from 6 h, reached the lowest level at 2 weeks, then restored gradually to relatively normal level at 4 weeks after sciatic nerve crush. In contrast, in sciatic nerve transection model, beta1,4-GalT I and V mRNAs decreased gradually from 6 h, and remained on a low level at 4 weeks in gastrocnemius muscles after sciatic nerve transection. In situ hybridization indicated that beta1,4-GalT I and V mRNAs localized in numerous myocytes and muscle satellite cells under normal conditions and at 4 weeks after sciatic nerve crush, and in a few muscle satellite cells at 4 weeks after sciatic nerve transection. Furthermore, lectin blotting showed that the expression level of the Galbeta1-4GlcNAc group decreased from 6 h, reached the lowest level at 2 weeks, and restored to relatively normal level at 4 weeks after sciatic nerve crush. RCA-I lectin histochemistry demonstrated that Galbeta1-4GlcNAc group localized in numerous membranes of myocytes and muscle satellite cells in normal and at 4 weeks after sciatic nerve crush, and in a few muscle satellite cells at 2 and 4 weeks after sciatic nerve transection. These results indicated that the expressions of beta1,4-GalT I, V mRNAs and Galbeta1-4GlcNAc group were involved in the process of denervation and reinnervation, which suggests that beta1,4-GalT I, V mRNAs and Galbeta1-4GlcNAc group may play an important role in the muscle regeneration.
Collapse
Affiliation(s)
- Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Zernicka E, Smol E, Langfort J, Górecka M. Time course of changes in lipoprotein lipase activity in rat skeletal muscles during denervation-reinnervation. J Appl Physiol (1985) 2002; 92:535-40. [PMID: 11796661 DOI: 10.1152/japplphysiol.00820.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of denervation-reinnervation after sciatic nerve crush on the activity of extracellular and intracellular lipoprotein lipase (LPL) were examined in the soleus and red portion of gastrocnemius muscles. The activity of both LPL fractions was decreased in the two muscles within 24 h after the nerve crush and remained reduced for up to 2 wk. During the reinnervation period, LPL activity was still reduced in the soleus and started to increase only on the 40th day. In the red gastrocnemius, LPL activity increased progressively with reinnervation, exceeding control values on the 30th day post-crush. The LPL activity in the soleus from the contralateral to denervated hindlimb was also affected, being increased on the postoperation day and then gradually decreased during the following days. In conclusion, the time course of changes in muscle LPL activity after nerve crush confirmed the predominant role of nerve conduction in controlling muscle potential to take up free fatty acids derived from the plasma triacylglycerols. However, other factors, such as muscle fiber composition and the fiber transformation, should also be considered in this aspect of the denervation-reinnervation process. Moreover, it was found that denervation of muscles from one hindlimb may influence LPL activity in muscles from the contralateral leg.
Collapse
Affiliation(s)
- E Zernicka
- Department of Applied Physiology, Medical Research Center, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
4
|
Abstract
The percent and distribution patterns of three immunohistochemically identified fiber types within the anterior compartment of the cat tibialis anterior were determined 6 months after denervation and self-reinnervation. After self-reinnervation, mean frequencies of slow (9%) and fast (91%) fibers were similar to those in control (12% and 88%, respectively) muscles. However, a lower proportion of fast-1 (26%) and a higher proportion of fast-2 (65%) fibers were observed in self-reinnervated than control (32% and 56%) muscles. Quantitation of adjacencies between fibers of similar myosin heavy chain (MHC) phenotype, a measure of type grouping, revealed that the frequencies of two slow or two fast-1 fibers being adjacent in self-reinnervated muscles were similar to control. In contrast, the frequency of fast-2/fast-2 fiber adjacencies found in self-reinnervated muscles (45%) was significantly higher than in control muscles (37%). In both groups, the frequency of adjacencies between slow, fast-1, or fast-2 fibers was largely attributable to the number of each fiber type present. These data show that the incidence of grouping within each fiber type present was not altered after 6 months of self-reinnervation. Minimal changes in the spatial distribution of fiber types following self-reinnervation in adults suggests a limited degree of conversion of muscle fibers to a MHC phenotype matching the motoneuron characteristics.
Collapse
Affiliation(s)
- G A Unguez
- Department of Physiological Science, UCLA, Los Angeles, California 90095-1761, USA
| | | | | | | |
Collapse
|
5
|
Unguez GA, Roy RR, Pierotti DJ, Bodine-Fowler S, Edgerton VR. Further evidence of incomplete neural control of muscle properties in cat tibialis anterior motor units. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C527-34. [PMID: 7864092 DOI: 10.1152/ajpcell.1995.268.2.c527] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To examine the influence of a motoneuron in maintaining the phenotype of the muscle fibers it innervates, myosin heavy chain (MHC) expression, succinate dehydrogenase (SDH) activity, and cross-sectional area (CSA) of a sample of fibers belonging to a motor unit were studied in the cat tibialis anterior 6 mo after the nerve branches innervating the anterior compartment were cut and sutured near the point of entry into the muscle. The mean, range, and coefficient of variation for the SDH activity and the CSA for both motor unit and non-motor unit fibers for each MHC profile and from each control and each self-reinnervated muscle studied was obtained. Eight motor units were isolated from self-reinnervated muscles using standard ventral root filament testing techniques, tested physiologically, and compared with four motor units from control muscles. Motor units from self-reinnervated muscles could be classified into the same physiological types as those found in control tibialis anterior muscles. The muscle fibers belonging to a unit were depleted of glycogen via repetitive stimulation and identified in periodic acid-Schiff-stained frozen sections. Whereas muscle fibers in control units expressed similar MHCs, each motor unit from self-reinnervated muscles contained a mixture of fiber types. In each motor unit, however, there was a predominance of fibers with the same MHC profile. The relative differences in the mean SDH activities found among fibers of different MHC profiles within a unit after self-reinnervation and those found among fibers in control muscles were similar, i.e., fast-2 < fast-1 < or = slow MHC fibers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G A Unguez
- Department of Physiological Science, University of California, Los Angeles 90024-1527
| | | | | | | | | |
Collapse
|
6
|
Michel RN, Cowper G, Chi MM, Manchester JK, Falter H, Lowry OH. Effects of tetrodotoxin-induced neural inactivation on single muscle fiber metabolic enzymes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C55-66. [PMID: 8048492 DOI: 10.1152/ajpcell.1994.267.1.c55] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selected enzymes were measured in mixed-fiber bundles and individual fibers from rat plantaris (PL) and soleus (Sol) muscles that had undergone either 2 wk of tetrodotoxin (TTX) inactivation of the sciatic nerve, a sham operation, or were contralateral to the TTX limb. TTX disuse caused severe wasting of PL (46%) and Sol (26%) muscles and of single fibers (50% and 40%, respectively). TTX PL and Sol also had reduced (50%) glycogen content. In TTX, PL, and Sol macro samples and single fibers, the activities (mol.h-1.kg dry wt-1) of hexokinase, glycogen phosphorylase, and lactate dehydrogenase were higher, lower, and unchanged, respectively, compared with controls. Single-fiber data showed that these changes occurred in all fibers. In TTX PL macro samples, activities of glycerol-3-phosphate dehydrogenase (GPDH), pyruvate kinase (PK), malate dehydrogenase (MDH), citrate synthase (CS), beta-hydroxyacyl-CoA dehydrogenase (BOAC), and thiolase were, or tended to be, lower. Single-fiber data showed a disappearance of high-oxidative moderate glycolytic fibers (i.e., usually fast-twitch oxidative in control) and the appearance of more fibers with a metabolic enzyme profile approaching that of control slow-oxidative fibers. In TTX Sol macro samples, GPDH and PK tended to be higher, and thiolase, BOAC, CS, and MDH lower. Single-fiber data corroborated these findings and suggested the appearance of fast fibers with downregulated oxidative enzyme profiles. Our results suggest that neuromuscular activity is a major, but not the sole, determinant of the size and metabolic heterogeneity that exists in muscle cells.
Collapse
Affiliation(s)
- R N Michel
- School of Human Movement, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Unguez GA, Bodine-Fowler S, Roy RR, Pierotti DJ, Edgerton VR. Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation. J Physiol 1993; 472:103-25. [PMID: 8145136 PMCID: PMC1160479 DOI: 10.1113/jphysiol.1993.sp019939] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.
Collapse
Affiliation(s)
- G A Unguez
- Department of Physiological Science, University of California at Los Angeles 90024-1527
| | | | | | | | | |
Collapse
|
8
|
Nemeth PA, Cope TC, Kushner S, Nemeth PM. Spatial arrangement and metabolic capacity of fiber types in self-reinnervated cat muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C411-8. [PMID: 8447371 DOI: 10.1152/ajpcell.1993.264.2.c411] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The recovery potential of skeletal muscle was explored by examining cat muscle between 10 and 33 mo after complete transection and immediate surgical reunion of its own nerve. Biochemical analysis of single muscle fibers showed that the activities of key enzymes in energy metabolism (malate and lactate dehydrogenase and adenylokinase) were similar to normal for their respective fiber types, suggesting that incomplete recovery of the ability to sustain submaximal contraction in reinnervated muscles (T.C. Cope, C.B. Webb, and B.R. Botterman. J. Neurophysiol. 65: 648-656, 1991) is explained in some other way. Two independent statistical procedures for assessing the randomness of adjacencies of histochemically identified fiber types showed type grouping in some areas, but there were also many regions with randomly distributed fiber types. These findings demonstrate the potential for substantial recovery of both energy metabolism and dispersion of fiber types after self-reinnervation.
Collapse
Affiliation(s)
- P A Nemeth
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, Pennsylvania 19102-1192
| | | | | | | |
Collapse
|
9
|
Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990; 116:1-76. [PMID: 2149884 DOI: 10.1007/3540528806_3] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- D Pette
- Fakultät für Biologie, Universität Konstanz, FRG
| | | |
Collapse
|
10
|
Franzini-Armstrong C, Ferguson DG, Champ C. Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J Muscle Res Cell Motil 1988; 9:403-14. [PMID: 3215995 DOI: 10.1007/bf01774067] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The black reaction of Golgi was used to infiltrate transverse (T) tubules in fast-twitch glycolytic (FW), fast-twitch oxidative-glycolytic (FR) and slow-twitch (S) type fibres in muscles of guinea pigs. Non-junctional (fT) and junctional (jT) segments of the T-tubule network are clearly demarcated by this technique. Digitized planimetry and direct measurements were used to determine the proportion of T-tubule network forming junctions with the sarcoplasmic reticulum (%LjT) and to estimate the surface density (surface area per fibre volume) of total and junctional T membrane. From these data, the volume density (number per fibre volume) of junctional feet was calculated. All three types of fibres have approximately equal surface density of T tubules, but the FW and FR fibres have a much higher proportion of jT. The calculated volume density of feet is twice as high in fast-twitch as in slow-twitch fibres.
Collapse
|
11
|
Nemeth PM, Solanki L, Lawrence JC. Control of enzyme activities in individual myotubes cultured without nerve. THE AMERICAN JOURNAL OF PHYSIOLOGY 1985; 249:C313-7. [PMID: 4037073 DOI: 10.1152/ajpcell.1985.249.3.c313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The activities of lactate dehydrogenase, malate dehydrogenase, phosphorylase, and adenylate kinase were measured in single myotubes dissected from primary cultures of rat skeletal muscle. For a given enzyme, activities among the spontaneously contracting cells varied as much as eightfold. When the myotubes were paralyzed with tetrodotoxin, the variability in enzyme levels was markedly decreased. These and other findings suggest that differences in enzyme levels among individual myotubes may arise as a result of differences in their pattern of contractile activity.
Collapse
|