1
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Delpire E, Gagnon KB. Water Homeostasis and Cell Volume Maintenance and Regulation. CURRENT TOPICS IN MEMBRANES 2018; 81:3-52. [PMID: 30243436 PMCID: PMC6457474 DOI: 10.1016/bs.ctm.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From early unicellular organisms that formed in salty water environments to complex organisms that live on land away from water, cells have had to protect a homeostatic internal environment favorable to the biochemical reactions necessary for life. In this chapter, we will outline what steps were necessary to conserve the water within our cells and how mechanisms have evolved to maintain and regulate our cellular and organismal volume. We will first examine whole body water homeostasis and the relationship between kidney function, regulation of blood pressure, and blood filtration in the process of producing urine. We will then discuss how the composition of the lipid-rich bilayer affects its permeability to water and salts, and how the cell uses this differential to drive physiological and biochemical cellular functions. The capacity to maintain cell volume is vital to epithelial transport, neurotransmission, cell cycle, apoptosis, and cell migration. Finally, we will wrap up the chapter by discussing in some detail specific channels, cotransporters, and exchangers that have evolved to facilitate the movement of cations and anions otherwise unable to cross the lipid-rich bilayer and that are involved in maintaining or regulating cell volume.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine
| | | |
Collapse
|
3
|
Model MA, Petruccelli JC. Intracellular Macromolecules in Cell Volume Control and Methods of Their Quantification. CURRENT TOPICS IN MEMBRANES 2018; 81:237-289. [DOI: 10.1016/bs.ctm.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Wang Y, Bollard ME, Nicholson JK, Holmes E. Exploration of the direct metabolic effects of mercury II chloride on the kidney of Sprague–Dawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. J Pharm Biomed Anal 2006; 40:375-81. [PMID: 16146678 DOI: 10.1016/j.jpba.2005.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 11/23/2022]
Abstract
Mercury II chloride (HgCl2) toxicity was investigated in Sprague-Dawley rats using high-resolution magic angle spinning (HRMAS) 1H NMR spectroscopy in conjunction with principal component analysis (PCA). Intact renal cortex and papilla samples from Sprague-Dawley rats treated with HgCl2 at two dose levels (0.5 and 2 mg/kg) and from matched controls (n=5 per group) were assessed at 48 h p.d. HgCl2) caused depletion of renal osmolytes such as glycerophosphocholine (GPC), betaine, trimethylamine N-oxide (TMAO), myo-inositol and taurine in both the renal cortex and the papilla. In addition, relatively higher concentrations of valine, isobutyrate, threonine and glutamate were observed in HgCl2-treated rats, particularly in the renal cortex, which may reflect a counterbalance response to the observed loss of other classes of renal osmolytes. Increased levels of glutamate were present in the cortex of treated rats, which may be associated with HgCl2-induced renal acidosis and disruption of the tricarboxylic acid cycle. A dose response was observed in both cortical and papillary tissue with increasing severity of metabolic disruption in the high dose group. 1H HRMAS NMR profiles of individual animals correlated well with conventional clinical chemistry and histology confirming the reproducibility of the technology and generating complementary molecular pathway information.
Collapse
Affiliation(s)
- Yulan Wang
- Biological Chemistry, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
5
|
Fumarola C, La Monica S, Guidotti GG. Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: Role of glutamine and of cell shrinkage. J Cell Physiol 2005; 204:155-65. [PMID: 15605414 DOI: 10.1002/jcp.20272] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) mediates a signaling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth rate, participating to a versatile checkpoint that inspects the energy status of the cell. The pathway is activated by branched-chain amino acids (BCAA), leucine being the most effective, whereas amino acid dearth and ATP shortage lead to its deactivation. Glutamine- or amino acid-deprivation and hyperosmotic stress induce a fast cell shrinkage (with marked decrease of the intracellular water volume) associated to mTOR-dependent S6K1 dephosphorylation. Using cultured Jurkat cells, we have measured the changes of cell content and intracellular concentration of ATP, of relevant amino acids (BCAA) and of ninhydrin-positive substances (NPS, as measure of NH(2)-bearing organic osmolytes) under conditions that deactivate (leucine-deprivation, glutamine-deprivation, amino acid withdrawal, sorbitol-induced hyperosmotic stress) or reactivate a previously deactivated, mTOR-S6K1 pathway. We have also assessed the mitochondrial function by measurements of mitochondrial transmembrane potential in cells subjected to hypertonic stress. Our results indicate that diverse control signals converge on the mTOR-S6K1 signaling pathway. In the presence of adequate energy resources, the pathway senses the amino acid availability as inward transport of effective amino acids (as BCAA and especially leucine), but its activation occurs only in the presence of an extracellular amino acid complement, with glutamine as obligatory component, and does not tolerate decrements of cell water volume incapable of maintaining adequate intracellular physicochemical conditions.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Experimental Medicine, Division of Molecular Pathology and Immunology, University of Parma, Parma, Italy
| | | | | |
Collapse
|
6
|
Alfieri RR, Petronini PG, Bonelli MA, Desenzani S, Cavazzoni A, Borghetti AF, Wheeler KP. Roles of compatible osmolytes and heat shock protein 70 in the induction of tolerance to stresses in porcine endothelial cells. J Physiol 2004; 555:757-67. [PMID: 14724189 PMCID: PMC1664863 DOI: 10.1113/jphysiol.2003.058412] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies of the responses of porcine pulmonary endothelial cells to acute hypertonic stress have been extended by examining the induction and underlying mechanisms of cell tolerance to both osmotic and heat stresses. Preliminary adaptation of these cells to 0.4osmol (kg H(2)O)(-1) rendered them tolerant either to subsequent severe osmotic stress (0.7osmol (kg H(2)O)(-1)) or to subsequent severe heat shock (50 min at 49 degrees C). In contrast, preliminary exposure of the cells to mild heat shock (44 degrees C for 30 min) induced tolerance only to severe heat shock, not to hyperosmotic stress. Induction of tolerance to heat shock by either procedure correlated with the induced expression of heat shock protein 70 (HSP70). Induction of tolerance to hyperosmotic stress, on the other hand, was associated with the cellular accumulation of osmolytes, such as amino acids, betaine and myo-inositol, and did not correlate with the induced expression of HSP70. It also required a reduction in the final change of osmotic pressure applied to the cells, such that maximum cell shrinkage would not be much more than 40%. In general, therefore, HSP70 and compatible osmolytes have distinct roles in cellular adaptation to these stresses.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Alfieri RR, Cavazzoni A, Petronini PG, Bonelli MA, Caccamo AE, Borghetti AF, Wheeler KP. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. J Physiol 2002; 540:499-508. [PMID: 11956339 PMCID: PMC2290260 DOI: 10.1113/jphysiol.2001.013395] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Porcine pulmonary arterial endothelial cells accumulated myo-inositol and taurine, as well as betaine, during adaptation to hypertonic stress. The cells grew and maintained their normal morphology during culture in hypertonic (0.5 osmol (kg H(2)O)(-1)) medium that contained osmolytes such as betaine, myo-inositol or taurine at concentrations close to reported physiological values. The cells did not grow well in hypertonic medium depleted of potential compatible osmolytes. After a few days, cell density decreased by about 50 % and many cells rounded up and detached from the plates, their nuclei showing clear apoptotic morphology. The caspase-3 activity of the cells also increased dramatically under these conditions, but remained negligibly low when betaine and myo-inositol were added to the medium. Addition of betaine and myo-inositol to hypertonic medium depleted of compatible osmolytes increased the number of colonies remaining after 12 days of culture; with each solute at 30-100 micromol l(-1) the number increased about sixfold. In the absence of compatible osmolytes, increased mRNA levels and corresponding activities of betaine/gamma-aminobutyric acid transporter (BGT1) and sodium/myo-inositol transporter (SMIT) induced by hypertonicity remained high after 72 h incubation, whereas they were down regulated in the presence of betaine and myo-inositol. Similarly, the down regulation of the amino acid System A transporter (ATA2) was markedly slowed in the absence of compatible osmolytes. We conclude that these compatible osmolytes at concentrations close to physiological values enable the endothelial cells to adapt to hypertonic stress, protecting them from apoptosis, and also modulate the adaptation process.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Universita' degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Fumarola C, Zerbini A, Guidotti GG. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ 2001; 8:1004-13. [PMID: 11598798 DOI: 10.1038/sj.cdd.4400902] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Revised: 04/27/2001] [Accepted: 05/02/2001] [Indexed: 11/09/2022] Open
Abstract
Cell shrinkage and loss of cell viability by apoptosis have been examined in cultured CD95(Fas/Apo-1)-expressing leukemia-derived CEM and HL-60 cells subjected to acute deprivation of glutamine, a major compatible osmolyte engaged in cell volume control. Glutamine deprivation-mediated cell shrinkage promoted a ligand-independent activation of the CD95-mediated apoptotic pathway. Cell transfection with plasmids expressing FADD-DN or v-Flip viral proteins pointed to a functional clustering of CD95 receptors at the cell surface with activation of the 'extrinsic pathway' caspase cascade. Accordingly, cell shrinkage did not induce apoptosis in CD95 receptor-negative lymphoma L1210 cells. Replacement of glutamine with surrogate compatible osmolytes counteracted cell volume decrement and protected the CD95-expressing cells from apoptosis. A glutamine deprivation-dependent cell shrinkage with activation of the CD95-mediated pathway was also observed when asparaginase was added to the medium. Asparagine depletion had no role in this process. The cell-size shrinkage-dependent apoptosis induced by glutamine restriction in CD95-expressing leukemic cells may therefore be of clinical relevance in amidohydrolase enzyme therapies.
Collapse
Affiliation(s)
- C Fumarola
- Department of Experimental Medicine, Section of Immunology and Molecular Pathology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
9
|
Petronini PG, Alfieri RR, Losio MN, Caccamo AE, Cavazzoni A, Bonelli MA, Borghetti AF, Wheeler KP. Induction of BGT-1 and amino acid system A transport activities in endothelial cells exposed to hyperosmolarity. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1580-9. [PMID: 11049839 DOI: 10.1152/ajpregu.2000.279.5.r1580] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the responses to hypertonicity of cultured endothelial cells from swine pulmonary arteries. In 0.5 osmol/kgH(2)O medium, initial cell shrinkage was followed by a regulatory volume increase (RVI), complete after 1 h, concomitant with an increase in cellular K(+) content. Then the activity of amino acid transport System A increased, accompanied by an accumulation of ninhydrin-positive solutes (NPS), reaching a peak at approximately 6 h. The subsequent decline in System A activity was paralleled by an induction of the betaine-GABA transporter (BGT-1), detected as increases of BGT-1 mRNA and of transport activity, which peaked at approximately 24 h. Inhibitors of transcription or translation prevented induction of both transport activities. The increased expression of BGT-1, which involved activation of "tonicity-responsive enhancer," was inhibited by 5 mM extracellular betaine. Cellular K(+) concentration gradually declined after the accumulation of NPS and during the induction of BGT-1. This very effective adaptation to hypertonicity suggests it has a physiological role.
Collapse
Affiliation(s)
- P G Petronini
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Horio M, Yamauchi A, Moriyama T, Imai E, Orita Y. Osmotic regulation of amino acids and system A transport in Madin-Darby canine kidney cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C804-9. [PMID: 9124514 DOI: 10.1152/ajpcell.1997.272.3.c804] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of hypertonicity on the intracellular amino acid content and system A transport activity were studied in Madin-Darby canine kidney (MDCK) cells. Total content of 20 amino acids increased from 274 to 689 nmol/mg protein after 8 h of hypertonicity (500 mosmol/ kg), remaining almost constant until after 6 days of hypertonicity. The content of neutral amino acids increased from 77 to 307 and 395 nmol/mg protein after 8 h and 6 days of hypertonicity, respectively, accounting for 73% of the increased amount of total amino acids. In the hypertonic MDCK cells, system A transport activity, measured by Na+-dependent 2-(methylamino)isobutyric acid (MeAIB) uptake, increased approximately 60-fold relative to the uptake in isotonic cells. MeAIB was taken up primarily on the basal side in the isotonic MDCK cells cultured on permeable supports. Extracellular hypertonicity stimulated the MeAIB uptake predominantly on the basal side. These results indicated that amino acids, especially neutral amino acids, can function as volume-regulating osmolytes and that the stimulation of system A activity appears to contribute to the accumulation of neutral amino acids in hypertonic MDCK cells.
Collapse
Affiliation(s)
- M Horio
- Department of Clinical Laboratory Science, School of Allied Health Science, Osaka University School of Medicine, Suita, Japan
| | | | | | | | | |
Collapse
|
11
|
Holmes E, Bonner FW, Nicholson JK. 1H NMR spectroscopic and histopathological studies on propyleneimine-induced renal papillary necrosis in the rat and the multimammate desert mouse (Mastomys natalensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1997; 116:125-34. [PMID: 9134698 DOI: 10.1016/s0742-8413(96)00146-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The renal papillary toxin, propyleneimine (PI), was administered at 20 or 30 microliters/kg i.p. to male Sprague Dawley (SD) rats (n = 5), Fischer 344 (F344) rats (n = 4), and to multimammate desert mice (Mastomys natalensis, n = 4). Urine was collected at time points up to 4 days p.d. and the toxicological response of the different animal models to PI compared using 1H NMR spectroscopy of urine, renal histopathology, and urinary assays for alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyl transpeptidase (gamma GT). The renal papillae of both F344 and SD rats showed extensive necrotic lesions 4 days post-dosing and in some cases sloughing of the papilla. However, only slight renal papillary necrosis (RPN) was observed in Mastomys treated with 20 microliters/kg PI and, although slight to moderate damage was observed at 30 microliters/kg, PI-treated Mastomys showed substantially less RPN than either group of PI-treated rats. 1H NMR urinalysis showed that PI treatment caused a decrease in the urinary concentrations of succinate (0-24 hr p.d.) and citrate (24-48 hr p.d.) and an increase in creatine (0-48 hr p.d.) in all animal models. Trimethylamine-N-oxide (24-48 hr) and 2-oxoglutarate concentrations decreased initially following the administration of PI and then rose above control levels. The 1H NMR-detected urinary biochemical effects of PI in all three models were similar. However, taurine concentrations were elevated in the urine of Mastomys following PI treatment, perhaps indicating a degree of liver damage, whereas taurinuria was not seen in either SD or F344 rats. These observations are discussed in relation to the potential mechanism of PI-toxicity.
Collapse
Affiliation(s)
- E Holmes
- Department of Chemistry, Birkbeck College, University of London, U.K
| | | | | |
Collapse
|
12
|
Holmes E, Bonner FW, Nicholson JK. Comparative biochemical effects of low doses of mercury II chloride in the F344 rat and the multimammate mouse (Mastomys natalensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1996; 114:7-15. [PMID: 8689530 DOI: 10.1016/0742-8413(95)02105-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The biochemical effects and comparative nephroxicity of mercury II chloride (HgCl2) dosed at 0.75 mg/kg i.p. was investigated in the Fisher 344 rat (F344) and Mastomys natalensis using high resolution 1H nuclear magnetic resonance (NMR) spectroscopy of urine, histopathology and clinical chemical techniques. The effects of HgCl2 treatment were followed for up to 4 days post-dosing (p.d.). In F344 rats there was extensive proximal tubular damage and renal cortical necrosis together with elevated levels of urinary gamma-glutamyl transpeptidase (gamma GT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The 1H NMR spectra of urine obtained from Hg-treated F344 rats also showed increased levels of glucose, alanine, lactate, valine and hippurate (0-48h p.d.) with decreased levels of citrate, succinate and 2-oxoglutarate (24-48h p.d.). Mastomys were found to be highly resistant to HgCl2 toxicity at 0.75 mg/kg and the histological appearance of the renal cortex of treated animals was virtually identical to controls. There were no elevations in urinary ALP, gamma GT and LDH activities in HgCl2-treated Mastomys and there were no biochemical abnormalities in low MW components of Mastomys urine following HgCl2-treatment, as shown by 1H NMR spectroscopy. Urinary gamma GT activity was found to be much higher in F344 rats than Mastomys. Since gamma GT activity is involved in the tubular reabsorption of Hg2+, the lower levels of gamma GT in Mastomys might partially account for the lower toxicity of Hg2+ in this species.
Collapse
Affiliation(s)
- E Holmes
- Department of Chemistry, Birkbeck College, London, UK.
| | | | | |
Collapse
|
13
|
Holmes E, Bonner FW, Nicholson JK. Comparative studies on the nephrotoxicity of 2-bromoethanamine hydrobromide in the Fischer 344 rat and the multimammate desert mouse (Mastomys natalensis). Arch Toxicol 1995; 70:89-95. [PMID: 8773180 DOI: 10.1007/bf02733668] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Renal papillary necrosis (RPN) was induced in Fischer 344 (F344) rats (n = 4) using 2-bromoethanamine hydrobromide (BEA) dosed at 150 mg/kg, and in multimammate desert mice (Mastomys natalensis) at 150 and 250 mg/kg (n = 4 per group). Control rats and Mastomys were dosed with 0.9% saline (n = 4 per group). Urine was collected at regular intervals for up to 4 days post-dosing and analysed for low MW metabolites using high resolution 1H NMR spectroscopy. The urinary activity of lactate dehydrogenase, gamma-glutamyl transpeptidase and alkaline phosphatase was determined using conventional biochemical assays. On termination, histopathological examination of papillae was performed showing the development of extensive lesions in F344 rats at 150 mg/kg BEA. Mastomys appeared much more resistant to BEA and showed normal renal histology at 150 mg/kg and patchy lesions at 250 mg/kg BEA. Enzyme analysis of control urine showed F344 rats to have > 1000% higher gamma-glutamyl transpeptidase activity than Mastomys. 1H NMR spectroscopic analysis showed that BEA caused a substantial decrease in urinary concentrations of succinate and citrate (0-24 h p.d.) and an increase in creatine (0-96 h p.d.) in both animal models. A decrease in the urinary concentration of 2-oxoglutarate with a subsequent increase by 72-96 h p.d. was also noted in both animal models. Glutaric and adipic aciduria were also induced in both F344 rats and Mastomys 0-24 h post-BEA treatment, indicative of an enzyme deficiency in the acyl CoA dehydrogenases. Urinary taurine levels were elevated in Mastomys following the administration of BEA, indicating some degree of liver toxicity. Urinary taurine was not elevated in F344 rats following BEA administration, demonstrating further species difference in BEA toxicity.
Collapse
Affiliation(s)
- E Holmes
- Department of Chemistry, Birkbeck College, University of London, UK
| | | | | |
Collapse
|
14
|
Yamauchi A, Miyai A, Yokoyama K, Itoh T, Kamada T, Ueda N, Fujiwara Y. Response to osmotic stimuli in mesangial cells: role of system A transporter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1493-500. [PMID: 7977710 DOI: 10.1152/ajpcell.1994.267.5.c1493] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been suggested that mesangial cells have an osmoregulatory mechanism like that of renal medullary cells, such as intracellular accumulation of polyols in response to hypertonicity. We examined osmoregulatory role of neutral amino acids transported by system A in cultured mesangial cells. The contents of almost all amino acids increased under hypertonic conditions to more than twice the value in isotonic cells. In hypertonic cells, the system A transport activity, measured by Na(+)-dependent 2-(methylamino)isobutyric acid (MeAIB) uptake, was 3.8-fold the uptake in isotonic cells, reaching a maximum 16 h after the switch to hypertonic medium. The response to hypertonicity was the result of an increase in maximal velocity without change in Michaelis constant and was dependent on RNA and protein synthesis. When medium osmolality decreased from hypertonic to isotonic, MeAIB uptake reverted to the isotonic level within 16 h and a large transient efflux of L-proline occurred within 10 min. These results suggest that mesangial cells respond to extracellular hypertonicity by increasing system A transport activity and neutral amino acids can function as compatible osmolytes in mesangial cells.
Collapse
Affiliation(s)
- A Yamauchi
- First Department of Medicine, Osaka University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Dall'Asta V, Rossi P, Bussolati O, Gazzola G. Response of human fibroblasts to hypertonic stress. Cell shrinkage is counteracted by an enhanced active transport of neutral amino acids. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34085-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Dall'Asta V, Rossi PA, Bussolati O, Gazzola GC. Regulatory volume decrease of cultured human fibroblasts involves changes in intracellular amino-acid pool. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:139-45. [PMID: 8312358 DOI: 10.1016/0167-4889(94)90129-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regulatory volume decrease (RVD) has been studied in cultured human fibroblasts incubated in a complete growth medium at low osmolality (215 mosmolal). After the initial swelling induced by hypotonic treatment, cells recover their volume almost completely within about 60 min. This RVD is associated with comparable losses of cell potassium and amino acids. After an initial increase, cell content of sodium is kept at values close to control. Chromatographic analysis of intracellular amino-acid pool has shown that RVD-associated decrease in cell amino acids is due for the most part to changes in the intracellular concentration of L-glutamine. RVD-exerting cells undergo a rapid and marked depolarization that is maintained after cell volume recovery. This change in membrane potential has been detected with measurements of both the transmembrane distribution ratios of L-arginine and of fluorescence of potential-sensitive dye bis-oxonol. Due to depolarization, the trans-membrane gradient of sodium electrochemical potential is lowered. It is proposed that cell depolarization concurs to keep the intracellular concentration of amino acids low by inhibiting sodium-coupled uptake through system A.
Collapse
Affiliation(s)
- V Dall'Asta
- Istituto di Patologia Generale, Università degli Studi di Parma, Italy
| | | | | | | |
Collapse
|
17
|
Bussolati O, Sala R, Astorri A, Rotoli BM, Dall'Asta V, Gazzola GC. Characterization of amino acid transport in human endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C1006-14. [PMID: 8238295 DOI: 10.1152/ajpcell.1993.265.4.c1006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transport of amino acids has been studied in human umbilical vein endothelial cells. Neutral amino acids enter human umbilical vein endothelial cells through three distinct agencies endowed with the characteristics of systems A, ASC, and L. Each system has been studied by evaluating the influx of preferential substrates. The influx of L-proline and 2-methylaminoisobutyric acid occurs through an Na(+)-dependent adaptively regulated trans-inhibited agency identifiable with system A. L-Threonine influx occurs mainly through a distinct Na(+)-dependent trans-stimulated pathway corresponding to system ASC. System L accounts for Na(+)-independent influx of L-leucine. These systems cooperate for the transport of L-glutamine, which is due mainly to system ASC, whereas the component due to the operation of system A increases upon amino acid starvation. No clear evidence was found for a glutamine-specific system ("system N"). Two systems, one Na+ dependent (system XAG-) and the other Na+ independent (system xc-), transport anionic amino acids. L-Arginine influx exhibits a poor dependence on extracellular Na+, whereas it is sensitive to conditions known to change membrane potential and to trans-stimulation by intracellular amino acids. These features are consistent with a process mediated by system y+ and may be of significance for the regulation of the intracellular concentration of L-arginine.
Collapse
Affiliation(s)
- O Bussolati
- Istituto di Patologia Generale, Università degli Studi di Parma, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Law RO. Efflux of potassium (86Rb+) attenuates the volume-restorative effect of sodium-amino acid cotransport in rat renal inner medullary cells shrunken by exposure to hyperosmotic media. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:186-92. [PMID: 1616920 DOI: 10.1016/0005-2736(92)90346-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When the osmolality of the bathing medium was increased from 710 to 2000 mosmol/kg H2O, cells in incubated slices of rat renal inner medulla lost water and K+, and the rate of efflux of preloaded 86Rb+ (a tracer for K+) was significantly depressed. Addition of 2-aminoisobutyric acid (AIB, 10 mmol/l) partly restored cell water content but without re-accumulation of K+; the rate of 86Rb+ efflux was greatly increased. The presence of Ba2+ (1 mmol/l) or trifluoperazine (50 mumol/l) led to complete recovery of cell volume and K+ contents, with markedly reduced efflux of 86Rb+. Neither additive had any significant effect upon these variables in the absence of AIB or in media of 710 mosmol/kg. Efflux of 86Rb+ was pH-sensitive within the physiological range, and was depressed when external AIB was reduced below approx. 5 mmol/l. When external Na+ was increased from 145 to 500 mmol/l (total osmolality 350 to 2500 mosmol/kg) efflux was retarded only slightly if AIB was present, but markedly if AIB was omitted. Inner medullary cells may contain a class of Ba(2+)-inhibitable, calmodulin-dependent K+ conductive pathway which is activated in strongly hyperosmotic media by the operation of an inwardly-directed Na(+)-amino acid symport (cf. Law, R.O. (1988) Pflügers Arch. 413, 43-50) and which serves to moderate the volume-restorative effect of this membrane mechanism.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, UK
| |
Collapse
|
19
|
Law RO. Sodium-dependent potassium (86Rb+) efflux moderates volume regulation by cells in rat renal inner medullary slices exposed to strongly hyperosmotic media. Biochem Biophys Res Commun 1992; 185:36-40. [PMID: 1599473 DOI: 10.1016/s0006-291x(05)80951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The possibility has been examined that Na(+)-dependent K(+)-conductive pathways, known to exist in certain excitable cell membranes and inhibitable by the drug R56865, may also be present in cells of rat renal inner medulla, and that their activation may explain aspects of volume regulation by these cells in tissue slices exposed to strongly hyperosmotic media, as reflected by the rate of efflux of preloaded 86Rb+ (a marker for K+) and steady-state cell volumes and K+ contents. Cells incubated in media of 2000 mosmol/kg (400 mM Na+, 1172 mM urea) shrink and lose K+ by comparison with those in 720 mosmol/kg (203 mM Na+, 266 mM urea). If 2-aminisobutyric acid (10 mM) is added there is partial restoration of cell volume due to inwardly directed Na(+)-amino acid cotransport, but 86Rb+ efflux is accelerated and cells fail to regain net K+. R56865 (5 microM) completely blocks the increase in efflux and causes marked increases in cell volume and K+ contents, but only in strongly hyperosmotic media and in the presence of both Na+ and amino acid. In mildly hyperosmotic media, or media of 2000 mosmol/kg from which Na+ or amino acid is omitted, R56865 is without effect on these variables.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, U.K
| |
Collapse
|
20
|
Law RO. Efflux and accumulation of amino nitrogen in relation to the volume of rat renal inner medullary cells exposed to media of variable osmolality. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1133:268-74. [PMID: 1737060 DOI: 10.1016/0167-4889(92)90047-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The rate of efflux of 2-amino[14C]isobutyric acid (AIB) from pre-loaded slices of rat renal inner medulla has been followed during incubation in media whose osmolality was varied between 350 and 2500 mosmol/kg H2O by adjustment of NaCl and urea concentrations. Efflux was biphasic, and it was assumed that the second, slower phase represented mainly cellular loss of AIB. As a function of cell volume (water content) the mean net rate of 2nd phase efflux declined far more abruptly (-36%) during an increase in external osmolality from 350 to 720 mosmol/kg than during further increase to 2500 mosmol/kg, over which range the rate of efflux fell by only a further 12%. Conversely, relative decrements of steady-state cell water contents during these two transitions were -17% and -37%, respectively. It is probable that in strongly hyperosmolal media (above 720 mosmol/kg) reduction in the rate of amino acid catabolism, with resultant cellular accumulation, becomes more important than passive efflux as a determinant of cell amino nitrogen content, and that this is caused by the enzyme-destabilizing effect of high intracellular concentrations of permeant urea. This interpretation is supported by the finding in the present study that trimethylamine N-oxide, which is known to counteract the destabilizing effect of urea, completely inhibited the accumulation of amino nitrogen (ninhydrin-positive substances) in media stronger than 720 mosmol/kg, as well as leading to further reduction of steady-state cell water contents, but was without effect on either variable in more dilute media. It is proposed that, under the conditions of this investigation, amino acids contribute to cell volume maintenance mainly by efflux and by metabolic accumulation under mildly and strongly hyperosmolal conditions, respectively, and that this interpretation is consistent with recent findings on the fluctuations in medullary levels of Na+, urea and total amino nitrogen in the intact kidneys of rats during acute water diuresis and oliguria (Law, R.O. (1991) Pflügers Arch. 418, 442-446).
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, U.K
| |
Collapse
|
21
|
Amino acids as well as polyols and methylamines accumulated in rat kidney during dehydration. Amino Acids 1992; 3:131-8. [DOI: 10.1007/bf00806778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/1991] [Indexed: 10/26/2022]
|
22
|
Häussinger D, Lang F. Cell volume in the regulation of hepatic function: a mechanism for metabolic control. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:331-50. [PMID: 1661157 DOI: 10.1016/0304-4157(91)90001-d] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D Häussinger
- Medizinische Universitätsklinik, Freiburg, Germany
| | | |
Collapse
|
23
|
Law RO. Alterations in renal inner medullary levels of amino nitrogen during acute water diuresis and hypovolaemic oliguria in rats. Pflugers Arch 1991; 418:442-6. [PMID: 1891336 DOI: 10.1007/bf00497771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Levels of total amino compounds (ninhydrinpositive substances, n.p.s.) have been measured in the inner medullas of rats during acute water diuresis and following the induction of hypovolaemic oliguria by the injection (i.p.) of 30% polyethylene glycol 20,000 (PEG) in 0.9% saline. Mean medullary fluid n.p.s. concentrations fell from 26.5 mmol to 15.2 mmol Gly equiv/l (-43%) within 2.5 h from the onset of diuresis, while the mean calculated tissue osmolality decreased from 738 mosmol/kg (control) to 369 mosmol/kg H2O. By 24 h n.p.s. and osmolality had returned to control levels. By 0.5 h after injection of PEG the mean concentration of n.p.s. had increased from 26.4 mmol to 32.7 mmol Gly equiv/l (+24%) and by 4 h had reached 60.4 mmol Gly equiv/l (+19%). During this time the calculated mean tissue fluid osmolality rose from 696 to 1037 mosmol/kg H2O. Levels of n.p.s. did not increase further for up to 12 h. It is proposed that losses of amino compounds may make a significant contribution to the overall decrease in medullary cellular osmotic potential accompanying reduced tissue fluid osmolality, and that increased levels of these solutes may provide short-term osmoprotection during antidiuresis of rapid onset, in contrast to the more slowly accumulating methylamines and polyhydric alcohols.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, UK
| |
Collapse
|
24
|
Beck FX, Thurau K, Schmolke M, Guder WG. Osmolytes and Cell Osmoregulation in the Kidney. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Law RO. Amino acids as volume-regulatory osmolytes in mammalian cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1991; 99:263-77. [PMID: 1678326 DOI: 10.1016/0300-9629(91)90001-s] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. This review summarizes current knowledge relating to the volume-regulatory and osmoprotective functions of amino acids in mammalian cells exposed to anisosmotic fluids. 2. Experiments in vivo and in vitro have established that they play a significant role in regulating brain cell volume under these conditions, and that taurine may be of particular importance in this respect. 3. Their possible role in renal medulla is discussed, and it is suggested that they may protect cells against acute (but not long-term) osmotic variation. 4. Evidence is briefly presented regarding adaptive changes in amino acid content of other cell types.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, U.K
| |
Collapse
|
26
|
|
27
|
Häussinger D, Lang F. Exposure of perfused liver to hypotonic conditions modifies cellular nitrogen metabolism. J Cell Biochem 1990; 43:355-61. [PMID: 2398102 DOI: 10.1002/jcb.240430407] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isolated livers were exposed to hypotonic perfusates. As shown previously, this hypotonic challenge leads to initial cell swelling, followed by volume regulatory ion fluxes, largely restoring cell volume within approximately 6 min. However, the hepatocyte is left in an altered metabolic state, which is characterized by marked stimulation of hepatic glutamine uptake and degradation and transient release of glutamate from the liver. Urea formation from glutamine and alanine is stimulated, whereas hepatic ammonia uptake and utilization for urea and glutamine synthesis decreases. These observations reveal a hitherto unrecognized factor modulating hepatic function during intestinal absorption.
Collapse
Affiliation(s)
- D Häussinger
- Medizinische Klinik, Universität Freiburg, Germany
| | | |
Collapse
|
28
|
Hohman TC, Carper D, Dasgupta S, Kaneko M. Osmotic stress induces aldose reductase in glomerular endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 284:139-52. [PMID: 1711272 DOI: 10.1007/978-1-4684-5901-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- T C Hohman
- Wyeth-Ayerst Laboratory, Princeton, NJ 08540
| | | | | | | |
Collapse
|
29
|
Law RO. Effects of pregnancy on the contents of water, taurine, and total amino nitrogen in rat cerebral cortex. J Neurochem 1989; 53:300-2. [PMID: 2723660 DOI: 10.1111/j.1471-4159.1989.tb07328.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plasma osmolality and the levels of water, taurine, and total amino nitrogen (detected as ninhydrin-positive substances) have been measured in the cerebral cortices of nonpregnant and 19-day pregnant Wistar rats. Plasma osmolality fell by 11 mosmol/kg during pregnancy. Brain water content remained unaltered, but levels of taurine and ninhydrin-positive substances fell by 48.5 and 21.9%, respectively. It is suggested that one way in which brain cells are prevented from swelling during the mild hypoosmolality of pregnancy is through loss of cellular amino nitrogen, particularly taurine.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, England
| |
Collapse
|
30
|
Law RO. An inwardly-directed sodium-amino acid cotransporter influences steady-state cell volume in slices of rat renal papilla incubated in hyperosmotic media. Pflugers Arch 1988; 413:43-50. [PMID: 3217226 DOI: 10.1007/bf00581227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of a neutral amino acid, 2-aminoisobutyric acid (AIB) on steady state cell volume has been examined in rat renal papillary slices incubated in hyperosmotic media (2,000 mosmol/kg H2O) containing high concentrations of NaCl and urea (thus imitating papillary interstitial fluid in the intact kidney during antidiuresis). Volumes were significantly increased (P less than 0.001) when external AIB was raised from 0.1 to 10 mmol/l. Na+-dependent AIB uptake occurred, and there were net increases in cell contents of Na+ and Cl-. Replacement of Na+ by Li+, but not by other cations, did not influence the effect of AIB concentration on cell volume, but this was abolished when Cl- was replaced by other anions. The effect of AIB was abolished by diphenylamine-2-carboxylate (10(-3) mmol/l), bumetanide (at 1 mmol/l but not 10(-2) mmol/l) and by N,N'-dicyclohexylcarbodiimide (0.5 mmol/l), but not by amiloride (1 mmol/l) or 4-acetamido-4'-iso-thiocyanato-stilbene-2,2'-disulphonic acid (1 mmol/l), and was enhanced by the presence of Ba2+ or quinine (1 mmol/l). The findings are interpreted in terms of an inwardly-directed Na+-amino acid cotransporter, which determines steady-state volume, requires simultaneous entry of Cl- through conductive pathways, and whose effects on cell volume are moderated by K+ efflux through volume-sensitive K+ channels.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, Great Britain
| |
Collapse
|
31
|
Law RO. The volume and ionic composition of cells in incubated slices of rat renal cortex, medulla and papilla. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 931:276-85. [PMID: 3118959 DOI: 10.1016/0167-4889(87)90217-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The apparent extracellular space in incubated slices of rat renal cortex, medulla and papilla has been measured using three differently sized marker molecules, mannitol, sucrose and inulin. Cellular volumes have been estimated by following the efflux of 3-O-methyl-D-glucose from equilibrated slices. Sucrose appears to be the most accurate extracellular marker in each of the regions examined, in that the sum of its volume of distribution plus cellular volume approximates most closely to the total slice fluid volume. Inulin has the same volume of distribution as sucrose in cortical slices, but under-penetrates medullary and papillary tissue. Mannitol overestimates the extracellular space in all three regions, although its larger volume of distribution, relative to that of sucrose, was not statistically significant in papillary slices. When cell volume and composition are estimated (a) using sucrose as extracellular marker and (b) making appropriate allowance for the presence of bound tissue electrolytes, it is found that cells in each region have low Na+ and high K+ concentrations and contents. When papillary slices are incubated in medium of very high osmolality (NaCl plus urea, 2000 mosmol/kg H2O) there is a moderate (approx. 23%) decrease in cell volume and an increase in cell fluid Na+ and Cl- concentrations equal to approx. 50% of the increase in the extracellular concentrations. Cell K+ concentrations remain unchanged. The results show that cells in renal slices are able to maintain high K+-to-Na+ ratios when incubated in isosmotic (cortex) or moderately hyperosmotic media (medulla and papilla), and suggest that regulation of papillary cell volume following hyperosmotic shock can only partly be ascribed to uptake of extracellular electrolytes.
Collapse
Affiliation(s)
- R O Law
- Department of Physiology, University of Leicester, U.K
| |
Collapse
|