1
|
Nazari S. Efficient digital design of ganglion cells in the retinal pathway. Heliyon 2024; 10:e36673. [PMID: 39281571 PMCID: PMC11402182 DOI: 10.1016/j.heliyon.2024.e36673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Spiking networks, the third generation of neural networks, are presented as low-power consumption machines with higher cognitive ability, one of the main concerns in intelligence machines. In fact, neuromorphic systems are hardware implementations of spiking networks with minimum resource, area, and power consumption while preserve maximum working frequency. Here, the focus is on the digital implementation of Retinal Ganglion Cell (RGC) based on the linear approximation of non-linear terms which is called Linear Retinal Ganglion Cell (LRGC). The low-cost hardware design of biological cells is acceptable when the digital model of the cell has the same phase and time domain behavior as the original model and follows the dynamic behavior of the original model accurately, which is discussed and confirmed with different analyzes in this paper. The low-cost hardware design of biological cells allows the optimal implementation of a neural population on the hardware, provided that the collective behavior of the digital model matches the original model which is approved by the large-scale simulation of RGC and LRGC models. Cognitive processes are performed in the nervous system at a very low cost, which neuromorphic systems are trying to achieve this important. In this regard, the behavior of RGC and LRGC models in the reconstruction of the image through the retina pathway was examined and a high agreement between the performance of the two models was achieved. Finally, the high functional compatibility of RGC, LRGC models proves that the proposed model is a good candidate of the main model in neuromorphic systems with low hardware cost.
Collapse
Affiliation(s)
- Soheila Nazari
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Smith BJ, McHugh CF, Hirano AA, Brecha NC, Barnes S. Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na + Channel Isoforms. J Neurosci 2023; 43:2291-2304. [PMID: 36828637 PMCID: PMC10072295 DOI: 10.1523/jneurosci.1723-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.
Collapse
Affiliation(s)
- Benjamin J Smith
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Cyrus F McHugh
- Doheny Eye Institute, University of California, Los Angeles, California 91103
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Steven Barnes
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
3
|
Rivas-Ramírez P, Reboreda A, Rueda-Ruzafa L, Herrera-Pérez S, Lamas JA. Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature. Int J Mol Sci 2020; 21:E5796. [PMID: 32806753 PMCID: PMC7461115 DOI: 10.3390/ijms21165796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ionic mechanisms controlling the resting membrane potential (RMP) in superior cervical ganglion (SCG) neurons have been widely studied and the M-current (IM, KCNQ) is one of the key players. Recently, with the discovery of the presence of functional TREK-2 (TWIK-related K+ channel 2) channels in SCG neurons, another potential main contributor for setting the value of the resting membrane potential has appeared. In the present work, we quantified the contribution of TREK-2 channels to the resting membrane potential at physiological temperature and studied its role in excitability using patch-clamp techniques. In the process we have discovered that TREK-2 channels are sensitive to the classic M-current blockers linopirdine and XE991 (IC50 = 0.310 ± 0.06 µM and 0.044 ± 0.013 µM, respectively). An increase from room temperature (23 °C) to physiological temperature (37 °C) enhanced both IM and TREK-2 currents. Likewise, inhibition of IM by tetraethylammonium (TEA) and TREK-2 current by XE991 depolarized the RMP at room and physiological temperatures. Temperature rise also enhanced adaptation in SCG neurons which was reduced due to TREK-2 and IM inhibition by XE991 application. In summary, TREK-2 and M currents contribute to the resting membrane potential and excitability at room and physiological temperature in the primary culture of mouse SCG neurons.
Collapse
Affiliation(s)
- Paula Rivas-Ramírez
- Department of Functional Biology and Health Sciences, Faculty of Biology-CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (P.R.-R.); (L.R.-R.); (S.H.-P.)
| | - Antonio Reboreda
- Department of Functional Biology and Health Sciences, Faculty of Biology-CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (P.R.-R.); (L.R.-R.); (S.H.-P.)
- Functional Architecture of Memory Department, Leibniz-Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology-CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (P.R.-R.); (L.R.-R.); (S.H.-P.)
| | - Salvador Herrera-Pérez
- Department of Functional Biology and Health Sciences, Faculty of Biology-CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (P.R.-R.); (L.R.-R.); (S.H.-P.)
| | - Jose Antonio Lamas
- Department of Functional Biology and Health Sciences, Faculty of Biology-CINBIO-IBIV, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (P.R.-R.); (L.R.-R.); (S.H.-P.)
| |
Collapse
|
4
|
Haji Ghaffari D, Finn KE, Jeganathan VSE, Patel U, Wuyyuru V, Roy A, Weiland JD. The effect of waveform asymmetry on perception with epiretinal prostheses. J Neural Eng 2020; 17:045009. [PMID: 32590371 DOI: 10.1088/1741-2552/aba07e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective Retinal prosthetic implants have helped improve vision in patients blinded by photoreceptor degeneration. Retinal implant users report improvements in light perception and performing visual tasks, but their ability to perceive shapes and letters is limited due to the low precision of retinal activation, which is exacerbated by axonal stimulation and high perceptual thresholds. A previous in vitro study in our lab used calcium imaging to measure the spatial activity of mouse retinal ganglion cells (RGCs) in response to electrical stimulation. Based on this study, symmetric anodic-first (SA) stimulation effectively avoided axonal activation and asymmetric anodic-first stimulation (AA) with duration ratios (ratio of the anodic to cathodic phase) greater than 10 reduced RGC activation thresholds significantly. Applying these novel stimulation strategies in clinic may increase perception precision and improve the overall patient outcomes. Approach We combined human subject testing and computational modeling to further examine the effect of SA and AA stimuli on perception shapes and thresholds for epiretinal stimulation of RGCs. Main results Threshold measurement in three Argus II participants indicated that AA stimulation could increase perception probabilities compared to a standard symmetric cathodic-first (SC) pulse, and this effect can be intensified by addition of an interphae gap (IPG). Our in silico RGC model predicts lower thresholds with AA and asymmetric cathodic-first (AC) stimuli compared to a SC pulse. This effect was more pronounced at shorter pulse widths. The most effective pulse for threshold reduction with short pulse durations (≤0.12 ms) was AA stimulation with small duration ratios (≤5) and long IPGs (≥2 ms). For the 0.5 ms pulse duration, SC stimulation with IPGs longer than 0.5 ms, or asymmetric stimuli with large duration ratios (≥20) were most effective in threshold reduction. Phosphene shape analysis did not reveal a significant change in percept elongation with SA stimulation. However, there was a significant increase in percept size (P < 0.01) with AA stimulation compared to the standard pulse in one participant. Significane Including asymmetric waveform capability will provide more flexible options for optimization and personalized fitting of retinal implants.
Collapse
Affiliation(s)
- Dorsa Haji Ghaffari
- Department of Biomedical Engineering, Michigan Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America. Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | | | | | | | | | | | | |
Collapse
|
5
|
Dual SMAD inhibition and Wnt inhibition enable efficient and reproducible differentiations of induced pluripotent stem cells into retinal ganglion cells. Sci Rep 2020; 10:11828. [PMID: 32678240 PMCID: PMC7366935 DOI: 10.1038/s41598-020-68811-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a group of progressive optic neuropathies that share common biological and clinical characteristics including irreversible changes to the optic nerve and visual field loss caused by the death of retinal ganglion cells (RGCs). The loss of RGCs manifests as characteristic cupping or optic nerve degeneration, resulting in visual field loss in patients with Glaucoma. Published studies on in vitro RGC differentiation from stem cells utilized classical RGC signaling pathways mimicking retinal development in vivo. Although many strategies allowed for the generation of RGCs, increased variability between experiments and lower yield hampered the cross comparison between individual lines and between experiments. To address this critical need, we developed a reproducible chemically defined in vitro methodology for generating retinal progenitor cell (RPC) populations from iPSCs, that are efficiently directed towards RGC lineage. Using this method, we reproducibly differentiated iPSCs into RGCs with greater than 80% purity, without any genetic modifications. We used small molecules and peptide modulators to inhibit BMP, TGF-β (SMAD), and canonical Wnt pathways that reduced variability between iPSC lines and yielded functional and mature iPSC-RGCs. Using CD90.2 antibody and Magnetic Activated Cell Sorter (MACS) technique, we successfully purified Thy-1 positive RGCs with nearly 95% purity.
Collapse
|
6
|
Extraretinal Spike Normalization in Retinal Ganglion Cell Axons. eNeuro 2020; 7:ENEURO.0504-19.2020. [PMID: 32086286 PMCID: PMC7110362 DOI: 10.1523/eneuro.0504-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 11/21/2022] Open
Abstract
Spike conduction velocity characteristically differs between myelinated and unmyelinated axons. Here we test whether spikes of myelinated and unmyelinated paths differ in other respects by measuring rat retinal ganglion cell (RGC) spike duration in the intraretinal, unmyelinated nerve fiber layer and the extraretinal, myelinated optic nerve and optic chiasm. We find that rapid spike firing and illumination broaden spikes in intraretinal axons but not in extraretinal axons. RGC axons thus initiate spikes intraretinally and normalize spike duration extraretinally. Additionally, we analyze spikes that were recorded in a previous study of rhesus macaque retinogeniculate transmission and find that rapid spike firing does not broaden spikes in optic tract. The spike normalization we find reduces the number of spike properties that can change during RGC light responses. However, this is not because identical spikes fire in all axons. Instead, our recordings show that different subtypes of RGC generate axonal spikes of different durations and that the differences resemble spike duration increases that alter neurotransmitter release from other neurons. Moreover, previous studies have shown that RGC spikes of shorter duration can fire at higher maximum frequencies. These properties should facilitate signal transfer by different mechanisms at RGC synapses onto subcortical target neurons.
Collapse
|
7
|
Sørensen NB. Subretinal surgery: functional and histological consequences of entry into the subretinal space. Acta Ophthalmol 2019; 97 Suppl A114:1-23. [PMID: 31709751 DOI: 10.1111/aos.14249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Gene-therapy, stem-cell transplantation and surgical robots hold the potential for treatment of currently untreatable retinal degenerative diseases. All of the techniques require entry into the subretinal space, which is a potential space located between the retina and the retinal pigment epithelium (RPE). Knowledge about obstacles and critical steps in relation to subretinal procedures is therefore needed. This thesis explores the functional and histological consequences of separation of the retina from the RPE, extensive RPE damage, a large cut in the retina (retinotomy) and RPE phagocytosis in a porcine model. METHODS Experiments were performed in 106 female domestic pigs of Danish landrace distributed over five studies. Under general anesthesia, different procedures for expansion of the subretinal space were conducted. Outcomes were visual function measured electrophysiologically with multifocal electroretinogram (mfERG) and retinal morphology examined histologically. Study I: The effect of anesthesia on mfERG was examined by repeated recordings for 3 hr in isoflurane or propofol anesthesia. Outcome was mfERG amplitude. Study II: Consequences of a large separation of the photoreceptors from the RPE were examined by injecting a perfluorocarbon-liquid (decalin) into the subretinal space. Two weeks after, in a second surgery, decalin was withdrawn. Outcomes were mfERG and histology 4 weeks after decalin injection. Study III: Extensive RPE damage was examined by expanding the subretinal space with saline and removing large sheets of RPE-cells through a retinotomy. Outcomes were mfERG and histology 2, 4 and 6 weeks after the procedure. Study IV: Consequences of a large retinotomy were examined by similar procedures as in Study III, but in study IV only a few RPE cells were removed. Outcomes were mfERG and histology 2 and 6 weeks after surgery. Study V: Clearance of the subretinal space was examined by injecting fluorescent latex beads of various sizes into the subretinal space. Outcome was histologic location of the beads at different time intervals after the procedure. RESULTS Study I: MfERG amplitudes decreased linearly as a function of time in propofol or isoflurane anesthesia. Duration of mfERG recording could be decreased without compromising quality, and thereby could time in anesthesia be reduced. Study II: MfERG and histology remained normal after reattachment of a large and 2-week long separation of the photoreceptors and RPE. Repeated entry into the subretinal space was well tolerated. Fluid injection into the subretinal space constitutes a risk of RPE-damage. Study III: Removal of large sheets of retinal pigment epithelial cells triggered a widespread rhegmatogenous-like retinal detachment resulting in visual loss. Study IV: A large retinotomy with limited damage of the RPE was well tolerated, and visual function was preserved. Study V: Subretinal latex beads up to 4 μm were phagocytosed by the RPE and passed into the sub-RPE space. Beads up to 2 μm travelled further through the Bruch's membrane and were found in the choroid, sclera and inside blood vessels. CONCLUSION A large expansion of the subretinal space, repeated entry, a large retinotomy and limited RPE damage is well tolerated and retinal function is preserved. Subretinal injection of fluid can damage the RPE and extensive RPE damage can induce a rhegmatogenous-like retinal detachment with loss of visual function. Foreign substances exit the subretinal space and can reach the systemic circulation.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology Copenhagen University Hospital Rigshospitalet København Denmark
- Department of Neurology Zealand University Hospital Køge Denmark
| |
Collapse
|
8
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Zhou Y, Pan P, Tan ZY, Ji YH. Voltage-gated Sodium Channels in Sensory Information Processing. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:273-278. [DOI: 10.2174/1871527317666180627114849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/04/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Objective & Background:
Voltage-gated sodium channels (VGSCs) and potassium channels
are critical in the generation of action potentials in the nervous system. VGSCs and potassium
channels play important roles in the five fundamental senses of vision, audition, olfaction, taste and
touch. Dysfunctional VGSCs are associated with clinical sensory symptoms, such as hyperpselaphesia,
parosphresia, and so on.
Conclusion:
This short review highlights the recent advances in the study of VGSCs in sensory information
processing and discusses the potential role of VGSCs to serve as pharmacological targets for
the treatment of sensory system diseases.
Collapse
Affiliation(s)
- You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Wu HJ, Li XY, Qian WJ, Li Q, Wang SY, Ji M, Ma YY, Gao F, Sun XH, Wang X, Miao Y, Yang XL, Wang Z. Dopamine D1 receptor-mediated upregulation of BKCa
currents modifies Müller cell gliosis in a rat chronic ocular hypertension model. Glia 2018; 66:1507-1519. [PMID: 29508439 DOI: 10.1002/glia.23321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hang-Jing Wu
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Xue-Yan Li
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Wen-Jing Qian
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Qian Li
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Shu-Yue Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Min Ji
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Yuan-Yuan Ma
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Feng Gao
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Xing-Huai Sun
- Department of Ophthalmology at Eye & ENT Hospital; Fudan University; Shanghai 200031 China
| | - Xin Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Yanying Miao
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Xiong-Li Yang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Zhongfeng Wang
- Department of Neurology; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Zhongshan Hospital, Fudan University; Shanghai 200032 China
| |
Collapse
|
11
|
Sørensen NB, Christiansen AT, Kjær TW, Klemp K, la Cour M, Kiilgaard JF. Time-Dependent Decline in Multifocal Electroretinogram Requires Faster Recording Procedures in Anesthetized Pigs. Transl Vis Sci Technol 2017; 6:6. [PMID: 28377845 PMCID: PMC5374880 DOI: 10.1167/tvst.6.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/11/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose The time-dependent effect of anesthetics on the retinal function is debated. We hypothesize that in anesthetized animals there is a time-dependent decline that requires optimized multifocal electroretinogram (mfERG) recording procedures. Methods Conventional and four-frame global-flash mfERG recordings were obtained approximately 15, 60, and 150 minutes after the induction of propofol anesthesia (20 pigs) and isoflurane anesthesia (nine pigs). In six of the propofol-anesthetized pigs, the mfERG recordings were split in 3-minute segments. Two to 4 weeks after initial recordings, an intraocular injection of tetrodotoxin (TTX) was given and the mfERG was rerecorded as described above. Data were analyzed using mixed models in SAS statistical software. Results Propofol significantly decreases the conventional and global-flash amplitudes over time. The only significant effect of isoflurane is a decrease in the global-flash amplitudes. At 15 minutes after TTX injection several of the mfERG amplitudes are significantly decreased. There is a linear correlation between the conventional P1 and the global-flash DR mfERG-amplitude (R2 = 0.82, slope = 0.72, P < 0.0001). There is no significant difference between the 3-minute and the prolonged mfERG recordings for conventional amplitudes and the global-flash direct response. The global flash–induced component significantly decreases with prolonged mfERG recordings. Conclusions A 3-minute mfERG recording and a single stimulation protocol is sufficient in anesthetized pigs. Recordings should be obtained immediately after the induction of anesthesia. The effect of TTX is significant 15 minutes after injection, but is contaminated by the effect of anesthesia 90 minutes after injection. Therefore, the quality of mfERG recordings can be further improved by determining the necessary time-of-delay from intraocular injection of a drug to full effect. Translational Relevance General anesthesia is a possible source of error in mfERG recordings. Therefore, it is important to investigate the translational relevance of the results to mfERG recordings in children in general anesthesia.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Kristian Klemp
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten la Cour
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Teotia P, Chopra DA, Dravid SM, Van Hook MJ, Qiu F, Morrison J, Rizzino A, Ahmad I. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism. Stem Cells 2016; 35:572-585. [PMID: 27709736 DOI: 10.1002/stem.2513] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/07/2023]
Abstract
Glaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) lead to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, that is, the embryonic stem cells and induced pluripotent stem cells. Here, we demonstrate a rapid and safe, stage-specific, chemically defined protocol that selectively generates RGCs across species, including human, by recapitulating the developmental mechanism. The de novo generated RGCs from pluripotent cells are similar to native RGCs at the molecular, biochemical, functional levels. They also express axon guidance molecules, and discriminate between specific and nonspecific targets, and are nontumorigenic. Stem Cells 2017;35:572-585.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Divyan A Chopra
- Department of Pharmacology, Creighton University, Omaha, Nebraska, USA
| | | | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John Morrison
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Struebing FL, Lee RK, Williams RW, Geisert EE. Genetic Networks in Mouse Retinal Ganglion Cells. Front Genet 2016; 7:169. [PMID: 27733864 PMCID: PMC5039302 DOI: 10.3389/fgene.2016.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.
Collapse
Affiliation(s)
- Felix L Struebing
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
14
|
Guo T, Tsai D, Morley JW, Suaning GJ, Kameneva T, Lovell NH, Dokos S. Electrical activity of ON and OFF retinal ganglion cells: a modelling study. J Neural Eng 2016; 13:025005. [PMID: 26905646 DOI: 10.1088/1741-2560/13/2/025005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Retinal ganglion cells (RGCs) demonstrate a large range of variation in their ionic channel properties and morphologies. Cell-specific properties are responsible for the unique way RGCs process synaptic inputs, as well as artificial electrical signals such as that from a visual prosthesis. A cell-specific computational modelling approach allows us to examine the functional significance of regional membrane channel expression and cell morphology. APPROACH In this study, an existing RGC ionic model was extended by including a hyperpolarization activated non-selective cationic current as well as a T-type calcium current identified in recent experimental findings. Biophysically-defined model parameters were simultaneously optimized against multiple experimental recordings from ON and OFF RGCs. MAIN RESULTS With well-defined cell-specific model parameters and the incorporation of detailed cell morphologies, these models were able to closely reconstruct and predict ON and OFF RGC response properties recorded experimentally. SIGNIFICANCE The resulting models were used to study the contribution of different ion channel properties and spatial structure of neurons to RGC activation. The techniques of this study are generally applicable to other excitable cell models, increasing the utility of theoretical models in accurately predicting the response of real biological neurons.
Collapse
Affiliation(s)
- Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Li Q, Wu N, Cui P, Gao F, Qian WJ, Miao Y, Sun XH, Wang Z. Suppression of outward K(+) currents by activating dopamine D1 receptors in rat retinal ganglion cells through PKA and CaMKII signaling pathways. Brain Res 2016; 1635:95-104. [PMID: 26826585 DOI: 10.1016/j.brainres.2016.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 01/11/2023]
Abstract
Dopamine plays an important role in regulating neuronal functions in the central nervous system by activating the specific G-protein coupled receptors. Both D1 and D2 dopamine receptors are extensively distributed in the retinal neurons. In the present study, we investigated the effects of D1 receptor signaling on outward K(+) currents in acutely isolated rat retinal ganglion cells (RGCs) by patch-clamp techniques. Extracellular application of SKF81297 (10 μM), a specific D1 receptor agonist, significantly and reversibly suppressed outward K(+) currents of the cells, which was reversed by SCH23390 (10 μM), a selective D1 receptor antagonist. We further showed that SKF81297 mainly suppressed the glybenclamide (Gb)- and 4-aminopyridine (4-AP)-sensitive K(+) current components, but did not show effect on the tetraethylammonium (TEA)-sensitive one. Both protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways were likely involved in the SKF81297-induced suppression of the K(+) currents since either Rp-cAMP (10 μM), a cAMP/PKA signaling inhibitor, or KN-93 (10 μM), a specific CaMKII inhibitor, eliminated the SKF81297 effect. In contrast, neither protein kinase C (PKC) nor mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway seemed likely to be involved because both the PKC inhibitor bisindolylmaleimide IV (Bis IV) (10 μM) and the MAPK/ERK1/2 inhibitor U0126 (10 μM) did not block the SKF81297-induced suppression of the K(+) currents. These results suggest that activation of D1 receptors suppresses the Gb- and 4-AP-sensitive K(+) current components in rat RGCs through the intracellular PKA and CaMKII signaling pathways, thus modulating the RGC excitability.
Collapse
Affiliation(s)
- Qian Li
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Na Wu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Peng Cui
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Feng Gao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Wen-Jing Qian
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Xing-Huai Sun
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Institute of Neurobiology, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Yin S, Wang ZF, Duan JG, Ji L, Lu XJ. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int J Ophthalmol 2015; 8:1101-6. [PMID: 26682155 DOI: 10.3980/j.issn.2222-3959.2015.06.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/15/2015] [Indexed: 02/02/2023] Open
Abstract
AIM To investigate the effect of DSX, an active component extracted from Erigeron breviscapus, on the voltage-gated outward K(+) channel currents in rat retinal ganglion cells (RGCs) by using electrophysiological method, and to explore the possible mechanisms of DSX on optic nerve protection. METHODS Outward K(+) currents were recorded by using whole-cell patch-clamp techniques on acutely isolated rat RGCs. Outward K(+) currents were induced by a series of depolarizing voltage pulses from a holding potential of -70 mV to +20 mV in an increment of 10 mV. RESULTS Extracellular application of DSX voltage-dependently suppressed both the steady-state and peak current amplitudes of outward K(+) currents in rat RGCs. Furthermore, DSX reversibly and dose-dependently inhibited the amplitudes of outward K(+) currents of the cells. At +20 mV membrane potential DSX at the concentrations of 0.02 g/L and 0.05 g/L showed no significant effects on the currents. In contrast, DSX at higher concentrations (0.1 g/L, 0.2 g/L and 0.5 g/L) significantly suppressed the current amplitudes. CONCLUSION These results suggest that DSX reversibly and dose-dependently suppress outward K(+) channel currents in rat RGCs, which may be one of the possible mechanisms underlying Erigeron breviscapus prevents vision loss and RGC damage caused by glaucoma.
Collapse
Affiliation(s)
- Shuo Yin
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Zhong-Feng Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Guo Duan
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Lu Ji
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Xue-Jing Lu
- Key Laboratory for Visual Function and Ophthalmopathy, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| |
Collapse
|
17
|
Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP, West MD, Wong KY, Nasonkin IO. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures. Stem Cells Dev 2015; 24:2778-95. [PMID: 26283078 DOI: 10.1089/scd.2015.0144] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.
Collapse
Affiliation(s)
- Ratnesh K Singh
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramya K Mallela
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Pamela K Cornuet
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Aaron N Reifler
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Andrew P Chervenak
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | | | - Kwoon Y Wong
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Igor O Nasonkin
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
19
|
Parameswaran S, Dravid SM, Teotia P, Krishnamoorthy RR, Qiu F, Toris C, Morrison J, Ahmad I. Continuous non-cell autonomous reprogramming to generate retinal ganglion cells for glaucomatous neuropathy. Stem Cells 2015; 33:1743-58. [PMID: 25753398 PMCID: PMC4524556 DOI: 10.1002/stem.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023]
Abstract
Glaucoma, where the retinal ganglion cells (RGCs) carrying the visual signals from the retina to the visual centers in the brain are progressively lost, is the most common cause of irreversible blindness. The management approaches, whether surgical, pharmacological, or neuroprotective do not reverse the degenerative changes. The stem cell approach to replace dead RGCs is a viable option but currently faces several barriers, such as the lack of a renewable, safe, and ethical source of RGCs that are functional and could establish contacts with bona fide targets. To address these barriers, we have derived RGCs from the easily accessible adult limbal cells, reprogrammed to pluripotency by a non-nucleic acid approach, thus circumventing the risk of insertional mutagenesis. The generation of RGCs from the induced pluripotent stem (iPS) cells, also accomplished non-cell autonomously, recapitulated the developmental mechanism, ensuring the predictability and stability of the acquired phenotype, comparable to that of native RGCs at biochemical, molecular, and functional levels. More importantly, the induced RGCs expressed axonal guidance molecules and demonstrated the potential to establish contacts with specific targets. Furthermore, when transplanted in the rat model of ocular hypertension, these cells incorporated into the host RGC layer and expressed RGC-specific markers. Transplantation of these cells in immune-deficient mice did not produce tumors. Together, our results posit retinal progenitors generated from non-nucleic acid-derived iPS cells as a safe and robust source of RGCs for replacing dead RGCs in glaucoma.
Collapse
Affiliation(s)
- Sowmya Parameswaran
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | | | - Pooja Teotia
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | | | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Carol Toris
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| | - John Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR
| | - Iqbal Ahmad
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
20
|
Fohlmeister JF. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature. J Neurophysiol 2015; 113:3759-77. [PMID: 25867741 DOI: 10.1152/jn.00551.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation.
Collapse
Affiliation(s)
- Jürgen F Fohlmeister
- Department of Integrative Biology and Physiology and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
21
|
Samba R, Herrmann T, Zeck G. PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J Neural Eng 2015; 12:016014. [DOI: 10.1088/1741-2560/12/1/016014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S. The unique characteristics of ON and OFF retinal ganglion cells: a modeling study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6096-9. [PMID: 25571388 DOI: 10.1109/embc.2014.6945020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells (RGCs) demonstrate a large range of variation in their ionic channel properties and morphologies. These cell-specific properties are responsible for the unique way they process synaptic inputs. A cell-specific modeling approach allows us to examine the functional significance of regional membrane channel expression and cell morphology. ON and OFF RGC models based on accurate biophysics and realistic representation of morphologies were used to study the contribution of different ion channel properties and spatial structure of neurons to RGC electrical activity. Using this approach, morphologically-complex retinal neurons such as amacrine cells or RGCs can be modelled and their interactions and processing can be better understood.
Collapse
|
23
|
Eickenscheidt M, Zeck G. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential. J Neural Eng 2014; 11:036006. [DOI: 10.1088/1741-2560/11/3/036006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Smith BJ, Tremblay F, Côté PD. Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 2013; 116:279-90. [DOI: 10.1016/j.exer.2013.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
|
25
|
Becker S, Singhal S, Jones MF, Eastlake K, Cottrill PB, Jayaram H, Limb GA. Acquisition of RGC phenotype in human Müller glia with stem cell characteristics is accompanied by upregulation of functional nicotinic acetylcholine receptors. Mol Vis 2013; 19:1925-36. [PMID: 24049438 PMCID: PMC3774575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 09/10/2013] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Human Müller glia with stem cell characteristics (hMGSCs) can be induced to express genes and proteins of retinal ganglion cells (RGCs) upon in vitro inhibition of Notch-1 activity. However, it is not known whether expression of these markers is accompanied by acquisition of RGC function. This study investigated whether hMGSCs that express RGC markers also display neural functionality, as measured by their intracellular calcium concentration ([Ca(2+)]i) responsiveness following neurotransmitter stimulation in vitro. METHODS Changes in mRNA expression of RGC markers and neurotransmitter receptors were assessed either by conventional or quantitative reverse transcription PCR (RT-PCR), while changes in protein levels were confirmed by immunocytochemistry. The [Ca(2+)]i levels were estimated by fluorescence microscopy. RESULTS We showed that while undifferentiated hMGSCs displayed a profound elevation of [Ca(2+)]i after stimulation with N-methyl-D-aspartate (NMDA), this was lost following Notch-1 inhibition. Conversely, untreated hMGSCs did not respond to muscarinic receptor stimulation, whereas [Ca(2+)]i was increased in differentiated hMGSCs that expressed RGC precursor markers. Differentiated hMGSC-derived RGCs, but not undifferentiated hMGSCs, responded to stimulation by nicotine with a substantial rise in [Ca(2+)]i, which was inhibited by the α4β2 and α6β2 nicotinic receptor antagonist methyllycaconitine. Notch-1 attenuation not only caused a decrease in the gene expression of the Notch effector HES1 and increased expression of RGC markers, but also an increase in the gene and protein expression of α4 and α6 nicotinic receptor subunits. CONCLUSIONS These observations suggest that in response to Notch-1 inhibition, hMGSCs differentiate into a population of RGCs that exhibit some of the functionality observed in differentiated RGCs.
Collapse
Affiliation(s)
- Silke Becker
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| | - Shweta Singhal
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| | - Megan F. Jones
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| | - Karen Eastlake
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| | - Phillippa B. Cottrill
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| | - Hari Jayaram
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - G. Astrid Limb
- Division of Ocular Biology & Therapeutics, Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
26
|
Zhang CQ, Wu HJ, Wang SY, Yin S, Lu XJ, Miao Y, Wang XH, Yang XL, Wang Z. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors. Neuroscience 2013; 253:183-93. [PMID: 24013008 DOI: 10.1016/j.neuroscience.2013.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.
Collapse
Affiliation(s)
- C-Q Zhang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhong YS, Wang J, Liu WM, Zhu YH. Potassium ion channels in retinal ganglion cells (review). Mol Med Rep 2013; 8:311-9. [PMID: 23732984 DOI: 10.3892/mmr.2013.1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age‑related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP‑sensitive K+ (KATP), tandem‑pore domain K+ (TASK), voltage‑gated K+ (Kv), ether‑à‑go‑go (Eag) and Ca2+‑activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.
Collapse
Affiliation(s)
- Yi-Sheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | | | |
Collapse
|
28
|
Hu C, Hill DD, Wong KY. Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J Neurophysiol 2013; 109:1876-89. [PMID: 23343892 PMCID: PMC3628016 DOI: 10.1152/jn.00579.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/17/2013] [Indexed: 11/22/2022] Open
Abstract
In the mammalian retina, some ganglion cells express the photopigment melanopsin and function as photoreceptors. Five morphological types of these intrinsically photosensitive retinal ganglion cells (ipRGCs), M1-M5, have been identified in mice. Whereas M1 specializes in non-image-forming visual functions and drives such behaviors as the pupillary light reflex and circadian photoentrainment, the other types appear to contribute to image-forming as well as non-image-forming vision. Recent work has begun to reveal physiological diversity among some of the ipRGC types, including differences in photosensitivity, firing rate, and membrane resistance. To gain further insights into these neurons' functional differences, we conducted a comprehensive survey of the electrophysiological properties of all five morphological types. Compared with the other types, M1 had the highest membrane resistance, longest membrane time constant, lowest spike frequencies, widest action potentials, most positive spike thresholds, smallest hyperpolarization-activated inwardly-rectifying current-induced "sagging" responses to hyperpolarizing currents, and the largest effects of voltage-gated K(+) currents on membrane potentials. M4 and M5 were at the other end of the spectrum for most of these measures, while M2 and M3 tended to be in the middle of this spectrum. Additionally, M1 and M2 cells generated more diverse voltage-gated Ca(2+) currents than M3-M5. In conclusion, M1 cells are significantly different from all other ipRGCs in most respects, possibly reflecting the unique physiological requirements of non-image-forming vision. Furthermore, the non-M1 ipRGCs are electrophysiologically heterogeneous, implicating these cells' diverse functional roles in both non-image-forming vision and pattern vision.
Collapse
Affiliation(s)
- Caiping Hu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
29
|
Wong RCS, Cloherty SL, Ibbotson MR, O'Brien BJ. Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. J Neurophysiol 2012; 108:2008-23. [DOI: 10.1152/jn.01091.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian retina contains 15–20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
Collapse
Affiliation(s)
- Raymond C. S. Wong
- Research School of Biology, Australian National University, Acton, Australia
- ARC Centre of Excellence in Vision Science, Australian National University, Acton, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia; and
| | - Shaun L. Cloherty
- Research School of Biology, Australian National University, Acton, Australia
- ARC Centre of Excellence in Vision Science, Australian National University, Acton, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia; and
| | - Michael R. Ibbotson
- Research School of Biology, Australian National University, Acton, Australia
- ARC Centre of Excellence in Vision Science, Australian National University, Acton, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia; and
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Australia
| | - Brendan J. O'Brien
- Research School of Biology, Australian National University, Acton, Australia
- National Vision Research Institute, Australian College of Optometry, Carlton, Australia; and
- Department of Optometry and Vision Science, University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Abstract
Retinal ganglion cells (RGCs) are the output cells of the retina; they convert synaptic input into spike output that carries visual information to the brain. Synaptic inputs are received, integrated and communicated to the spike initiation zone of the axon by dendrites whose properties are poorly understood. Here simultaneous patch-clamp recording and 2-photon Ca(2+) imaging are used to study voltage- and light-evoked Ca(2+) signals in the dendrites of identified types of mouse RGCs from parallel ON and OFF pathways, which encode the onset and offset of light, respectively. The results show pathway-specific differences in voltage-dependent Ca(2+) signaling. While both ON and OFF cells express high-voltage-activated (HVA) Ca(2+) channels, only OFF RGCs also express low-voltage-activated (LVA) Ca(2+) channels. LVA Ca(2+) channels in OFF cells are deinactivated by hyperpolarization from the resting potential and give rise to rebound excited Ca(2+) spikes at the termination of a step of either hyperpolarizing current or light. This suggests that the differential expression of voltage-gated Ca(2+) channels in ON and OFF RGC dendrites contributes to differences in the way the two cell types process visual stimuli.
Collapse
|
31
|
Fohlmeister JF, Cohen ED, Newman EA. Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable. J Neurophysiol 2010; 103:1357-74. [PMID: 20053849 DOI: 10.1152/jn.00123.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trains of action potentials of rat and cat retinal ganglion cells (RGCs) were recorded intracellularly across a temperature range of 7-37 degrees C. Phase plots of the experimental impulse trains were precision fit using multicompartment simulations of anatomically reconstructed rat and cat RGCs. Action potential excitation was simulated with a "Five-channel model" [Na, K(delayed rectifier), Ca, K(A), and K(Ca-activated) channels] and the nonspace-clamped condition of the whole cell recording was exploited to determine the channels' distribution on the dendrites, soma, and proximal axon. At each temperature, optimal phase-plot fits for RGCs occurred with the same unique channel distribution. The "waveform" of the electrotonic current was found to be temperature dependent, which reflected the shape changes in the experimental action potentials and confirmed the channel distributions. The distributions are cell-type specific and adequate for soma and dendritic excitation with a safety margin. The highest Na-channel density was found on an axonal segment some 50-130 microm distal to the soma, as determined from the temperature-dependent "initial segment-somadendritic (IS-SD) break." The voltage dependence of the gating rate constants remains invariant between 7 and 23 degrees C and between 30 and 37 degrees C, but undergoes a transition between 23 and 30 degrees C. Both gating-kinetic and ion-permeability Q10s remain virtually constant between 23 and 37 degrees C (kinetic Q10s = 1.9-1.95; permeability Q10s = 1.49-1.64). The Q10s systematically increase for T <23 degrees C (kinetic Q10 = 8 at T = 8 degrees C). The Na channels were consistently "sleepy" (non-Arrhenius) for T <8 degrees C, with a loss of spiking for T <7 degrees C.
Collapse
Affiliation(s)
- Jürgen F Fohlmeister
- Department of Integrative Biology Physiology, 6-125 Jackson Hall, 321 Church Street S.E., University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
32
|
Koeberle PD, Wang Y, Schlichter LC. Kv1.1 and Kv1.3 channels contribute to the degeneration of retinal ganglion cells after optic nerve transection in vivo. Cell Death Differ 2009; 4:337-46. [DOI: 10.1038/cdd.2009.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Nemargut JP, Zhu J, Savoie BT, Wang GY. Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina. Vision Res 2009; 49:388-97. [PMID: 19084033 PMCID: PMC2721325 DOI: 10.1016/j.visres.2008.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/12/2008] [Accepted: 11/18/2008] [Indexed: 11/29/2022]
Abstract
Patch-clamp recordings were made from retinal ganglion cells in the mouse retina. Under dark adaptation, blockage of BK(Ca) channels increases the spontaneous excitatory postsynaptic currents (EPSCs) and light-evoked On-EPSCs, while it decreases the light-evoked Off inhibitory postsynaptic currents (IPSCs). However, under light adaptation it decreases the light-evoked On-EPSCs, the spontaneous IPSCs and the light-evoked On- and Off-IPSCs. Blockage of BK(Ca) channels significantly altered the outputs of RGCs by changing their light-evoked responses into a bursting pattern and increasing the light-evoked depolarization of the membrane potentials, while it did not significantly change the peak firing rates of light-evoked responses.
Collapse
Affiliation(s)
- Joseph P Nemargut
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
34
|
Behrend MR, Ahuja AK, Humayun MS, Weiland JD, Chow RH. Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro. J Neurosci Methods 2009; 179:166-72. [PMID: 19428523 DOI: 10.1016/j.jneumeth.2009.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
Here we present a retrograde loading technique that makes it possible for the first time to rapidly load a calcium indicator in the majority of retinal ganglion cells (RGCs) in salamander retina, and then to observe physiological activity of these dye-loaded cells. Dextran-conjugated calcium indicator, dissolved in water, was applied to the optic nerve stump. Following dye loading, the isolated retina was mounted on a microelectrode array to demonstrate that electrical activity and calcium activity were preserved, as the retina responded to electrical stimuli.
Collapse
Affiliation(s)
- Matthew R Behrend
- Dept. of Electrical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
35
|
Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, Boynton GM, Fine I. Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci 2008; 50:1483-91. [PMID: 19098313 DOI: 10.1167/iovs.08-2595] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE With the long-term goal of restoring functional vision in patients with retinal degenerative diseases, the eyes of blind human subjects were implanted chronically with epiretinal prostheses consisting of two-dimensional electrode arrays that directly stimulated cells of the neural retina. METHODS Psychophysical techniques were used to measure the brightness of electrically generated percepts on single electrodes using a variety of electrical stimulation patterns. RESULTS It was possible to predict the sensitivity of the human visual system to a wide variety of retinal electrical stimulation patterns using a simple and biologically plausible model. CONCLUSIONS This is the first study to demonstrate that, on the single-electrode level, retinal electrical stimulation in humans can produce visual qualia that are predictable using a quantitative model, a prerequisite for a successful retinal prosthesis. (ClinicalTrials.gov number, NCT00279500.).
Collapse
Affiliation(s)
- Alan Horsager
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sättler MB, Williams SK, Neusch C, Otto M, Pehlke JR, Bähr M, Diem R. Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1496-507. [PMID: 18832577 DOI: 10.2353/ajpath.2008.080491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system that results in persistent impairment in young adults. During chronic progressive disease stages, there is a strong correlation between neurodegeneration and disability. Current therapies fail to prevent progression of neurological impairment during these disease stages. Flupirtine, a drug approved for oral use in patients suffering from chronic pain, was used in a rat model of autoimmune optic neuritis and significantly increased the survival of retinal ganglion cells, the neurons that form the axons of the optic nerve. When flupirtine was combined with interferon-beta, an established immunomodulatory therapy for MS, visual functions of the animals were improved during the acute phase of optic neuritis. Furthermore, flupirtine protected retinal ganglion cells from degeneration in a noninflammatory animal model of optic nerve transection. Although flupirtine was shown previously to increase neuronal survival by Bcl-2 up-regulation, this mechanism does not appear to play a role in flupirtine-mediated protection of retinal ganglion cells either in vitro or in vivo. Instead, we showed through patch-clamp investigations that the activation of inwardly rectifying potassium channels is involved in flupirtine-mediated neuroprotection. Considering the few side effects reported in patients who receive long-term flupirtine treatment for chronic pain, our results indicate that this drug is an interesting candidate for further evaluation of its neuroprotective potential in MS.
Collapse
Affiliation(s)
- Muriel B Sättler
- Department of Neurology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Mojumder DK, Wensel TG, Frishman LJ. Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 2008; 14:1600-13. [PMID: 18769561 PMCID: PMC2528027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/23/2008] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Intracellular free calcium ions (Ca(2+)) are an important element in retinal ganglion cell response. Two major EF-hand (E-helix-loop-F-helix-hand) calcium binding proteins in the retina, calretinin and calbindin-28 kDa, are important buffers of intracellular free Ca(2+) in neurons, and may also serve as Ca(2+)-dependent regulators of enzymes and ion channels. METHODS This study used immunohistochemistry to investigate the subcellular expression patterns of calretinin and calbindin-28 kDa, in the soma, dendrites, and the axonal compartment of rat retinal ganglion cells. RESULTS Antibodies for calretinin and calbindin-28 kDa labeled different cell populations in the retinal ganglion cell layer. In this layer, calretinin labeled a larger number of cells compared to calbindin-28 kDa, many, but not all, of which were displaced amacrine cells. The calbindin-28 kDa immunopositive neurons were distinct in that their somata were peripherally encircled by microtubule associated protein 1 (MAP-1) or neurofilament-200 kDa subunit (NF-200 kDa) immunofluorescence. Although somata of retinal ganglion cells contained these calcium binding proteins, neither protein was found in the dendrites or initial segments of the axons. However, both were expressed in the ganglion cell axons in nerve fiber layer. Calretinin and calbindin-28 kDa staining overlapped in some fibers and not in others. Calretinin immunofluorescence was concentrated in discrete axonal regions, which showed limited staining for calbindin-28 kDa or for NF200 kDa, suggesting its close proximity to the plasma membrane. CONCLUSIONS There is a clear compartmentalization of calbindin-28 kDa and calretinin distribution in retinal ganglion cells. This suggests that the two calcium binding proteins perform distinct functions in localized calcium signaling. It also indicates that rather than freely diffusing through the cytoplasm to attain a homogeneous distribution, calbindin-28 kDa and calretinin must be bound to cellular structures through interactions that are likely important for their functions.
Collapse
Affiliation(s)
- Deb Kumar Mojumder
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX,University of Houston College of Optometry, Houston, TX
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
38
|
Sandalon S, Ofri R. The effect of topical anesthesia on the rat electroretinogram. Doc Ophthalmol 2008; 118:101-8. [PMID: 18665412 DOI: 10.1007/s10633-008-9141-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Topical anesthetics are recommended when electroretinograms (ERGs) are recorded using contact lens electrodes. However, these drugs act by blocking voltage-gated Na+ channels. Since such channels have been located in both the inner and outer retina of many species, topical anesthesia could affect the ERG recordings in these subjects. The purpose of this study was to evaluate the effects of oxybuprocaine, a commonly used ester local anesthetic, on the rat ERG. Full-field scotopic and pattern ERGs (PERGs) were recorded successively from both eyes of seven rats. One eye was randomly treated with oxybuprocaine 15 min prior to recording. In 10 rats unilateral full-field photopic ERG recordings were conducted prior to, and 15 min after, treatment. B-wave amplitude ratios of the experimental/control eyes were 1.13, 1.30, and 1.35 for the three intensities used to record scotopic ERG responses, and 1.04 for the photopic ERG responses. PERG amplitude ratios of the experimental/control eyes were 1.10, 1.21, 1.21, 1.24, and 1.26 for the five patterns used. Treatment had no significant negative effect on signal amplitude or implicit time of the full-field ERG or PERG. In fact, amplitudes of signals from treated eyes tended to be (insignificantly) higher, though this might reflect better position of the active electrode rather than a biological effect. We conclude that oxybuprocaine has no negative effect on the rat ERG.
Collapse
Affiliation(s)
- Shai Sandalon
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, PO Box12, Rehovot 76100, Israel
| | | |
Collapse
|
39
|
HCN4-like immunoreactivity in rat retinal ganglion cells. Vis Neurosci 2008; 25:95-102. [PMID: 18282314 DOI: 10.1017/s095252380808005x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/16/2007] [Indexed: 11/07/2022]
Abstract
Antisera directed against hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels bind to somata in the ganglion cell layer of rat and rabbit retinas, and mRNA for different HCN channel isoforms has been detected in the ganglion cell layer of mouse retina. However, previous studies neither provided evidence that any of the somata are ganglion cells (as opposed to displaced amacrine cells) nor quantified these cells. We therefore tested whether isoform-specific anti-HCN channel antisera bind to ganglion cells labeled by retrograde transport of fluorophore-coupled dextran. In flat-mounted adult rat retinas, the number of dextran-backfilled ganglion cells agreed with cell densities reported in previous studies, and anti-HCN4 antisera bound to the somata of approximately 40% of these cells. The diameter of these somata ranged from 7 to 30 microm. Consistent with localization to cell membranes, the immunoreactivity formed a thin line that circumscribed individual somata. Optic fiber layer axon fascicles, and the proximal dendrites of some ganglion cells, also displayed binding of anti-HCN4 antisera. These results suggest that the response of some mammalian retinal ganglion cells to hyperpolarization may be modulated by changes in intracellular cAMP levels, and could thus be more complex than expected from previous voltage and current recordings.
Collapse
|
40
|
Mojumder DK, Sherry DM, Frishman LJ. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol 2008; 586:2551-80. [PMID: 18388140 DOI: 10.1113/jphysiol.2008.150755] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated sodium channels (Na(v) channels) in retinal neurons are known to contribute to the mammalian flash electroretinogram (ERG) via activity of third-order retinal neurons, i.e. amacrine and ganglion cells. This study investigated the effects of tetrodotoxin (TTX) blockade of Na(v) channels on the b-wave, an ERG wave that originates mainly from activity of second-order retinal neurons. ERGs were recorded from anaesthetized Brown Norway rats in response to brief full-field flashes presented over a range of stimulus energies, under dark-adapted conditions and in the presence of steady mesopic and photopic backgrounds. Recordings were made before and after intravitreal injection of TTX (approximately 3 microm) alone, 3-6 weeks after optic nerve transection (ONTx) to induce ganglion cell degeneration, or in combination with an ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 200 microm) to block light-evoked activity of inner retinal, horizontal and OFF bipolar cells, or with the glutamate agonist N-methyl-D-aspartate (NMDA, 100-200 microm) to reduce light-evoked inner retinal activity. TTX reduced ERG amplitudes measured at fixed times corresponding to b-wave time to peak. Effects of TTX were seen under all background conditions, but were greatest for mesopic backgrounds. In dark-adapted retina, b-wave amplitudes were reduced only when very low stimulus energies affecting the inner retina, or very high stimulus energies were used. Loss of ganglion cells following ONTx did not affect b-wave amplitudes, and injection of TTX in eyes with ONTx reduced b-wave amplitudes by the same amount for each background condition as occurred when ganglion cells were intact, thereby eliminating a ganglion cell role in the TTX effects. Isolation of cone-driven responses by presenting test flashes after cessation of a rod-saturating conditioning flash indicated that the TTX effects were primarily on cone circuits contributing to the mixed rod-cone ERG. NMDA significantly reduced only the additional effects of TTX on the mixed rod-cone ERG observed under mesopic conditions, implicating inner retinal involvement in those effects. After pharmacological blockade with CNQX, TTX still reduced b-wave amplitudes in cone-isolated ERGs indicating Na(v) channels in ON cone bipolar cells themselves augment b-wave amplitude and sensitivity. This augmentation was largest under dark-adapted conditions, and decreased with increasing background illumination, indicating effects of background illumination on Na(v) channel function. These findings indicate that activation of Na(v) channels in ON cone bipolar cells affects the b-wave of the rat ERG and must be considered when analysing results of ERG studies of retinal function.
Collapse
Affiliation(s)
- Deb Kumar Mojumder
- College of Optometry, University of Houston, 505 J Davis Armistead Bldg, 4901 Calhoun Road, Houston, TX 77204-2020, USA
| | | | | |
Collapse
|
41
|
Hyperpolarization-activated cation current is involved in modulation of the excitability of rat retinal ganglion cells by dopamine. Neuroscience 2007; 150:299-308. [PMID: 17942239 DOI: 10.1016/j.neuroscience.2007.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/30/2007] [Accepted: 09/11/2007] [Indexed: 11/20/2022]
Abstract
Modulation of membrane properties and excitability of retinal ganglion cells (RGCs) by dopamine was investigated in rat retinal slices, using whole cell patch clamp techniques. Application of dopamine (10 microM) caused a small depolarization of the membrane potential, a reduction of the input resistance and a decrease in the number of current-evoked action potentials of RGCs, and these effects were blocked by a D1 antagonist (SCH23390, 10 microM), but not by a D2 antagonist (sulpiride, 10 microM). SKF38393 (10 microM), a D1 agonist, but not quinpirole (10 microM), a D2 agonist, mimicked the effects of dopamine on RGCs. Like dopamine, 8-Br-cAMP, a membrane-permeable analog of cAMP, produced similar changes in the membrane properties and the excitability of RGCs. All these results suggest that these effects of dopamine are likely mediated by D1 receptors. Pre-application of KT5720, an inhibitor of protein kinase A (PKA), blocked the dopamine effects, indicating that the effects were PKA-dependent. Possible involvement of hyperpolarization-activated cation currents (I(h)) in the dopamine effects was tested. Inward currents were induced by voltage steps, with an activation threshold of around -70 mV, in the presence of TTX, Cd(2+), TEA-Cl and 4-AP. These currents, with a reversal potential of -33.2 mV, displayed inward rectification and were blocked by ZD7288, a specific I(h) channel blocker. These results are indicative of the presence of I(h) in rat RGCs. Dopamine increased the amplitude of I(h) and shifted the activation curve of I(h) to a range of more positive potentials. SKF38393 and 8-Br-cAMP increased the amplitude of I(h), which was blocked by KT5720. The dopamine effects were abolished when the preparations were pre-incubated by ZD7288. These data strongly suggest that the dopamine effects on rat RGCs may be, at least in part, mediated by modulation of I(h) through the cAMP- and PKA-dependent pathway.
Collapse
|
42
|
Abstract
Antisera directed against hyperpolarization-activated mixed-cation ("I(h)") and K(+) ("K(ir)") channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization arising from activation of I(h). However, patch-clamp studies showed that rat ganglion cells lack inward rectification or present an inwardly rectifying K(+) current. We therefore tested whether hyperpolarization activates I(h) in dissociated, adult rat retinal ganglion cell somata. We report here that, although we found no inward rectification in some cells, and a K(ir)-like current in a few cells, hyperpolarization activated I(h) in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs(+) or ZD7288 and only slightly reduced by Ba(2+), that the current amplitude and reversal potential are sensitive to extracellular Na(+) and K(+), and that we found no evidence of K(ir) in cells presenting I(h). In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of I(h) in mammalian retinal ganglion cells and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings.
Collapse
Affiliation(s)
- Sherwin C Lee
- Section of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616-8519, USA
| | | |
Collapse
|
43
|
Margolis DJ, Detwiler PB. Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J Neurosci 2007; 27:5994-6005. [PMID: 17537971 PMCID: PMC3136104 DOI: 10.1523/jneurosci.0130-07.2007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal discharge is driven by either synaptic input or cell-autonomous intrinsic pacemaker activity. It is commonly assumed that the resting spike activity of retinal ganglion cells (RGCs), the output cells of the retina, is driven synaptically, because retinal photoreceptors and second-order cells tonically release neurotransmitter. Here we show that ON and OFF RGCs generate maintained activity through different mechanisms: ON cells depend on tonic excitatory input to drive resting activity, whereas OFF cells continue to fire in the absence of synaptic input. In addition to spontaneous activity, OFF cells exhibit other properties of pacemaker neurons, including subthreshold oscillations, burst firing, and rebound excitation. Thus, variable weighting of synaptic mechanisms and intrinsic properties underlies differences in the generation of maintained activity in these parallel retinal pathways.
Collapse
Affiliation(s)
- David J Margolis
- Program in Neurobiology and Behavior and Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
44
|
Huang L, Li L. Differential expression of voltage-activated calcium currents in zebrafish retinal ganglion cells. J Neurosci Res 2006; 84:497-504. [PMID: 16721759 DOI: 10.1002/jnr.20951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a study on the characterization of voltage-activated calcium currents (I(Ca)) in retinal ganglion cells (RGCs) and the topographic distribution of RGCs that express different types of I(Ca) in zebrafish retinas. In acutely isolated zebrafish RGCs, both high-voltage-activated (HVA; peak activation potential +7.4 +/- 1.1 mV) and low-voltage-activated (LVA; peak activation potential -33.0 +/- 1.2 mV) I(Ca) were recorded. HVA I(Ca) were recorded in all of the tested RGCs, whereas LVA I(Ca) were recorded in approximately one-third of the tested cells. In RGCs that expressed both HVA and LVA I(Ca), the two currents were readily separated by depolarizing the cell membrane to different voltages from different holding potentials. Among RGCs that expressed LVA I(Ca), some cells expressed large LVA I(Ca) (up to 130 pA), whereas others expressed small LVA I(Ca) (approximately 20 pA). RGCs that expressed large and small LVA I(Ca) were designated as class I and class II cells, respectively, and RGCs that expressed only HVA I(Ca) were designated as class III cells. The topographic distribution of cell classes was similar in various areas of the retina. In the nasal-ventral retina, for example, class III cells outnumbered class I and class II cells by 10.8- and 2.6-fold, respectively. In the temporal and dorsal retinas, the density of class III cells slightly decreased, whereas the density of class I and class II cells increased. The differential expression of I(Ca) in RGCs may correlate with the development and function of the retina.
Collapse
Affiliation(s)
- Luoxiu Huang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
45
|
Oozeer M, Veraart C, Legat V, Delbeke J. A model of the mammalian optic nerve fibre based on experimental data. Vision Res 2006; 46:2513-24. [PMID: 16542698 DOI: 10.1016/j.visres.2006.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/17/2006] [Accepted: 01/25/2006] [Indexed: 11/19/2022]
Abstract
Several experimental data about membrane dynamics and pharmacological sensitivities of optic nerve axons have been published. The present work summarizes these data and computer simulations have been used to develop a model of the mammalian optic nerve fibre. The ionic currents description were derived from existing membrane models and particularly from a model of the somatic retinal ganglion cell (RGC) impulse generation. However, original equations had to be modified to match experimental data, which suggests that in RGCs, axonal and somatic ion channel expression are different. The new model is consistent with recent experimental results about optic nerve axonal excitability.
Collapse
Affiliation(s)
- M Oozeer
- Neural Rehabilitation Engineering Laboratory, Université catholique de Louvain, 54 Avenue Hippocrate Box UCL-54.46, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
46
|
Schiefer MA, Grill WM. Sites of neuronal excitation by epiretinal electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 2006; 14:5-13. [PMID: 16562626 DOI: 10.1109/tnsre.2006.870488] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Action potentials arising from retinal ganglion cells ultimately create visual percepts. In persons blind from retinitis pigmentosa and age-related macular degeneration, viable retinal ganglion cells remain, and the retina can be stimulated electrically to restore partial sight. However, it is unclear what neuronal elements in the retina are activated by epiretinal electrical stimulation. This study investigated the effects of cellular geometry, electrode to neuron distance, stimulus duration, and stimulus polarity on excitation of a retinal ganglion cell with an epiretinal electrode. Computer-based compartmental models representing simplified retinal ganglion cell morphology provided evidence that the threshold for excitation was lower when an electrode was located in proximity to the characteristic 90 degrees bend in the axon of the retinal ganglion cell than when it was located over a passing axon of the nerve fiber layer. This electrode-position-dependent difference in threshold occurred with both cathodic and anodic monophasic stimuli, with point source and disk electrodes, at multiple electrode-to-neuron distances, and was robust to changes in the electrical properties of the model. This finding reveals that the physical geometry of the retinal ganglion cells produces stimulation thresholds that depend strongly on electrode position. The low excitation thresholds near the bend in the axon will result in activation of cells local to the electrode at lower currents than required to excite passing axons. This pattern of activation provides a potential explanation of how epiretinal electrical stimulation results in the production of punctuate, rather than diffuse or streaky phosphenes.
Collapse
Affiliation(s)
- Matthew A Schiefer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-4912, USA.
| | | |
Collapse
|
47
|
Lilley S, Robbins J. The rat retinal ganglion cell in culture: An accessible CNS neurone. J Pharmacol Toxicol Methods 2005; 51:209-20. [PMID: 15862466 DOI: 10.1016/j.vascn.2004.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cells are vital for vision, some have intrinsic light sensing properties and in retinal networks display complex computational abilities. Furthermore they are implicated in a very common form of blindness, glaucoma as well some the symptoms of AIDS. Retinal ganglion cells, unlike many neurones of the central nervous system, have a clearly defined physiological role and can be identified in primary cultures with ease. Here we detail the cell culture and electrophysiological methods required to obtain recordings on the voltage-gated and ligand-gated ion currents and channels expressed by these neurones. Information is given on the range of non-ionotropic receptors that are thought to be present on these cells and what role they may have as model systems in the pharmacological and pharmaceutical research environment.
Collapse
Affiliation(s)
- Sarah Lilley
- Receptors and Signalling Group, Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
48
|
Dhingra NK, Smith RG. Spike generator limits efficiency of information transfer in a retinal ganglion cell. J Neurosci 2004; 24:2914-22. [PMID: 15044530 PMCID: PMC6729856 DOI: 10.1523/jneurosci.5346-03.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quality of the signal a retinal ganglion cell transmits to the brain is important for preception because it sets the minimum detectable stimulus. The ganglion cell converts graded potentials into a spike train with a selective filter but in the process adds noise. To explore how efficiently information is transferred to spikes, we measured contrast detection threshold and increment threshold from graded potential and spike responses of brisk-transient ganglion cells. Intracellular responses to a spot flashed over the receptive field center of the cell were recorded in an intact mammalian retina maintained in vitro at 37 degrees C. Thresholds were measured in a single-interval forced-choice procedure with an ideal observer. The graded potential gave a detection threshold of 1.5% contrast, whereas spikes gave 3.8%. The graded potential also gave increment thresholds approximately twofold lower and carried approximately 60% more gray levels. Increment threshold "dipped" below the detection threshold at a low contrast (<5%) but increased rapidly at higher contrasts. The magnitude of the "dipper" for both graded potential and spikes could be predicted from a threshold nonlinearity in the responses. Depolarization of the cell by current injection reduced the detection threshold for spikes but also reduced the range of contrasts they can transmit. This suggests that contrast sensitivity and dynamic range are related in an essential trade-off.
Collapse
Affiliation(s)
- Narender K Dhingra
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
49
|
Moorhouse AJ, Li S, Vickery RM, Hill MA, Morley JW. A patch-clamp investigation of membrane currents in a novel mammalian retinal ganglion cell line. Brain Res 2004; 1003:205-8. [PMID: 15019582 DOI: 10.1016/j.brainres.2004.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
We characterised membrane currents in undifferentiated RGC-5 cells, a cell line used in in vitro models of apoptosis and glaucoma. The cells were inexcitable, with no voltage-dependent Na(+) currents or action potentials. Some novel currents were observed including basal Cl(-) currents, inwardly rectifiying K(+) currents and Gd(3+) insensitive stretch-activated currents. Our results highlight the differences between the electrophysiological properties of undifferentiated RGC-5 cells and retinal ganglion cells.
Collapse
Affiliation(s)
- Andrew J Moorhouse
- School of Medical Sciences, The University of New South Wales, Sydney, 2052, Australia
| | | | | | | | | |
Collapse
|
50
|
Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW. A model of high-frequency oscillatory potentials in retinal
ganglion cells. Vis Neurosci 2004; 20:465-80. [PMID: 14977326 PMCID: PMC3348786 DOI: 10.1017/s0952523803205010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
High-frequency oscillatory potentials (HFOPs) have been recorded from
ganglion cells in cat, rabbit, frog, and mudpuppy retina and in
electroretinograms (ERGs) from humans and other primates. However, the
origin of HFOPs is unknown. Based on patterns of tracer coupling, we
hypothesized that HFOPs could be generated, in part, by negative
feedback from axon-bearing amacrine cells excited via
electrical synapses with neighboring ganglion cells. Computer
simulations were used to determine whether such axon-mediated feedback
was consistent with the experimentally observed properties of HFOPs.
(1) Periodic signals are typically absent from ganglion cell PSTHs, in
part because the phases of retinal HFOPs vary randomly over time and
are only weakly stimulus locked. In the retinal model, this phase
variability resulted from the nonlinear properties of axon-mediated
feedback in combination with synaptic noise. (2) HFOPs increase as a
function of stimulus size up to several times the receptive-field
center diameter. In the model, axon-mediated feedback pooled signals
over a large retinal area, producing HFOPs that were similarly size
dependent. (3) HFOPs are stimulus specific. In the model, gap junctions
between neighboring neurons caused contiguous regions to become phase
locked, but did not synchronize separate regions. Model-generated HFOPs
were consistent with the receptive-field center dynamics and spatial
organization of cat alpha cells. HFOPs did not depend qualitatively on
the exact value of any model parameter or on the numerical precision of
the integration method. We conclude that HFOPs could be mediated, in
part, by circuitry consistent with known retinal anatomy.
Collapse
Affiliation(s)
- Garrett T Kenyon
- P-21, Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|