1
|
Griffith EY, ElSayed M, Dura-Bernal S, Neymotin SA, Uhlrich DJ, Lytton WW, Zhu JJ. Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597830. [PMID: 38895250 PMCID: PMC11185623 DOI: 10.1101/2024.06.06.597830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Depolarizing current injections produced a rhythmic bursting of action potentials - a bursting oscillation - in a set of local interneurons in the lateral geniculate nucleus (LGN) of rats. The current dynamics underlying this firing pattern have not been determined, though this cell type constitutes an important cellular component of thalamocortical circuitry, and contributes to both pathologic and non-pathologic brain states. We thus investigated the source of the bursting oscillation using pharmacological manipulations in LGN slices in vitro and in silico. 1. Selective blockade of calcium channel subtypes revealed that high-threshold calcium currentsI L andI P contributed strongly to the oscillation. 2. Increased extracellular K+ concentration (decreased K+currents) eliminated the oscillation. 3. Selective blockade of K+ channel subtypes demonstrated that the calcium-sensitive potassium current (I A H P ) was of primary importance. A morphologically simplified, multicompartment model of the thalamic interneuron characterized the oscillation as follows: 1. The low-threshold calcium currentI T provided the strong initial burst characteristic of the oscillation. 2. Alternating fluxes through high-threshold calcium channels andI A H P then provided the continuing oscillation's burst and interburst periods respectively. This interplay betweenI L andI A H P contrasts with the current dynamics underlying oscillations in thalamocortical and reticularis neurons, which primarily involveI T andI H , orI T andI A H P respectively. These findings thus point to a novel electrophysiological mechanism for generating intrinsic oscillations in a major thalamic cell type. Because local interneurons can sculpt the behavior of thalamocortical circuits, these results suggest new targets for the manipulation of ascending thalamocortical network activity.
Collapse
Affiliation(s)
- Erica Y Griffith
- Department of Neural and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Mohamed ElSayed
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Biomedical Engineering, SUNY Downstate School of Graduate Studies, Brooklyn, NY
- Department of Psychiatry, New Hampshire Hospital, Concord, NH
| | - Salvador Dura-Bernal
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Samuel A Neymotin
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University School of Medicine, New York, NY
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY
- Department of Neurology, Kings County Hospital, Brooklyn, NY
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
2
|
Crunelli V, Lőrincz ML, McCafferty C, Lambert RC, Leresche N, Di Giovanni G, David F. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 2020; 143:2341-2368. [PMID: 32437558 PMCID: PMC7447525 DOI: 10.1093/brain/awaa072] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/19/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Absence seizures in children and teenagers are generally considered relatively benign because of their non-convulsive nature and the large incidence of remittance in early adulthood. Recent studies, however, show that 30% of children with absence seizures are pharmaco-resistant and 60% are affected by severe neuropsychiatric comorbid conditions, including impairments in attention, cognition, memory and mood. In particular, attention deficits can be detected before the epilepsy diagnosis, may persist even when seizures are pharmacologically controlled and are aggravated by valproic acid monotherapy. New functional MRI-magnetoencephalography and functional MRI-EEG studies provide conclusive evidence that changes in blood oxygenation level-dependent signal amplitude and frequency in children with absence seizures can be detected in specific cortical networks at least 1 min before the start of a seizure, spike-wave discharges are not generalized at seizure onset and abnormal cortical network states remain during interictal periods. From a neurobiological perspective, recent electrical recordings and imaging of large neuronal ensembles with single-cell resolution in non-anaesthetized models show that, in contrast to the predominant opinion, cortical mechanisms, rather than an exclusively thalamic rhythmogenesis, are key in driving seizure ictogenesis and determining spike-wave frequency. Though synchronous ictal firing characterizes cortical and thalamic activity at the population level, individual cortico-thalamic and thalamocortical neurons are sparsely recruited to successive seizures and consecutive paroxysmal cycles within a seizure. New evidence strengthens previous findings on the essential role for basal ganglia networks in absence seizures, in particular the ictal increase in firing of substantia nigra GABAergic neurons. Thus, a key feature of thalamic ictogenesis is the powerful increase in the inhibition of thalamocortical neurons that originates at least from two sources, substantia nigra and thalamic reticular nucleus. This undoubtedly provides a major contribution to the ictal decrease in total firing and the ictal increase of T-type calcium channel-mediated burst firing of thalamocortical neurons, though the latter is not essential for seizure expression. Moreover, in some children and animal models with absence seizures, the ictal increase in thalamic inhibition is enhanced by the loss-of-function of the astrocytic GABA transporter GAT-1 that does not necessarily derive from a mutation in its gene. Together, these novel clinical and experimental findings bring about paradigm-shifting views of our understanding of absence seizures and demand careful choice of initial monotherapy and continuous neuropsychiatric evaluation of affected children. These issues are discussed here to focus future clinical and experimental research and help to identify novel therapeutic targets for treating both absence seizures and their comorbidities.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - Magor L Lőrincz
- Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Cian McCafferty
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Régis C Lambert
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine and Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Neuroscience Division, School of Bioscience, Cardiff University, Museum Avenue, Cardiff, UK
| | - François David
- Cerebral dynamics, learning and plasticity, Integrative Neuroscience and Cognition Center - UMR 8002, Paris, France
| |
Collapse
|
3
|
Masilamoni GJ, Smith Y. Group I metabotropic glutamate receptors in the primate motor thalamus: subsynaptic association with cortical and sub-cortical glutamatergic afferents. Brain Struct Funct 2019; 224:2787-2804. [PMID: 31422483 DOI: 10.1007/s00429-019-01937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that mGluR5 is a potential therapeutic target for Parkinson's disease and L-DOPA-induced dyskinesia. However, the mechanisms through which these therapeutic benefits are mediated remain poorly understood. Although the regulatory role of mGluR5 on glutamatergic transmission has been examined in various basal ganglia nuclei, very little is known about the localization and function of mGluR5 in the ventral motor and intralaminar thalamic nuclei, the main targets of basal ganglia output in mammals. Thus, we used immuno-electron microscopy to map the cellular and subcellular localization of group I mGluRs (mGluR1a and mGluR5) in the ventral motor and caudal intralaminar thalamic nuclei in rhesus monkeys. Furthermore, using double immuno-electron microscopy, we examined the subsynaptic localization of mGluR5 in relation to cortical and sub-cortical glutamatergic afferents. Four major conclusions can be drawn from these data. First, mGluR1a and mGluR5 are expressed postsynaptically on the plasma membrane of dendrites of projection neurons and GABAergic interneurons in the basal ganglia- and cerebellar-receiving regions of the ventral motor thalamus and in CM. Second, the plasma membrane-bound mGluR5 immunoreactivity is preferentially expressed perisynaptically at the edges of cortical and sub-cortical glutamatergic afferents. Third, the mGluR5 immunoreactivity is more strongly expressed in the lateral than the medial tiers of CM, suggesting a preferential association with thalamocortical over thalamostriatal neurons in the primate CM. Overall, mGluR5 is located to subserve powerful modulatory role of cortical and subcortical glutamatergic transmission in the primate ventral motor thalamus and CM.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Augustinaite S, Heggelund P. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus. Neuroscience 2018; 384:76-86. [PMID: 29802882 DOI: 10.1016/j.neuroscience.2018.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| | - Paul Heggelund
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| |
Collapse
|
5
|
Sánchez E, Ferreiroa R, Arias A, Martínez LM. Image Sharpness and Contrast Tuning in the Early Visual Pathway. Int J Neural Syst 2017; 27:1750045. [PMID: 29046110 DOI: 10.1142/s0129065717500459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The center-surround organization of the receptive fields (RFs) of retinal ganglion cells highlights the presence of local contrast in visual stimuli. As RF of thalamic relay cells follow the same basic functional organization, it is often assumed that they contribute very little to alter the retinal output. However, in many species, thalamic relay cells largely outnumber their retinal inputs, which diverge to contact simultaneously several units at thalamic level. This gain in cell population as well as retinothalamic convergence opens the door to question how information about contrast is transformed at the thalamic stage. Here, we address this question using a realistic dynamic model of the retinothalamic circuit. Our results show that different components of the thalamic RF might implement filters that are analogous to two types of well-known image processing techniques to preserve the quality of a higher resolution version of the image on its way to the primary visual cortex.
Collapse
Affiliation(s)
- Eduardo Sánchez
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Rubén Ferreiroa
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Adrián Arias
- Grupo de Sistemas Inteligentes (GSI), Centro Singular de Investigación en Tecnologías, de la Informacin (CITIUS), University of Santiago de Compostela, Rua Jenaro de la Fuente, Santiago de Compostela 15782, Spain
| | - Luis M. Martínez
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernández, Avenida de Ramón y Cajal s/n, San Juan de Alicante 03550, Spain
| |
Collapse
|
6
|
Sen-Bhattacharya B, Serrano-Gotarredona T, Balassa L, Bhattacharya A, Stokes AB, Rowley A, Sugiarto I, Furber S. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine. Front Neurosci 2017; 11:454. [PMID: 28848380 PMCID: PMC5552764 DOI: 10.3389/fnins.2017.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a "basic building block" for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)-brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10-50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three "nodes," where each node is the "basic building block" LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W.
Collapse
Affiliation(s)
- Basabdatta Sen-Bhattacharya
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | | | | | | | - Alan B. Stokes
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Andrew Rowley
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Indar Sugiarto
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| | - Steve Furber
- Advanced Processor Technologies Group, School of Computer Science, University of ManchesterManchester, United Kingdom
| |
Collapse
|
7
|
Leresche N, Lambert RC. GABA receptors and T-type Ca 2+ channels crosstalk in thalamic networks. Neuropharmacology 2017; 136:37-45. [PMID: 28601398 DOI: 10.1016/j.neuropharm.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABAA/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Nathalie Leresche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Régis C Lambert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
8
|
A Neural Mass Computational Framework to Study Synaptic Mechanisms Underlying Alpha and Theta Rhythms. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Bhattacharya BS, Bond TP, O'Hare L, Turner D, Durrant SJ. Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics. Front Comput Neurosci 2016; 10:115. [PMID: 27899890 PMCID: PMC5110554 DOI: 10.3389/fncom.2016.00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20–25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8–13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive decrease of neurotransmitter concentrations in the synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the model. The results imply a role of IN toward maintaining homeostasis in the LGN by suppressing any instability that may arise due to anomalous synaptic attributes.
Collapse
Affiliation(s)
| | - Thomas P Bond
- School of Engineering, University of Lincoln Lincoln, UK
| | - Louise O'Hare
- School of Psychology, University of Lincoln Lincoln, UK
| | - Daniel Turner
- School of Engineering, University of Lincoln Lincoln, UK
| | | |
Collapse
|
10
|
Noda Y, Cash RFH, Zomorrodi R, Dominguez LG, Farzan F, Rajji TK, Barr MS, Chen R, Daskalakis ZJ, Blumberger DM. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex. J Neurophysiol 2016; 116:938-48. [PMID: 27226450 DOI: 10.1152/jn.00260.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/02/2016] [Indexed: 12/24/2022] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| | - Robin F H Cash
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Luis Garcia Dominguez
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
11
|
Abstract
Inhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.
Collapse
Affiliation(s)
- Judith A Hirsch
- Department of Biological Sciences/Neurobiology, University of Southern California, Los Angeles, California 90089-2520;
| | | | | | | |
Collapse
|
12
|
Complex Effects on In Vivo Visual Responses by Specific Projections from Mouse Cortical Layer 6 to Dorsal Lateral Geniculate Nucleus. J Neurosci 2015; 35:9265-80. [PMID: 26109652 DOI: 10.1523/jneurosci.0027-15.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the role of corticothalamic projections in shaping visual response properties in the thalamus has been a longstanding challenge in visual neuroscience. Here, we take advantage of the cell-type specificity of a transgenic mouse line, the GN220-Ntsr1 Cre line, to manipulate selectively the activity of a layer 6 (L6) corticogeniculate population while recording visual responses in the dorsal lateral geniculate nucleus (dLGN). Although driving Ntsr1 projection input resulted in reliable reduction in evoked spike count of dLGN neurons, removing these same projections resulted in both increases and decreases in visually evoked spike count. Both increases and decreases are contrast dependent and the sign is consistent over the full range of contrasts. Tuning properties suggest wide convergence of Ntsr1 cells with similar spatial and temporal frequency tuning onto single dLGN cells and we did not find evidence that Ntsr1 cells sharpen spatiotemporal filtering. These nonspecific changes occur independently of changes in burst frequency, indicating that Ntsr1 corticogeniculate activity can result in both net excitation and net inhibition.
Collapse
|
13
|
Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 2015; 35:64-73. [PMID: 25568103 DOI: 10.1523/jneurosci.2748-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Slow waves of non-REM sleep are suggested to play a role in shaping synaptic connectivity to consolidate recently acquired memories and/or restore synaptic homeostasis. During sleep slow waves, both GABAergic neurons of the nucleus reticularis thalami (NRT) and thalamocortical (TC) neurons discharge high-frequency bursts of action potentials mediated by low-threshold calcium spikes due to T-type Ca(2+) channel activation. Although such activity of the intrathalamic network characterized by high-frequency firing and calcium influx is highly suited to modify synaptic efficacy, very little is still known about its consequences on intrathalamic synapse strength. Combining in vitro electrophysiological recordings and calcium imaging, here we show that the inhibitory GABAergic synapses between NRT and TC neurons of the rat somatosensory nucleus develop a long-term depression (I-LTD) when challenged by a stimulation paradigm that mimics the thalamic network activity occurring during sleep slow waves. The mechanism underlying this plasticity presents unique features as it is both heterosynaptic and homosynaptic in nature and requires Ca(2+) entry selectively through T-type Ca(2+) channels and activation of the Ca(2+)-activated phosphatase, calcineurin. We propose that during slow-wave sleep the tight functional coupling between GABAA receptors, calcineurin, and T-type Ca(2+) channels will elicit LTD of the activated GABAergic synapses when coupled with concomitant activation of metabotropic glutamate receptors postsynaptic to cortical afferences. This I-LTD may be a key element involved in the reshaping of the somatosensory information pathway during sleep.
Collapse
|
14
|
Hong SZ, Kim HR, Fiorillo CD. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus. Front Comput Neurosci 2014; 8:98. [PMID: 25221503 PMCID: PMC4147392 DOI: 10.3389/fncom.2014.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022] Open
Abstract
A general theory views the function of all neurons as prediction, and one component of this theory is that of “predictive homeostasis” or “prediction error.” It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. In contrast, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN), T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This “burst mode” would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. Here we have mimicked within rat brain slices the patterns of synaptic conductance that occur naturally during vision. In support of the theory of predictive homeostasis, we found that T-type channels restored excitability toward its homeostatic level during periods of hyperpolarization. Thus, activation of T-type channels allowed two retinal input spikes to cause one output spike on average, and we observed almost no instances in which output count exceeded input count (a “burst”). T-type calcium channels therefore help to maintain a single optimal mode of transmission rather than creating a second mode. More fundamentally our results support the general theory, which seeks to predict the properties of a neuron's ion channels and synapses given knowledge of natural patterns of synaptic input.
Collapse
Affiliation(s)
- Su Z Hong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Haram R Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| | - Christopher D Fiorillo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| |
Collapse
|
15
|
Martinez LM, Molano-Mazón M, Wang X, Sommer FT, Hirsch JA. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 2014; 81:943-956. [PMID: 24559681 DOI: 10.1016/j.neuron.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2013] [Indexed: 11/27/2022]
Abstract
It is widely assumed that mosaics of retinal ganglion cells establish the optimal representation of visual space. However, relay cells in the visual thalamus often receive convergent input from several retinal afferents and, in cat, outnumber ganglion cells. To explore how the thalamus transforms the retinal image, we built a model of the retinothalamic circuit using experimental data and simple wiring rules. The model shows how the thalamus might form a resampled map of visual space with the potential to facilitate detection of stimulus position in the presence of sensor noise. Bayesian decoding conducted with the model provides support for this scenario. Despite its benefits, however, resampling introduces image blur, thus impairing edge perception. Whole-cell recordings obtained in vivo suggest that this problem is mitigated by arrangements of excitation and inhibition within the receptive field that effectively boost contrast borders, much like strategies used in digital image processing.
Collapse
Affiliation(s)
- Luis M Martinez
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernandez. Sant Joan d'Alacant, Alicante, 03550; SPAIN
| | - Manuel Molano-Mazón
- Instituto de Neurociencias de Alicante, CSIC-Universidad Miguel Hernandez. Sant Joan d'Alacant, Alicante, 03550; SPAIN
| | - Xin Wang
- Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037; USA
| | - Friedrich T Sommer
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94720-3198; USA
| | - Judith A Hirsch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520; USA
| |
Collapse
|
16
|
Synaptic mechanisms of temporal diversity in the lateral geniculate nucleus of the thalamus. J Neurosci 2013; 33:1887-96. [PMID: 23365228 DOI: 10.1523/jneurosci.4046-12.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral geniculate nucleus (LGN) contains a unique and numerous class of cells called lagged cells, which introduce a time delay into the neural signal provided to cortex. Previous studies have shown that this delay is dependent on GABA(A) receptors within the LGN. Furthermore, lagged cells have distinct integrative properties with a slower rising, more sustained, and overall lower firing rates than nonlagged cells. We have recorded intracellularly from lagged cells in the cat LGN and found a unique property of their retinal inputs that underlies both their temporal and integrative visual response properties. Lagged cell EPSPs, which often derive from a single retinal input, have smaller amplitudes, repolarize more quickly, and are followed by a Cl(-)-dependent hyperpolarization compared with nonlagged cells. The Cl(-)-dependent hyperpolarization sums early in the visual response generating a powerful synaptic inhibition that coincides with the peak frequency of retinal input and delays the spike response in lagged cells. The hyperpolarization subsides rapidly over ∼20-40 ms allowing for slow summation of the retinal input leading to the visual spike response. Given the tight association of single retinal EPSPs and the following inhibition, we propose that both functional properties result from the triadic circuitry prevalent in the LGN and particularly prominent in lagged X-cells. Thus, our results show for the first time a dynamic interaction of retinal excitation and fast feedforward inhibition that determines the integrative properties and the delay in firing of lagged cells.
Collapse
|
17
|
mGluR control of interneuron output regulates feedforward tonic GABAA inhibition in the visual thalamus. J Neurosci 2011; 31:8669-80. [PMID: 21653871 DOI: 10.1523/jneurosci.0317-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) play a crucial role in regulation of phasic inhibition within the visual thalamus. Here we demonstrate that mGluR-dependent modulation of interneuron GABA release results in dynamic changes in extrasynaptic GABA(A) receptor (eGABA(A)R)-dependent tonic inhibition in thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (dLGN). Application of the group I selective mGluR agonist dihydroxyphenylglycine produces a concentration-dependent enhancement of both IPSC frequency and tonic GABA(A) current (I(GABA)tonic) that is due to activation of both mGluR1a and mGluR5 subtypes. In contrast, group II/III mGluR activation decreases both IPSC frequency and I(GABA)tonic amplitude. Using knock-out mice, we show that the mGluR-dependent modulation of I(GABA)tonic is dependent upon expression of δ-subunit containing eGABA(A)Rs. Furthermore, unlike the dLGN, no mGluR-dependent modulation of I(GABA)tonic is present in TC neurons of the somatosensory ventrobasal thalamus, which lacks GABAergic interneurons. In the dLGN, enhancement of IPSC frequency and I(GABA)tonic by group I mGluRs is not action potential dependent, being insensitive to TTX, but is abolished by the L-type Ca(2+) channel blocker nimodipine. These results indicate selective mGluR-dependent modulation of dendrodendritic GABA release from F2-type terminals on interneuron dendrites and demonstrate for the first time the presence of eGABA(A)Rs on TC neuron dendritic elements that participate in "triadic" circuitry within the dLGN. These findings present a plausible novel mechanism for visual contrast gain at the thalamic level and shed new light upon the potential role of glial ensheathment of synaptic triads within the dLGN.
Collapse
|
18
|
Wang X, Sommer FT, Hirsch JA. Inhibitory circuits for visual processing in thalamus. Curr Opin Neurobiol 2011; 21:726-33. [PMID: 21752634 DOI: 10.1016/j.conb.2011.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
Abstract
Synapses made by local interneurons dominate the intrinsic circuitry of the mammalian visual thalamus and influence all signals traveling from the eye to cortex. Here we draw on physiological and computational analyses of receptive fields in the cat's lateral geniculate nucleus to describe how inhibition helps to enhance selectivity for stimulus features in space and time and to improve the efficiency of the neural code. Further, we explore specialized synaptic attributes of relay cells and interneurons and discuss how these might be adapted to preserve the temporal precision of retinal spike trains and thereby maximize the rate of information transmitted downstream.
Collapse
Affiliation(s)
- Xin Wang
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla California, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
19
|
Augustinaite S, Yanagawa Y, Heggelund P. Cortical feedback regulation of input to visual cortex: role of intrageniculate interneurons. J Physiol 2011; 589:2963-77. [PMID: 21502287 DOI: 10.1113/jphysiol.2011.205542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurons in the dorsal lateral geniculate nucleus (dLGN) process and transmit visual signals from retina to visual cortex. The processing is dynamically regulated by cortical excitatory feedback to neurons in dLGN, and synaptic short-term plasticity (STP) has an important role in this regulation. It is known that corticogeniculate synapses on thalamocortical (TC) projection-neurons are facilitating, but type and characteristics of STP of synapses on inhibitory interneurons in dLGN are unknown. We studied STP at corticogeniculate synapses on interneurons and compared the results with STP-characteristics of corticogeniculate synapses on TC neurons to gain insights into the dynamics of cortical regulation of processing in dLGN. We studied neurons in thalamic slices from glutamate decarboxylase 67 (GAD67)–green fluorescent protein (GFP) knock-in mice and made whole-cell recordings of responses evoked by electrical paired-pulse and pulse train stimulation of cortical afferents. We found that cortical excitations of interneurons and TC neurons have distinctly different properties. A single pulse evoked larger EPSCs in interneurons than in TC neurons. However, repetitive stimulation induced frequency-dependent depression of interneurons in contrast to the facilitation of TC neurons. Thus, through these differences of STP mechanisms, the balance of cortical excitation of the two types of neurons could change during stimulation from strongest excitation of interneurons to strongest excitation of TC neurons depending on stimulus frequency and duration, and thereby contribute to activity-dependent cortical regulation of thalamocortical transmission between net depression and net facilitation. Studies of postsynaptic response patterns of interneurons to train stimulation demonstrated that cortical input can activate different types of neuronal integration mechanisms that in addition to the STP mechanisms may change the output from dLGN. Lower stimulus intensity, presumably activating few cortical afferents, or moderate frequencies, elicited summation of graded EPSPs reflecting synaptic depression. However, strong activation through higher intensity or frequency, elicited complex response patterns in interneurons caused at least partly by activation of calcium conductances.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, POB 1104 Blindern, N-0317 Oslo, Norway
| | | | | |
Collapse
|
20
|
Dilger EK, Shin HS, Guido W. Requirements for synaptically evoked plateau potentials in relay cells of the dorsal lateral geniculate nucleus of the mouse. J Physiol 2010; 589:919-37. [PMID: 21173075 DOI: 10.1113/jphysiol.2010.202499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In developing cells of the mouse dorsal lateral geniculate nucleus (dLGN), synaptic responses evoked by optic tract (OT) stimulation give rise to long-lasting, high-amplitude depolarizations known as plateau potentials. These events are mediated by L-type Ca2+ channels and occur during early postnatal life, a time when retinogeniculate connections are remodelling. To better understand the relationship between L-type activity and dLGN development we used an in vitro thalamic slice preparation which preserves the retinal connections and intrinsic circuitry in dLGN and examined how synaptic responses evoked by OT stimulation lead to the activation of plateau potentials. By varying the strength and temporal frequency of OT stimulation we identified at least three factors that contribute to the developmental regulation of plateau activity: the degree of retinal convergence, the temporal pattern of retinal stimulation and the emergence of feed-forward inhibition. Before natural eye opening (postnatal day 14), the excitatory synaptic responses of relay cells receiving multiple retinal inputs summated in both the spatial and temporal domains to produce depolarizations sufficient to activate L-type activity. After eye opening, when inhibitory responses are fully developed, plateau activity was rarely evoked even with high temporal rates of OT stimulation. When the bulk of this inhibition was blocked by bath application of bicuculline, the incidence of plateau activity increased significantly. We also made use of a transgenic mouse that lacks the β3 subunit of the L-type Ca2+ channel. These mutants have far fewer membrane-bound Ca2+ channels and attenuated L-type activity. In β3 nulls, L-type plateau activity was rarely observed even at young ages when plateau activity prevails. Thus, in addition to the changing patterns of synaptic connectivity and retinal activity, the expression of L-type Ca2+ channels is a requisite component in the manifestation of plateau activity.
Collapse
Affiliation(s)
- Emily K Dilger
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Centre, Sanger Hall, 1101 E. Marshall St, Richmond, VA 23298, USA
| | | | | |
Collapse
|
21
|
Lindström S, Wróbel A. Feedforward and recurrent inhibitory receptive fields of principal cells in the cat's dorsal lateral geniculate nucleus. Pflugers Arch 2010; 461:277-94. [PMID: 21127903 PMCID: PMC3023014 DOI: 10.1007/s00424-010-0900-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/13/2010] [Accepted: 11/03/2010] [Indexed: 12/05/2022]
Abstract
Principal cells in the dorsal lateral geniculate nucleus receive both feedforward and recurrent inhibition. Despite many years of study, the receptive field structure of these inhibitory mechanisms has not been determined. Here, we have used intracellular recordings in vivo to differentiate between the two types of inhibition and map their respective receptive fields. The feedforward inhibition of a principal cell originates from the same type of retinal ganglion cells as its excitation, while the recurrent inhibition is provided by both on- and off-centre cells. Both inhibitory effects are strongest at the centre of the excitatory receptive field. The diameter of the feedforward inhibitory field is two times larger, and the recurrent two to four times larger than the excitatory field centre. The inhibitory circuitry is similar for X and Y principal cells.
Collapse
Affiliation(s)
- Sivert Lindström
- Department of Clinical and Experimental Medicine, University of Linköping, S-581 85, Linköping, Sweden
| | | |
Collapse
|
22
|
Bickford ME, Slusarczyk A, Dilger EK, Krahe TE, Kucuk C, Guido W. Synaptic development of the mouse dorsal lateral geniculate nucleus. J Comp Neurol 2010; 518:622-35. [PMID: 20034053 DOI: 10.1002/cne.22223] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the mouse has emerged as a model system in the study of thalamic circuit development. However, there is still a lack of information regarding how and when various types of retinal and nonretinal synapses develop. We examined the synaptic organization of the developing mouse dLGN in the common pigmented C57/BL6 strain, by recording the synaptic responses evoked by electrical stimulation of optic tract axons, and by investigating the ultrastructure of identified synapses. At early postnatal ages (<P12), optic tract evoked responses were primarily excitatory. The full complement of inhibitory responses did not emerge until after eye opening (>P14), when optic tract stimulation routinely evoked an excitatory postsynaptic potential/inhibitory postsynaptic potential (EPSP/IPSP) sequence, with the latter having both a GABA(A) and GABA(B) component. Electrophysiological and ultrastructural observations were consistent. At P7, many synapses were present, but synaptic profiles lacked the ultrastructural features characteristic of the adult dLGN, and little gamma-aminobutyric acid (GABA) could be detected by using immunocytochemical techniques. In contrast, by P14, GABA staining was robust, mature synaptic profiles of retinal and nonretinal origin were easily distinguished, and the size and proportion of synaptic contacts were similar to those of the adult. The emergence of nonretinal synapses coincides with pruning of retinogeniculate connections, and the transition of retinal activity from spontaneous to visually driven. These results indicate that the synaptic architecture of the mouse dLGN is similar to that of other higher mammals, and thus provides further support for its use as a model system for visual system development.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lorincz ML, Kékesi KA, Juhász G, Crunelli V, Hughes SW. Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 2009; 63:683-96. [PMID: 19755110 PMCID: PMC2791173 DOI: 10.1016/j.neuron.2009.08.012] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/15/2009] [Accepted: 08/17/2009] [Indexed: 12/04/2022]
Abstract
Several aspects of perception, particularly those pertaining to vision, are closely linked to the occipital alpha (α) rhythm. However, how the α rhythm relates to the activity of neurons that convey primary visual information is unknown. Here we show that in behaving cats, thalamocortical neurons in the lateral geniculate nucleus (LGN) that operate in a conventional relay-mode form two groups where the cumulative firing is subject to a cyclic suppression that is centered on the negative α rhythm peak in one group and on the positive peak in the other. This leads to an effective temporal framing of relay-mode output and results from phasic inhibition from LGN interneurons, which in turn are rhythmically excited by thalamocortical neurons that exhibit high-threshold bursts. These results provide a potential cellular substrate for linking the α rhythm to perception and further underscore the central role of inhibition in controlling spike timing during cognitively relevant brain oscillations.
Collapse
Affiliation(s)
- Magor L Lorincz
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | | | |
Collapse
|
24
|
Grieve KL, Rivadulla C, Cudeiro J. Mixed burst and tonic firing in the thalamus: A study in the feline lateral geniculate nucleus in vivo. Brain Res 2009; 1273:48-57. [PMID: 19345679 DOI: 10.1016/j.brainres.2009.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/15/2022]
|
25
|
Acuna-Goycolea C, Brenowitz SD, Regehr WG. Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 2008; 57:420-31. [PMID: 18255034 DOI: 10.1016/j.neuron.2007.12.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/14/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Inhibitory interneurons in the dorsal lateral geniculate nucleus (dLGN) process visual information by precisely controlling spike timing and by refining the receptive fields of thalamocortical (TC) neurons. Previous studies indicate that dLGN interneurons inhibit TC neurons by releasing GABA from both axons and dendrites. However, the mechanisms controlling GABA release are poorly understood. Here, using simultaneous whole-cell recordings from interneurons and TC neurons and two-photon calcium imaging, we find that synchronous activation of multiple retinal ganglion cells (RGCs) triggers sodium spikes that propagate throughout interneuron axons and dendrites, and calcium spikes that invade dendrites but not axons. These distinct modes of interneuron firing can trigger both a rapid and a sustained component of inhibition onto TC neurons. Our studies suggest that active conductances make LGN interneurons flexible circuit-elements that can shift their spatial and temporal properties of GABA release in response to coincident activation of functionally related subsets of RGCs.
Collapse
|
26
|
Wang X, Wei Y, Vaingankar V, Wang Q, Koepsell K, Sommer FT, Hirsch JA. Feedforward excitation and inhibition evoke dual modes of firing in the cat's visual thalamus during naturalistic viewing. Neuron 2007; 55:465-78. [PMID: 17678858 PMCID: PMC2587266 DOI: 10.1016/j.neuron.2007.06.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/14/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Thalamic relay cells transmit information from retina to cortex by firing either rapid bursts or tonic trains of spikes. Bursts occur when the membrane voltage is low, as during sleep, because they depend on channels that cannot respond to excitatory input unless they are primed by strong hyperpolarization. Cells fire tonically when depolarized, as during waking. Thus, mode of firing is usually associated with behavioral state. Growing evidence, however, suggests that sensory processing involves both burst and tonic spikes. To ask if visually evoked synaptic responses induce each type of firing, we recorded intracellular responses to natural movies from relay cells and developed methods to map the receptive fields of the excitation and inhibition that the images evoked. In addition to tonic spikes, the movies routinely elicited lasting inhibition from the center of the receptive field that permitted bursts to fire. Therefore, naturally evoked patterns of synaptic input engage dual modes of firing.
Collapse
Affiliation(s)
- Xin Wang
- Neuroscience Graduate Program, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089-2520, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Augustinaite S, Heggelund P. Changes in firing pattern of lateral geniculate neurons caused by membrane potential dependent modulation of retinal input through NMDA receptors. J Physiol 2007; 582:297-315. [PMID: 17495043 PMCID: PMC2075279 DOI: 10.1113/jphysiol.2007.131540] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An optimal visual stimulus flashed on the receptive field of a retinal ganglion cell typically evokes a strong transient response followed by weaker sustained firing. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus, which receive their sensory input from retina, respond similarly except that the gain, in particular of the sustained component, changes with level of arousal. Several lines of evidence suggest that retinal input to TC neurons through NMDA receptors plays a key role in generation of the sustained response, but the mechanisms for the state-dependent variation in this component are unclear. We used a slice preparation to study responses of TC neurons evoked by trains of electrical pulses to the retinal afferents at frequencies in the range of visual responses in vivo. Despite synaptic depression, the pharmacologically isolated NMDA component gave a pronounced build-up of depolarization through temporal summation of the NMDA receptor mediated EPSPs. This depolarization could provide sustained firing, the frequency of which depended on the holding potential. We suggest that the variation of sustained response in vivo is caused mainly by the state-dependent modulation of the membrane potential of TC neurons which shifts the NMDA receptor mediated depolarization closer to or further away from the firing threshold. The pharmacologically isolated AMPA receptor EPSPs were rather ineffective in spike generation. However, together with the depolarization evoked by the NMDA component, the AMPA component contributed significantly to spike generation, and was necessary for the precise timing of the generated spikes.
Collapse
Affiliation(s)
- S Augustinaite
- Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, PO Box 1103 Blindern, N-0317 Oslo, Norway
| | | |
Collapse
|
28
|
Hetzler BE, Ondracek JM. Baclofen alters flash-evoked potentials in Long–Evans rats. Pharmacol Biochem Behav 2007; 86:727-40. [PMID: 17407791 DOI: 10.1016/j.pbb.2007.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
This experiment examined the effects of the GABA-B agonist baclofen on flash-evoked potentials (FEPs) recorded from both the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats. FEPs were recorded at 5, 25, 45, and 65 min following intraperitoneal injections of saline, and of 1.25, 2.5, 5.0, and 10.0 mg/kg baclofen on separate days. In the VC, the amplitude of components P(23), P(37), N(55), N(150), and P(242) increased, while the amplitude of components N(31) and P(48) decreased following baclofen administration. P(88) was unchanged. In the SC, components P(28), N(49), N(55), and N(59) were reduced in amplitude, while P(39) was unaffected by baclofen. These effects on amplitudes were dose- and time-dependent. Many peak latencies in the VC and SC were altered by baclofen, although there was no obvious pattern of change, with some decreasing, a few increasing, and others unchanged. Body temperature was recorded in a separate group of animals, with both the 5.0 and 10.0 mg/kg doses of baclofen producing significant hypothermia. The 10.0 mg/kg dose of baclofen resulted in a significant decrease in movement during the recording sessions, but not in subsequent open field observations. The results show the involvement of GABA-B receptors in the production/modulation of the various components of FEPs.
Collapse
Affiliation(s)
- Bruce E Hetzler
- Department of Psychology, Lawrence University, Appleton, WI 54912, USA.
| | | |
Collapse
|
29
|
Abstract
This article addresses the functional significance of the electrophysiological properties of thalamic neurons. We propose that thalamocortical activity, is the product of the intrinsic electrical properties of the thalamocortical (TC) neurons and the connectivity their axons weave. We begin with an overview of the electrophysiological properties of single neurons in different functional states, followed by a review of the phylogeny of the electrical properties of thalamic neurons, in several vertebrate species. The similarity in electrophysiological properties unambiguously indicates that the thalamocortical system must be as ancient as the vertebrate branch itself. We address the view that rather than simply relays, thalamic neurons have sui generis intrinsic electrical properties that govern their specific functional dynamics and regulate natural functional states such as sleep and vigilance. In addition, thalamocortical activity has been shown to be involved in the genesis of several neuropsychiatric conditions collectively described as thalamocortical dysrhythmia syndrome.
Collapse
Affiliation(s)
- Rodolfo R Llinás
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York, USA.
| | | |
Collapse
|
30
|
Kimiskidis VK, Papagiannopoulos S, Kazis DA, Sotirakoglou K, Vasiliadis G, Zara F, Kazis A, Mills KR. Lorazepam-induced effects on silent period and corticomotor excitability. Exp Brain Res 2006; 173:603-11. [PMID: 16525803 DOI: 10.1007/s00221-006-0402-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/04/2006] [Indexed: 10/24/2022]
Abstract
TMS studies on the CNS effects of benzodiazepines have provided contradictory results. The objective of this study is to describe the effects of lorazepam on silent period (SP) and corticomotor excitability. Twelve healthy male subjects (median age 35 years) were studied at baseline, following i.v. lorazepam administration and after reversal of the benzodiazepine effects with i.v. flumazenil. Lorazepam was given at a low-dose in one subject (0.0225 mg/kg bolus + 2 microg/kg/h infusion) and at a high-dose (0.045 mg/kg bolus + 2.6 microg/kg/h infusion) in the rest. Threshold (Thr) was measured at 1% steps. SPs were investigated with two complementary methods. First, SPs were elicited using a wide range of stimulus intensities (SIs) (from 5 to 100% maximum SI at 5% increments). At each SI, four SPs were obtained and the average value of SP duration was used to construct a stimulus/response (S/R) curve of SI versus SP .The resulting S/R curves were then fitted to a Boltzman function, the best-fit values of which were statistically compared for each experimental condition (i.e., baseline vs. lorazepam vs. flumazenil). Second, a large number of SPs (n=100) was elicited during each of the three experimental conditions using blocks of four stimuli with an intensity alternating between MT and 200% MT. This method was employed so as to reveal the dynamic, time-varying effects of lorazepam and flumazenil on SP duration at two stimulus intensity (SI) levels. MEP recruitment curves were constructed at rest and during activation and fitted to a Boltzman function the best-fit values of which were statistically compared for each experimental condition. Lorazepam at a low dose did not affect Thr, SP, or the active MEP recruitment curves. The high dose also had no effect on Thr and the active MEPs whereas the resting MEP recruitment curves were depressed post-lorazepam at the higher range of stimulus intensities. With regard to SP, the Max value of the S/R curve decreased from 251+/-4.6 ms at baseline to 215.2+/-3.1 ms post-lorazepam (P<0.01). V50 also decreased significantly (from 47.92+/-0.9% to 43.73+/-0.81%, P<0.01) whereas there was no significant change regarding slope and SP Thr. The statistical analysis of the SP S/R curves as well as the study of SPs at two SI levels revealed that lorazepam reduced SP duration when high intensity stimuli were used (>60%). In contrast, at low SIs a small increase in SP duration was noted post-drug. Enhancement of GABAergic inhibition by lorazepam results in a reduction of SP duration when high SIs is used. At the lower range of SIs, a small but statistically significant increase in SP duration is observed. The kinetic behavior of this phenomenon as well as the possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- V K Kimiskidis
- Department of Neurology III, G.Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis Neurosci 2005; 22:661-76. [PMID: 16332277 DOI: 10.1017/s0952523805225154] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 07/27/2005] [Indexed: 11/06/2022]
Abstract
The advent of transgenic mice has made the developing retinogeniculate pathway a model system for targeting potential mechanisms that underlie the refinement of sensory connections. However, a detailed characterization of the form and function of this pathway is lacking. Here we use a variety of anatomical and electrophysiological techniques to delineate the structural and functional changes occurring in the lateral geniculate nucleus (LGN) of dorsal thalamus of the C57/BL6 mouse. During the first two postnatal weeks there is an age-related recession in the amount of terminal space occupied by retinal axons arising from the two eyes. During the first postnatal week, crossed and uncrossed axons show substantial overlap throughout most of the LGN. Between the first and second week retinal arbors show significant pruning, so that by the time of natural eye opening (P12–14) segregation is complete and retinal projections are organized into distinct eye-specific domains. During this time of rapid anatomical rearrangement, LGN cells could be readily distinguished using immunocytochemical markers that stain for NMDA receptors, GABA receptors, L-type Ca2+channels, and the neurofilament protein SMI-32. Moreover, the membrane properties and synaptic responses of developing LGN cells are remarkably stable and resemble those of mature neurons. However, there are some notable developmental changes in synaptic connectivity. At early ages, LGN cells are binocularly responsive and receive input from as many as 11 different retinal ganglion cells. Optic tract stimulation also evokes plateau-like depolarizations that are mediated by the activation of L-type Ca2+channels. As retinal inputs from the two eyes segregate into nonoverlapping territories, there is a loss of binocular responsiveness, a decrease in retinal convergence, and a reduction in the incidence of plateau potentials. These data serve as a working framework for the assessment of phenotypes of genetically altered strains as well as provide some insight as to the molecular mechanisms underlying the refinement of retinogeniculate connections.
Collapse
Affiliation(s)
- Lisa Jaubert-Miazza
- Department of Cell Biology and Anatomy, Louisiana State Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
32
|
Blitz DM, Regehr WG. Timing and specificity of feed-forward inhibition within the LGN. Neuron 2005; 45:917-28. [PMID: 15797552 DOI: 10.1016/j.neuron.2005.01.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 10/08/2004] [Accepted: 01/21/2005] [Indexed: 11/18/2022]
Abstract
Local interneurons provide feed-forward inhibition from retinal ganglion cells (RGCs) to thalamocortical (TC) neurons, but questions remain regarding the timing, magnitude, and functions of this inhibition. Here, we identify two types of inhibition that are suited to play distinctive roles. We recorded excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) in TC neurons in mouse brain slices and activated individual RGC inputs. In 34% of TC neurons, we identified EPSCs and IPSCs with identical thresholds that were tightly correlated, indicating activation by the same RGC. Such "locked" IPSCs occurred 1 ms after EPSC onset. The remaining neurons had only "nonlocked" inhibition, in which EPSCs and IPSCs had different thresholds, indicating activation by different RGCs. Nonlocked inhibition may refine receptive fields within the LGN by providing surround inhibition. In contrast, dynamic-clamp recordings suggest that locked inhibition improves the precision of synaptically evoked responses in individual TC neurons by eliminating secondary spikes.
Collapse
Affiliation(s)
- Dawn M Blitz
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Ziburkus J, Lo FS, Guido W. Nature of inhibitory postsynaptic activity in developing relay cells of the lateral geniculate nucleus. J Neurophysiol 2003; 90:1063-70. [PMID: 12711717 DOI: 10.1152/jn.00178.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using intracellular recordings in an isolated (in vitro) brain stem preparation, we examined the inhibitory postsynaptic responses of developing neurons in the dorsal lateral geniculate nucleus (LGN) of the rat. As early as postnatal day (P) 1-2, 31% of all excitatory postsynaptic (EPSP) activity evoked by electrical stimulation of the optic tract was followed by inhibitory postsynaptic potentials (IPSPs). By P5, 98% of all retinally evoked EPSPs were followed by IPSP activity. During the first postnatal week, IPSPs were mediated largely by GABA(A) receptors. Additional GABA(B)-mediated IPSPs emerged at P3-4 but were not prevalent until after the first postnatal week. Experiments involving the separate stimulation of each optic nerve indicated that developing LGN cells were binocularly innervated. At P11-14, it was common to evoke EPSP/IPSP pairs by stimulating either the contralateral or ipsilateral optic nerve. During the third postnatal week, binocular excitatory responses were encountered far less frequently. However, a number of cells still maintained a binocular inhibitory response. These results provide insight about the ontogeny and nature of postsynaptic inhibitory activity in the LGN during the period of retinogeniculate axon segregation.
Collapse
Affiliation(s)
- Jokubas Ziburkus
- Department of Cell Biology and Anatomy Louisiana State Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
34
|
Steriade M. Presynaptic dendrites of thalamic local-circuit neurons and sculpting inhibition during activated states. J Physiol 2003; 546:1. [PMID: 12509473 PMCID: PMC2342482 DOI: 10.1113/jphysiol.2002.033969] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mircea Steriade
- Laboratory of Neurophysiology, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|
35
|
Usrey WM. Spike timing and visual processing in the retinogeniculocortical pathway. Philos Trans R Soc Lond B Biol Sci 2002; 357:1729-37. [PMID: 12626007 PMCID: PMC1693071 DOI: 10.1098/rstb.2002.1157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the visual response properties of neurons along the retinogeniculocortical pathway have been studied for decades, relatively few studies have examined how individual neurons along the pathway communicate with each other. Recent studies in the cat (Felis domestica) now show that the strength of these connections is very dynamic and spike timing plays an important part in determining whether action potentials will be transferred from pre- to postsynaptic cells. This review explores recent progress in our understanding of what role spike timing has in establishing different patterns of geniculate activity and how these patterns ultimately drive the cortex.
Collapse
Affiliation(s)
- W Martin Usrey
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Steriade M. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol 2002; 542:583-98. [PMID: 12122155 PMCID: PMC2290423 DOI: 10.1113/jphysiol.2001.013479] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4-5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental. The largest augmenting responses were evoked in neurones located close to the stimulation site. Quantitative analyses of the number of action potentials and the amplitude and area of depolarization during augmenting responses in a population of neurones recorded from slabs showed that the most dramatic increases in the number of spikes with successive stimuli, and the greatest increase in depolarization amplitude, were found in conventional fast-spiking (FS) neurones. The largest increase in the area of depolarization was found in regular-spiking (RS) neurones. Dual intracellular recordings from a pair of FS and RS neurones in the slab revealed more action potentials in the FS neurone during augmenting responses and a significant increase in the depolarization area of the RS neurone that was dependent on the firing of the FS neurone. Self-sustained seizures could occur in the slab after rhythmic stimuli at 10 Hz. In the intact cortex, repeated sequences of stimuli generating augmenting responses or spontaneous spindles could induce an increased synaptic responsiveness to single stimuli, which lasted for several minutes. A similar time course of increased responsiveness was obtained with induction of cellular plasticity. These data suggest that augmenting responses elicited by stimulation, as well as spontaneously occurring spindles, may induce short- and medium-term plasticity of neuronal responses.
Collapse
Affiliation(s)
- Igor Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| | | | | | | | | | | |
Collapse
|
37
|
Leresche N. Synaptic Currents in Thalamo-cortical Neurons of the Rat Lateral Geniculate Nucleus. Eur J Neurosci 2002; 4:595-602. [PMID: 12106323 DOI: 10.1111/j.1460-9568.1992.tb00168.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thalamo-cortical neurons were identified in slices of the rat dorsal lateral geniculate nucleus and whole-cell currents were recorded using the patch-clamp technique. Postsynaptic currents occurring spontaneously, or elicited by extracellular stimulation in the vicinity of the recorded neuron, were analysed. Spontaneous postsynaptic currents were observed in every recorded neuron. At a holding potential of - 60 mV, and with a high internal Cl-, the currents were inward and had amplitudes ranging from < 10 to 425 pA. All the spontaneous currents were blocked by 10 microM bicuculline, indicating that they were due to the activation of postsynaptic gamma-aminobutyric acid (GABAA) receptors. The 10-90% rise time of these spontaneous GABAergic currents was 0.86 +/- 0.19 ms. Their time course of decay could be fitted to an exponential function with one time constant of 18.19 +/- 3.02 ms (mean +/- SD), or two time constants of 4.47 +/- 0.77 and 33.27 +/- 3.74 ms. This activity was frequently organized in bursts. Stimulus-evoked postsynaptic currents were recorded and shown to be due to the activation of glutamatergic receptors. Under similar experimental conditions a bicuculline-sensitive component was also recorded. These stimulus-evoked GABAergic currents had a 10 - 90% rise time of 1.93 +/- 0.54 ms. Their time course of decay could also be fitted to an exponential function with one time constant of 24.42 ms or two time constants of 10.26 +/- 2.46 and 49.30 +/- 10.98 ms. The difference in the time course between spontaneous and evoked GABAergic currents suggests that these responses may arise from synapses having different locations.
Collapse
Affiliation(s)
- N. Leresche
- Laboratoire de Neurobiologie, URA 295 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
38
|
Soltesz I, Roberts JD, Takagi H, Richards JG, Mohler H, Somogyi P. Synaptic and Nonsynaptic Localization of Benzodiazepine/GABAA Receptor/Cl- Channel Complex Using Monoclonal Antibodies in the Dorsal Lateral Geniculate Nucleus of the Cat. Eur J Neurosci 2002; 2:414-29. [PMID: 12106029 DOI: 10.1111/j.1460-9568.1990.tb00434.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two monoclonal antibodies, bd-17 and bd-24, are specific for beta- and alpha-subunits of the GABAA/benzodiazepine receptor/chloride channel complex respectively. An abundance of both subunits has been revealed in the visual thalamus of the cat by light microscopic immunocytochemistry using these antibodies. The alpha-subunit specific antibody and electron microscopy were used to determine the subcellular distribution of immunoreactivity with respect to specific cell classes in the dorsal lateral geniculate nucleus. Immunoreactivity was always associated with membranes and the degree of immunoreactivity varied greatly between different types of cell as defined by: (i) immunoreactivity for GABA; (ii) soma area; (iii) presence or absence of cytoplasmic laminated bodies (CLB). GABA negative neurons with the smallest soma area showed the strongest immunoreactivity, mainly in the endoplasmic reticulum and also on the somatic plasma membrane. Cytoplasmic laminated bodies could be found in the majority of these neurons. Large GABA negative cells without CLBs were strongly immunoreactive on the plasma membrane of the soma and dendrites, but showed scant if any intracellular immunoreactivity. GABA-positive cells showed weak intracellular immunoreactivity but negligible if any immunoreactivity at the somatic and proximal dendritic plasma membrane. A similar reaction pattern was found in GABA negative cells which contained no CLBs and which constituted a medium sized cell population. It is suggested that the degree of intracellular receptor immunoreactivity is positively correlated with receptor turnover. The dendrites of projection cells, particularly outside the glomeruli, showed strong immunoreactivity on the plasma membrane. The synaptic junctions formed by many boutons (F terminals) establishing symmetrical synapses with dendrites of relay cells were immunopositive, but no immunoreactivity could be detected at the synapses established by the presynaptic dendrites of the local interneurons. Many axo-somatic F1 junctions were also immunoreactive. However, immunoreactivity for the receptor/channel complex was also widely distribution on nonsynaptic plasma membranes of somata and dendrites. Thus GABA may act at both synaptic and non-synaptic sites. Furthermore, the correlation of immunoreactivity for the GABAA receptor complex with previously published properties of physiologically identified cells suggests that the strongly immunoreactive, small, GABA negative cells with CLBs might correspond to the 'lagged' X-type cells, and the large GABA negative receptor outlined cells without CLBs might correspond to some of the Y-type neurons.
Collapse
Affiliation(s)
- I Soltesz
- MRC Anatomical Neuropharmacology Unit, South Parks Road, Oxford OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
39
|
Lo FS, Ziburkus J, Guido W. Synaptic mechanisms regulating the activation of a Ca(2+)-mediated plateau potential in developing relay cells of the LGN. J Neurophysiol 2002; 87:1175-85. [PMID: 11877491 DOI: 10.1152/jn.00715.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using intracellular recordings in an isolated (in vitro) rat brain stem preparation, we examined the synaptic responses of developing relay neurons in the dorsal lateral geniculate nucleus (LGN). In newborn rats, strong stimulation of the optic tract (OT) evoked excitatory postsynaptic potentials (EPSPs) that gave rise to a sustained (300-1,300 ms), slow-decaying (<0.01 mV/s), depolarization (25-40 mV). Riding atop this response was a train of spikes of variable amplitude. We refer to this synaptically evoked event as a plateau potential. Pharmacology experiments indicate the plateau potential was mediated by the activation of high-threshold L-type Ca(2+) channels. Synaptic activation of the plateau potential relied on N-methyl-D-aspartate (NMDA) receptor-mediated activity and the spatial and/or temporal summation of retinally evoked EPSPs. Inhibitory postsynaptic responses (IPSPs) did not prevent the expression of the plateau potential. However, GABA(A) receptor activity modulated the intensity of optic tract stimulation needed to evoke the plateau potential, while GABA(B) receptor activity affected its duration. Expression of the plateau potential was developmentally regulated, showing a much higher incidence at P1-2 (90%) than at P19-20 (1%). This was in part due to the fact that developing relay cells show a greater degree of spatial summation than their mature counterparts, receiving input from as many as 7-12 retinal ganglion cells. Early spontaneous retinal activity is also likely to trigger the plateau potential. Repetitive stimulation of optic tract in a manner that approximated the high-frequency discharge of retinal ganglion cells led to a massive temporal summation of EPSPs and the activation of a sustained depolarization (>1 min) that was blocked by L-type Ca(2+) channel antagonists. These age-related changes in Ca(2+) signaling may contribute to the activity-dependent refinement of retinogeniculate connections.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Cell Biology and Anatomy, Neuroscience Center of Excellence, Louisiana State Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
40
|
Nyitrai G, Kékesi KA, Szilágyi N, Papp A, Juhász G, Kardos J. Neurotoxicity of lindane and picrotoxin: neurochemical and electrophysiological correlates in the rat hippocampus in vivo. Neurochem Res 2002; 27:139-45. [PMID: 11926266 DOI: 10.1023/a:1014819125873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study, we compared in vivo changes of extracellular amino acid levels and nucleotide derivatives to a single ip dose of lindane (10-60 mg/kg) and picrotoxin (5 mg/kg) in the hippocampus of halothane anaesthetized rat by microdialysis-coupled HPLC analysis. Brain activity was monitored by EEG. The effects of lindane and picrotoxin on EEG pattern of rats as well as on hippocampal amino acid and nucleotide status were studied in 0-50 min, 50-100 min and 100-150 min periods post-dosing. Significant decreases in Glu and Asp were found after picrotoxin treatment. After 50-100 min post-dosing, hippocampal hypoxanthine and inosine levels increased to both lindane (10 mg/kg) and picrotoxin whereas xanthine and uridine levels increased to picrotoxin, only. Lindane elicited a dose-dependent occurrence of negative spikes accompanied with rhythmic activity at 4-5 Hz. The picrotoxin-induced 4-5 Hz activity did not display negative sharp waves and was accompanied by 10 Hz oscillations.
Collapse
Affiliation(s)
- Gabriella Nyitrai
- Department of Neurochemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | | | | | |
Collapse
|
41
|
Muscarinic regulation of dendritic and axonal outputs of rat thalamic interneurons: a new cellular mechanism for uncoupling distal dendrites. J Neurosci 2001. [PMID: 11160385 DOI: 10.1523/jneurosci.21-04-01148.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition is crucial for sharpening the sensory information relayed through the thalamus. To understand how the interneuron-mediated inhibition in the thalamus is regulated, we studied the muscarinic effects on interneurons in the lateral posterior nucleus and lateral geniculate nucleus of the thalamus. Here, we report that activation of muscarinic receptors switched the firing pattern in thalamic interneurons from bursting to tonic. Although neuromodulators switch the firing mode in several other types of neurons by altering their membrane potential, we found that activation of muscarinic subtype 2 receptors switched the fire mode in thalamic interneurons by selectively decreasing their input resistance. This is attributable to the muscarinic enhancement of a hyperpolarizing potassium conductance and two depolarizing cation conductances. The decrease in input resistance appeared to electrotonically uncouple the distal dendrites of thalamic interneurons, which effectively changed the inhibition pattern in thalamocortical cells. These results suggest a novel cellular mechanism for the cholinergic transformation of long-range, slow dendrite- and axon-originated inhibition into short-range, fast dendrite-originated inhibition in the thalamus observed in vivo. It is concluded that the electrotonic properties of the dendritic compartments of thalamic interneurons can be dynamically regulated by muscarinic activity.
Collapse
|
42
|
Corticothalamic feedback can induce hypersynchronous low-frequency rhythms in the physiologically intact thalamus. Neurocomputing 2001. [DOI: 10.1016/s0925-2312(01)00398-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Zhu J, Heggelund P. Muscarinic regulation of dendritic and axonal outputs of rat thalamic interneurons: a new cellular mechanism for uncoupling distal dendrites. J Neurosci 2001; 21:1148-59. [PMID: 11160385 PMCID: PMC6762242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2000] [Revised: 12/01/2000] [Accepted: 12/07/2000] [Indexed: 02/18/2023] Open
Abstract
Inhibition is crucial for sharpening the sensory information relayed through the thalamus. To understand how the interneuron-mediated inhibition in the thalamus is regulated, we studied the muscarinic effects on interneurons in the lateral posterior nucleus and lateral geniculate nucleus of the thalamus. Here, we report that activation of muscarinic receptors switched the firing pattern in thalamic interneurons from bursting to tonic. Although neuromodulators switch the firing mode in several other types of neurons by altering their membrane potential, we found that activation of muscarinic subtype 2 receptors switched the fire mode in thalamic interneurons by selectively decreasing their input resistance. This is attributable to the muscarinic enhancement of a hyperpolarizing potassium conductance and two depolarizing cation conductances. The decrease in input resistance appeared to electrotonically uncouple the distal dendrites of thalamic interneurons, which effectively changed the inhibition pattern in thalamocortical cells. These results suggest a novel cellular mechanism for the cholinergic transformation of long-range, slow dendrite- and axon-originated inhibition into short-range, fast dendrite-originated inhibition in the thalamus observed in vivo. It is concluded that the electrotonic properties of the dendritic compartments of thalamic interneurons can be dynamically regulated by muscarinic activity.
Collapse
Affiliation(s)
- J Zhu
- Department of Cell Physiology, Max-Planck-Institute for Medizinische Forschung, Heidelberg D-69120, Germany.
| | | |
Collapse
|
44
|
Avanzini G, Panzica F, de Curtis M. The role of the thalamus in vigilance and epileptogenic mechanisms. Clin Neurophysiol 2000; 111 Suppl 2:S19-26. [PMID: 10996551 DOI: 10.1016/s1388-2457(00)00398-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The most relevant results of studies on the anatomo-physiological substrate of the thalamic rhythmogenic mechanisms responsible for sleep spindles and spike-wave discharges are reviewed. METHODS The reviewed experiments have been carried out in cats, rodents and other mammals with either in vivo or in vitro electrophysiological recording. RESULTS The rhythmic bilateral and synchronous EEG activities underlying sleep spindles and spike-wave discharges have been found to be correlated with oscillatory patterns involving mutually interconnected cortical and thalamic neurons. These rhythmic patterns are generated in thalamic neurons when the membrane potential, which is modulated by aminergic and cholinergic systems, is set to a level where the low threshold calcium current is de-inactivated. The pacemaker structure responsible for the initiation of the thalamo-cortical oscillatory activities has been identified as the reticular thalamic nucleus, a GABAergic structure projecting exclusively to the other thalamic nuclei. Experiments carried out in GAERS (genetic absence epilepsy rat from Strasbourg) demonstrated in this rat model of inherited absence epilepsy an enhancement of the pacemaker properties of the thalamic nucleus, due to a genetically determined increase in the low threshold calcium current, which is responsible for the pathological synchronization underlying spike-wave discharges. CONCLUSIONS Recent experiments confirm the longstanding hypothesis that spindles and spike-wave discharges share common mechanisms involving thalamo-cortical circuitry. Due to its unusual anatomic and functional organization the nucleus reticularis thalami plays a crucial role as pacemaker of these rhythmic EEG activities.
Collapse
Affiliation(s)
- G Avanzini
- Istituto Nazionale Neurologico C. Besta, Via Celoria 11, 20133, Milan, Italy.
| | | | | |
Collapse
|
45
|
Leresche N, Asprodini E, Emri Z, Cope DW, Crunelli V. Somatostatin inhibits GABAergic transmission in the sensory thalamus via presynaptic receptors. Neuroscience 2000; 98:513-22. [PMID: 10869845 DOI: 10.1016/s0306-4522(00)00107-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The action of somatostatin on GABA-mediated transmission was investigated in cat and rat thalamocortical neurons of the dorsal lateral geniculate nucleus and ventrobasal thalamus in vitro. In the cat thalamus, somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons and on the postsynaptic response elicited in these cells by bath or iontophoretic application of (+/-)baclofen (5-10 microM) or GABA, respectively. However, somatostatin (1-10 microM) decreased by a similar amount (45-55%) the amplitude of electrically evoked GABA(A) and GABA(B) inhibitory postsynaptic potentials in 71 and 50% of neurons in the lateral geniculate and ventrobasal nucleus, respectively. In addition, the neuropeptide abolished spontaneous bursts of GABA(A) inhibitory postsynaptic potentials in 85% of kitten lateral geniculate neurons, and decreased (40%) the amplitude of single spontaneous GABA(A) inhibitory postsynaptic potentials in 87% of neurons in the cat lateral geniculate nucleus. Similar results were obtained in the rat thalamus. Somatostatin (10 microM) had no effect on the passive membrane properties of thalamocortical neurons in this species, or on the outward current elicited by puff-application of (+/-)baclofen (5-10 microM). However, in 57 and 22% of neurons in the rat lateral geniculate and ventrobasal nuclei, respectively, somatostatin (1 microM) reduced the frequency, but not the amplitude, of miniature GABA(A) inhibitory postsynaptic currents by 31 and 37%, respectively. In addition, the neuropeptide (1 microM) decreased the amplitude of evoked GABA(A) inhibitory postsynaptic currents in 20 and 55% of rat ventrobasal neurons recorded in normal conditions and during enhanced excitability, respectively: this effect was stronger on bursts of inhibitory postsynaptic currents(100% decrease) than on single inhibitory postsynaptic currents (41% decrease). These results demonstrate that in the sensory thalamus somatostatin inhibits GABA(A)- and GABA(B)-mediated transmission via a presynaptic mechanism, and its action is more prominent on bursts of GABAergic synaptic currents/potentials.
Collapse
Affiliation(s)
- N Leresche
- Neurobiologie Cellulaire, Institut des Neurosciences, UMR CNRS 7624, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
46
|
Ambardekar AV, Ilinsky IA, Forestl W, Bowery NG, Kultas-Ilinsky K. Distribution and properties of GABA(B) antagonist [3H]CGP 62349 binding in the rhesus monkey thalamus and basal ganglia and the influence of lesions in the reticular thalamic nucleus. Neuroscience 1999; 93:1339-47. [PMID: 10501458 DOI: 10.1016/s0306-4522(99)00282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GABA(B) receptors are believed to be associated with the efferents of the nucleus reticularis thalami, which is implicated in the regulation of activity in the thalamocortical-corticothalamic circuit and plays a role in absence seizures. Yet, the distribution of GABA(B) receptors in the thalamus has only been studied in the rat, and there is no comparable information in primates. The potent GABA(B) receptor antagonist [3H]CGP 62349 was used to study the distribution and binding properties of the receptor in control monkeys and those with small ibotenic acid lesions in the anterodorsal segment of the nucleus reticularis thalami. Eight-micrometer-thick cryostat sections of the fresh frozen brains were incubated in the presence of varying concentrations of the ligand. Autoradiographs were analysed using a quantitative image analysis technique, and binding parameters were calculated for select thalamic nuclei as well as basal ganglia structures present in the same sections. The overall number of GABA(B) binding sites in the monkey thalamus and basal ganglia was several-fold higher than previously reported values for the rat. In the thalamus, the receptors were distributed rather uniformly and the binding densities and affinities were high (Bmax range of 245.5-437.9 fmol/ mg of tissue, Kd range of 0.136-0.604 nM). In the basal ganglia, the number of binding sites and the affinities were lower (Bmax range of 51.1-244.2 fmol/mg of tissue; K(d) range of 0.416-1.394 nM), and the differences between nuclei were more pronounced, with striatum and substantia nigra pars compacta displaying the highest binding densities. Seven days post-lesion, a 20-30% decrease in Bmax values (P < 0.05) was found in the nuclei receiving input from the lesioned nucleus reticularis thalami sector (the mediodorsal nucleus and densicellular and magnocellular parts of the ventral anterior nucleus) without changes in affinity. No significant changes were detected in any other structures. The results of the lesioning experiments suggest that a portion of thalamic GABA(B) receptors is in a presynaptic location on the nucleus reticularis thalami efferents. The overall distribution pattern in the thalamus also suggests a partial association of GABA(B) receptors with corticothalamic terminals presynaptically.
Collapse
Affiliation(s)
- A V Ambardekar
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
47
|
Barilà B, Cupello A, Robello M. GABA(B) receptor activation protects GABA(A) receptor from cyclic AMP-dependent down-regulation in rat cerebellar granule cells. Neuroscience 1999; 93:1077-82. [PMID: 10473272 DOI: 10.1016/s0306-4522(99)00257-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interaction between GABAA and GABA(B) receptors was studied in rat cerebellar granule cells in culture, by the whole-cell patch-clamp approach. Our data show that the GABA(B) agonist (-)baclofen is not able, per se, to significantly change the muscimol-activated chloride current. However, (-)baclofen dose-dependently prevents the reduction of GABA(A) receptor function by forskolin, an activator of adenylate cyclase. The effect of baclofen is mediated by a pertussis toxin-sensitive G protein. In fact, in cells treated with pertussis toxin, baclofen and forskolin, the toxin is able to block baclofen action, allowing forskolin to act fully. The protective effect by GABA(B) receptor activation under these circumstances is most probably related to the prevention of cyclic AMP increases after forskolin treatment. In fact, in these neurons cyclic AMP and protein kinase A activation result in a down-regulation of GABA(A) receptor function. On the whole, the data indicate the presence of complex modulation of GABA(A) receptors by GABA(B) receptor types in cerebellum granule cells.
Collapse
Affiliation(s)
- B Barilà
- INFM, Dipartimento di Fisica dell'Università di Genova, Italy
| | | | | |
Collapse
|
48
|
Three GABA receptor-mediated postsynaptic potentials in interneurons in the rat lateral geniculate nucleus. J Neurosci 1999. [PMID: 10407013 DOI: 10.1523/jneurosci.19-14-05721.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition is crucial for the thalamus to relay sensory information from the periphery to the cortex and to participate in thalamocortical oscillations. However, the properties of inhibitory synaptic events in interneurons are poorly defined because in part of the technical difficulty of obtaining stable recording from these small cells. With the whole-cell recording technique, we obtained stable recordings from local interneurons in the lateral geniculate nucleus and studied their inhibitory synaptic properties. We found that interneurons expressed three different types of GABA receptors: bicuculline-sensitive GABA(A) receptors, bicuculline-insensitive GABA(A) receptors, and GABA(B) receptors. The reversal potentials of GABA responses were estimated by polarizing the membrane potential. The GABA(A) receptor-mediated responses had a reversal potential of approximately -82 mV, consistent with mediation via Cl(-) channels. The reversal potential for the GABA(B) response was -97 mV, consistent with it being a K(+) conductance. The roles of these GABA receptors in postsynaptic responses were also examined in interneurons. Optic tract stimulation evoked a disynaptic IPSP that was mediated by all three types of GABA receptors and depended on activation of geniculate interneurons. Stimulation of the thalamic reticular nucleus evoked an IPSP, which appeared to be mediated exclusively by bicuculline-sensitive GABA(A) receptors and depended on the activation of reticular cells. The results indicate that geniculate interneurons form a complex neuronal circuitry with thalamocortical and reticular cells via feed-forward and feedback circuits, suggesting that they play a more important role in thalamic function than thought previously.
Collapse
|
49
|
Thomson AM, Destexhe A. Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 1999; 92:1193-215. [PMID: 10426478 DOI: 10.1016/s0306-4522(99)00021-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dual intracellular recordings in slices of adult rat neocortex and hippocampus investigated slow, putative GABA(B) receptor-mediated inhibitory postsynaptic potentials. In most pairs tested in which the interneuron elicited a fast inhibitory postsynaptic potential in the pyramid, this GABA(A) receptor mediated inhibitory postsynaptic potential was entirely blocked by bicuculline or picrotoxin (3:3 in neocortex, 6:8 in CA1, all CA1 basket cells), even when high-frequency presynaptic spike trains were elicited. However, in three of 85 neocortical paired recordings involving an interneuron, although no discernible response was elicited by single presynaptic interneuronal spikes, a long latency (> or =20 ms) inhibitory postsynaptic potential was elicited by a train of > or =3 spikes at frequencies > or =50-100 Hz. This slow inhibitory postsynaptic potential was insensitive to bicuculline (one pair tested). In neocortex, slow inhibitory postsynaptic potential duration reached a maximum of 200 ms even with prolonged presynaptic spike trains. In contrast, summing fast, GABA(A) inhibitory postsynaptic potentials, elicited by spike trains, lasted as long as the train. Between four and 10 presynaptic spikes, mean peak slow inhibitory postsynaptic potential amplitude increased sharply to 0.38, 2.6 and 2.9 mV, respectively, in the three neocortical pairs (membrane potential -60 to -65 mV). Thereafter increases in spike number had little additional effect on amplitude. In two of eight pairs in CA1, one involving a presynaptic basket cell and the other a putative bistratified interneuron, the fast inhibitory postsynaptic potential was blocked by bicuculline revealing a slow inhibitory postsynaptic potential that was greatly reduced by 100 microM CGP 35348 (basket cell pair). The sensitivity of this slow inhibitory postsynaptic potential to spike number was similar to that of neocortical 'pure' slow inhibitory postsynaptic potentials, but was of longer duration, its plateau phase outlasting 200 ms spike trains and its maximum duration exceeding 400 ms. Computational models of GABA release, diffusion and uptake suggested that extracellular accumulation of GABA cannot alone account for the non-linear relationship between spike number and inhibitory postsynaptic potential amplitude. However, cooperativity in the kinetics of GABA(B) transduction mechanisms provided non-linear relations similar to experimental data. Different kinetic models were considered for how G-proteins activate K+ channels, including allosteric models. For all models, the best fit to experimental data was obtained with four G-protein binding sites on the K+ channels, consistent with a tetrameric structure for the K+ channels associated with GABA(B) receptors. Thus some inhibitory connections in neocortex and hippocampus appear mediated solely by fast GABA(A) receptors, while others appear mediated solely by slow, non-ionotropic, possibly GABA(B) receptors. In addition, some inhibitory postsynaptic potentials arising in proximal portions of CA1 pyramidal cells are mediated by both GABA(A) and GABA(B) receptors. Our data indicate that the GABA released by a single interneuron can saturate the GABA(B) receptor mechanism(s) accessible to it and that 'spillover' to extrasynaptic sites need not necessarily be proposed to explain these slow inhibitory postsynaptic potential properties.
Collapse
Affiliation(s)
- A M Thomson
- Department of Physiology, Royal Free and University College Medical School, London, UK
| | | |
Collapse
|
50
|
Zhu JJ, Lo FS. Three GABA receptor-mediated postsynaptic potentials in interneurons in the rat lateral geniculate nucleus. J Neurosci 1999; 19:5721-30. [PMID: 10407013 PMCID: PMC6783068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1998] [Revised: 04/21/1999] [Accepted: 04/23/1999] [Indexed: 02/13/2023] Open
Abstract
Inhibition is crucial for the thalamus to relay sensory information from the periphery to the cortex and to participate in thalamocortical oscillations. However, the properties of inhibitory synaptic events in interneurons are poorly defined because in part of the technical difficulty of obtaining stable recording from these small cells. With the whole-cell recording technique, we obtained stable recordings from local interneurons in the lateral geniculate nucleus and studied their inhibitory synaptic properties. We found that interneurons expressed three different types of GABA receptors: bicuculline-sensitive GABA(A) receptors, bicuculline-insensitive GABA(A) receptors, and GABA(B) receptors. The reversal potentials of GABA responses were estimated by polarizing the membrane potential. The GABA(A) receptor-mediated responses had a reversal potential of approximately -82 mV, consistent with mediation via Cl(-) channels. The reversal potential for the GABA(B) response was -97 mV, consistent with it being a K(+) conductance. The roles of these GABA receptors in postsynaptic responses were also examined in interneurons. Optic tract stimulation evoked a disynaptic IPSP that was mediated by all three types of GABA receptors and depended on activation of geniculate interneurons. Stimulation of the thalamic reticular nucleus evoked an IPSP, which appeared to be mediated exclusively by bicuculline-sensitive GABA(A) receptors and depended on the activation of reticular cells. The results indicate that geniculate interneurons form a complex neuronal circuitry with thalamocortical and reticular cells via feed-forward and feedback circuits, suggesting that they play a more important role in thalamic function than thought previously.
Collapse
Affiliation(s)
- J J Zhu
- Shanghai Brain Research Institute and Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|