1
|
de Lima-Pardini AC, Mikhail Y, Dominguez-Vargas AU, Dancause N, Scott SH. Transcranial magnetic stimulation in non-human primates: A systematic review. Neurosci Biobehav Rev 2023; 152:105273. [PMID: 37315659 DOI: 10.1016/j.neubiorev.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.
Collapse
Affiliation(s)
- Andrea C de Lima-Pardini
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada.
| | - Youstina Mikhail
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
| |
Collapse
|
2
|
Gonzalez AA, Mahani T, Parikh P. Anodal Stimulation Latency Response Differences Between Ipsilateral and Contralateral Motor Evoked Potentials in Hand Muscles. J Clin Neurophysiol 2023; 40:471-475. [PMID: 35250000 DOI: 10.1097/wnp.0000000000000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Purpose of this study was to analyze the latency and amplitude of transcranial motor evoked potentials responses from the contralateral and ipsilateral muscle groups to the same stimulus. If responses are because of activation of deeper structures, the latency of both the ipsilateral and the contralateral responses should have no difference. However, a difference in latency would suggest that activation might be occurring at different subcortical levels. METHODS Data regarding demographics, medical history, and neurophysiological parameters were collected retrospectively on patients undergoing lumbar spine surgeries. Each side transcranial MEPs was considered as an independent data. Latency and amplitude of motor responses were recorded from the hand muscles of the ipsilateral and contralateral side from the same transcranial stimulus at preincision baseline. Statistical data analysis was performed using SAS 9.4. Paired t test was used to identify mean of differences in latency and amplitude between contralateral and ipsilateral intrinsic hand muscle. RESULTS Data on 54 patients (104 MEPs) were obtained. Using paired t test, mean of differences in latency between ipsilateral (crossover) and contralateral (desired) intrinsic hand muscle was 0.8967 milliseconds ( P < 0.0001) while median was 0.71 milliseconds. Using paired t test, mean of differences in amplitude between ipsilateral and contralateral hand muscles was -1,071 µV ( P = <0.0001). CONCLUSIONS Significant latency differences were seen between the contralateral and the ipsilateral hand MEP responses using the same transcranial stimulus, suggesting a different subcortical activation. Understanding of this difference might help better in the selection of baselines, and whether to favor responses obtained under the anode or under the cathode.
Collapse
Affiliation(s)
- Andres A Gonzalez
- Departments of Neurology and
- Internal Medicine, University of California Riverside, Riverside, California, U.S.A.; and
- Department of Neurosurgery, LAC+USC Medical Center, Los Angeles, California, U.S.A
| | - Tandis Mahani
- Departments of Neurology and
- Internal Medicine, University of California Riverside, Riverside, California, U.S.A.; and
- Department of Neurosurgery, LAC+USC Medical Center, Los Angeles, California, U.S.A
| | - Pooja Parikh
- Department of Neurosurgery, LAC+USC Medical Center, Los Angeles, California, U.S.A
| |
Collapse
|
3
|
Germann M, Maffitt NJ, Poll A, Raditya M, Ting JSK, Baker SN. Pairing Transcranial Magnetic Stimulation and Loud Sounds Produces Plastic Changes in Motor Output. J Neurosci 2023; 43:2469-2481. [PMID: 36859307 PMCID: PMC10082460 DOI: 10.1523/jneurosci.0228-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 03/03/2023] Open
Abstract
Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.
Collapse
Affiliation(s)
- Maria Germann
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Natalie J Maffitt
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Annie Poll
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marco Raditya
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jason S K Ting
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
4
|
Russell C, Difford N, Stamenkovic A, Stapley P, McAndrew D, Arpel C, MacKinnon C, Shemmell J. Postural support requirements preferentially modulate late components of the gastrocnemius response to transcranial magnetic stimulation. Exp Brain Res 2022; 240:2647-2657. [PMID: 36006434 PMCID: PMC9510120 DOI: 10.1007/s00221-022-06440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Mounting evidence suggests that motor evoked potentials (MEPs) recorded in upper limb muscles with postural support roles following transcranial magnetic stimulation receive contributions from both corticospinal and non-corticospinal descending pathways. We tested the hypothesis that neural structures responsible for regulating upright balance are involved in transmitting late portions of TMS-induced MEPs in a lower limb muscle. MEPs were recorded in the medial gastrocnemius muscles of each leg, while participants supported their upright posture in five postural conditions that required different levels of support from the target muscles. We observed that early and late portions of the MEP were modulated independently, with early MEP amplitude being reduced when high levels of postural support were required from a target muscle. Independent modulation of early and late MEPs by altered postural demand suggests largely separable transmission of each part of the MEP. The early component of the MEP is likely generated by fast-conducting corticospinal pathways, whereas the later component may be primarily transmitted along a polysynaptic cortico-reticulospinal pathway.
Collapse
Affiliation(s)
- Cassandra Russell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Nathan Difford
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alexander Stamenkovic
- Department of Physical Therapy, College of Health Professions, Virgina Commonwealth University, Richmond, USA
| | - Paul Stapley
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Darryl McAndrew
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Caitlin Arpel
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Colum MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
5
|
Journée HL, Journée SL. Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in Horses. Vet Clin North Am Equine Pract 2022; 38:189-211. [PMID: 35811197 DOI: 10.1016/j.cveq.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Depending on the localization of the lesion, spinal cord ataxia is the most common type of ataxia in horses. Most prevalent diagnoses include cervical vertebral stenotic myelopathy (CVSM), equine protozoal myeloencephalitis (EPM), trauma and equine degenerative myeloencephalopathy (EDM). Other causes of ataxia and weakness are associated with infectious causes, trauma and neoplasia. A neurologic examination is indispensable to identify the type of ataxia. In addition, clinical neurophysiology offers tools to locate functional abnormalities in the central and peripheral nervous system. Clinical EMG assessment looks at the lower motoneuron function (LMN) and is used to differentiate between neuropathy in peripheral nerves, which belong to LMNs and myopathy. As LMNs reside in the spinal cord, it is possible to grossly localize lesions in the myelum by muscle examination. Transcranial (tc) stimulation techniques are gaining importance in all areas of medicine to assess the motor function of the spinal cord along the motor tracts to the LMNs. Applications in diagnostics, intraoperative neurophysiological monitoring (IONM), and evaluation of effects of treatment are still evolving in human medicine and offer new challenges in equine medicine. Tc stimulation techniques comprise transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES). TMS was first applied in horses in 1996 by Mayhew and colleagues and followed by TES. The methods are exchangeable for clinical diagnostic assessment but show a few differences. An outline is given on the principles, current clinical diagnostic applications and challenging possibilities of muscle evoked potentials (MEP) from transcranial stimulation in horses.
Collapse
Affiliation(s)
- Henricus Louis Journée
- Department of Neurosurgery, University of Groningen, Univ Med Center Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands; Department of Orthopedics, Univ Utrecht, Univ Med Ctr Utrecht, PO-box 85500 NL-3508 GA, Utrecht, Netherlands.
| | | |
Collapse
|
6
|
Gill G, Forman DA, Reeves JE, Taylor JL, Bent LR. Location-specific cutaneous electrical stimulation of the footsole modulates corticospinal excitability to the plantarflexors and dorsiflexors during standing. Physiol Rep 2022; 10:e15240. [PMID: 35778836 PMCID: PMC9249991 DOI: 10.14814/phy2.15240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Non‐noxious electrical stimulation to distinct locations of the foot sole evokes location‐specific cutaneous reflex responses in lower limb muscles. These reflexes occur at latencies that may enable them to be mediated via a transcortical pathway. Corticospinal excitability to the plantarflexors and dorsiflexors was measured in 16 participants using motor evoked potentials (MEPs). Spinal excitability was measured in eight of the original participants using cervicomedullary motor evoked potentials (CMEPs). Measurements were collected with and without preceding cutaneous stimulus to either the heel (HEEL) or metatarsal (MET) locations of the foot sole, and evoked potentials were elicited to coincide with the arrival of the cutaneous volley at either the motor cortex or spinal cord. Plantarflexor MEPs and CMEPs were facilitated with cutaneous stimulation to the HEEL for MEPs (soleus p = 0.04, medial gastrocnemius (MG) p = 0.017) and CMEPs (soleus p = 0.047 and MG p = 0.015), but they were unchanged following MET stimulation for MEPs or CMEPs. Dorsiflexor MEPs were unchanged with cutaneous stimulation at either location, but dorsiflexor CMEPs increased with cutaneous stimulation (p = 0.05). In general, the increase in CMEP amplitudes was larger than the increase in MEP amplitudes, indicating that an increase in spinal excitability likely explains most of the increase in corticospinal excitability. The larger change observed in the CMEP also indicates that excitability from supraspinal sources likely decreased, which could be due to a net change in the excitability of intracortical circuits. This study provides evidence that cutaneous reflexes from foot sole skin are likely influenced by a transcortical pathway.
Collapse
Affiliation(s)
- Gagan Gill
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Davis A Forman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joanna E Reeves
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Department for Health, University of Bath, Bath, United Kingdom
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Brain and spinal cord paired stimulation coupled with locomotor training affects polysynaptic flexion reflex circuits in human spinal cord injury. Exp Brain Res 2022; 240:1687-1699. [PMID: 35513720 DOI: 10.1007/s00221-022-06375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
Neurorecovery from locomotor training is well established in human spinal cord injury (SCI). However, neurorecovery resulting from combined interventions has not been widely studied. In this randomized clinical trial, we established the tibialis anterior (TA) flexion reflex modulation pattern when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal cord (transspinal) stimulation over the thoracolumbar region during assisted step training. Single pulses of TMS were delivered either before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Eight individuals with chronic incomplete or complete SCI received at least 20 sessions of paired stimulation during assisted step training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic-assisted step training with the Lokomat6 Pro®. Body weight support, leg guidance force and treadmill speed were adjusted based on each participant's ability to step without knee buckling or toe dragging. Both the early and late TA flexion reflex remained unaltered after TMS-transspinal and locomotor training. In contrast, the early and late TA flexion reflexes were significantly depressed during stepping after transspinal-TMS and locomotor training. Reflex changes occurred at similar slopes and intercepts before and after training. Our findings support that targeted brain and spinal cord stimulation coupled with locomotor training reorganizes the function of flexion reflex pathways, which are a part of locomotor networks, in humans with varying levels of sensorimotor function after SCI.Trial registration number NCT04624607; Registered on November 12, 2020.
Collapse
|
8
|
Journée SL, Journée HL, Berends HI, Reed SM, Bergmann W, de Bruijn CM, Delesalle CJG. Trapezius Motor Evoked Potentials From Transcranial Electrical Stimulation and Transcranial Magnetic Stimulation: Reference Data, Characteristic Differences and Intradural Motor Velocities in Horses. Front Neurosci 2022; 16:851463. [PMID: 35573305 PMCID: PMC9094044 DOI: 10.3389/fnins.2022.851463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Reason for Performing Study So far, only transcranial motor evoked potentials (MEP) of the extensor carpi radialis and tibialis cranialis have been documented for diagnostic evaluation in horses. These allow for differentiating whether lesions are located in either the thoraco-lumbar region or in the cervical myelum and/or brain. Transcranial trapezius MEPs further enable to distinguish between spinal and supraspinal located lesions. No normative data are available. It is unclear whether transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) are interchangeable modalities. Objectives To provide normative data for trapezius MEP parameters in horses for TES and TMS and to discern direct and indirect conduction routes by neurophysiological models that use anatomical geometric characteristics to relate latency times with peripheral (PCV) and central conduction velocities (CCV). Methods Transcranial electrical stimulation-induced trapezius MEPs were obtained from twelve horses. TES and TMS-MEPs (subgroup 5 horses) were compared intra-individually. Trapezius MEPs were measured bilaterally twice at 5 intensity steps. Motoneurons were localized using nerve conduction models of the cervical and spinal accessory nerves (SAN). Predicted CCVs were verified by multifidus MEP data from two horses referred for neurophysiological assessment. Results Mean MEP latencies revealed for TES: 13.5 (11.1–16.0)ms and TMS: 19.7 (12–29.5)ms, comprising ∼100% direct routes and for TMS mixed direct/indirect routes of L:23/50; R:14/50. Left/right latency decreases over 10 > 50 V for TES were: –1.4/–1.8 ms and over 10 > 50% for TMS: –1.7/–3.5 ms. Direct route TMS-TES latency differences were 1.88–4.30 ms. 95% MEP amplitudes ranges for TES were: L:0.26–22 mV; R:0.5–15 mV and TMS: L:0.9 – 9.1 mV; R:1.1–7.9 mV. Conclusion This is the first study to report normative data characterizing TES and TMS induced- trapezius MEPs in horses. The complex trapezius innervation leaves TES as the only reliable stimulation modality. Differences in latency times along the SAN route permit for estimation of the location of active motoneurons, which is of importance for clinical diagnostic purpose. SAN route lengths and latency times are governed by anatomical locations of motoneurons across C2-C5 segments. TES intensity-dependent reductions of trapezius MEP latencies are similar to limb muscles while MEP amplitudes between sides and between TES and TMS are not different. CCVs may reach 180 m/s.
Collapse
Affiliation(s)
- Sanne Lotte Journée
- Equine Diagnostics, Wyns, Netherlands
- Research Group of Comparative Physiology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Henricus Louis Journée
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Orthopedics, Amsterdam University Medical Center, Amsterdam, Netherlands
- *Correspondence: Henricus Louis Journée,
| | - Hanneke Irene Berends
- Department of Orthopedics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Steven Michael Reed
- Rood and Riddle Equine Hospital, Lexington, KY, United States
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Wilhelmina Bergmann
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Cathérine John Ghislaine Delesalle
- Research Group of Comparative Physiology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Herrero JL, Smith A, Mishra A, Markowitz N, Mehta AD, Bickel S. Inducing neuroplasticity through intracranial θ-burst stimulation in the human sensorimotor cortex. J Neurophysiol 2021; 126:1723-1739. [PMID: 34644179 PMCID: PMC8782667 DOI: 10.1152/jn.00320.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
The progress of therapeutic neuromodulation greatly depends on improving stimulation parameters to most efficiently induce neuroplasticity effects. Intermittent θ-burst stimulation (iTBS), a form of electrical stimulation that mimics natural brain activity patterns, has proved to efficiently induce such effects in animal studies and rhythmic transcranial magnetic stimulation studies in humans. However, little is known about the potential neuroplasticity effects of iTBS applied through intracranial electrodes in humans. This study characterizes the physiological effects of intracranial iTBS in humans and compare them with α-frequency stimulation, another frequently used neuromodulatory pattern. We applied these two stimulation patterns to well-defined regions in the sensorimotor cortex, which elicited contralateral hand muscle contractions during clinical mapping, in patients with epilepsy implanted with intracranial electrodes. Treatment effects were evaluated using oscillatory coherence across areas connected to the treatment site, as defined with corticocortical-evoked potentials. Our results show that iTBS increases coherence in the β-frequency band within the sensorimotor network indicating a potential neuroplasticity effect. The effect is specific to the sensorimotor system, the β band, and the stimulation pattern and outlasted the stimulation period by ∼3 min. The effect occurred in four out of seven subjects depending on the buildup of the effect during iTBS treatment and other patterns of oscillatory activity related to ceiling effects within the β band and to preexistent coherence within the α band. By characterizing the neurophysiological effects of iTBS within well-defined cortical networks, we hope to provide an electrophysiological framework that allows clinicians/researchers to optimize brain stimulation protocols which may have translational value.NEW & NOTEWORTHY θ-Burst stimulation (TBS) protocols in transcranial magnetic stimulation studies have shown improved treatment efficacy in a variety of neuropsychiatric disorders. The optimal protocol to induce neuroplasticity in invasive direct electrical stimulation approaches is not known. We report that intracranial TBS applied in human sensorimotor cortex increases local coherence of preexistent β rhythms. The effect is specific to the stimulation frequency and the stimulated network and outlasts the stimulation period by ∼3 min.
Collapse
Affiliation(s)
- Jose L Herrero
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Alexander Smith
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Akash Mishra
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
10
|
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237:118093. [PMID: 33940146 DOI: 10.1016/j.neuroimage.2021.118093] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The experimental manipulation of neural activity by neurostimulation techniques overcomes the inherent limitations of correlative recordings, enabling the researcher to investigate causal brain-behavior relationships. But only when stimulation and recordings are combined, the direct impact of the stimulation on neural activity can be evaluated. In humans, this can be achieved non-invasively through the concurrent combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). Concurrent TMS-fMRI allows the assessment of the neurovascular responses evoked by TMS with excellent spatial resolution and full-brain coverage. This enables the functional mapping of both local and remote network effects of TMS in cortical as well as deep subcortical structures, offering unique opportunities for basic research and clinical applications. The purpose of this review is to introduce the reader to this powerful tool. We will introduce the technical challenges and state-of-the art solutions and provide a comprehensive overview of the existing literature and the available experimental approaches. We will highlight the unique insights that can be gained from concurrent TMS-fMRI, including the state-dependent assessment of neural responsiveness and inter-regional effective connectivity, the demonstration of functional target engagement, and the systematic evaluation of stimulation parameters. We will also discuss how concurrent TMS-fMRI during a behavioral task can help to link behavioral TMS effects to changes in neural network activity and to identify peripheral co-stimulation confounds. Finally, we will review the use of concurrent TMS-fMRI for developing TMS treatments of psychiatric and neurological disorders and suggest future improvements for further advancing the application of concurrent TMS-fMRI.
Collapse
Affiliation(s)
- Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany.
| | - Rathiga Varatheeswaran
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Fisher KM, Baker SN. A Re-evaluation of Whether Non-monosynaptic Homonymous H Reflex Facilitation Tests Propriospinal Circuits. Front Syst Neurosci 2021; 15:641816. [PMID: 33833670 PMCID: PMC8021928 DOI: 10.3389/fnsys.2021.641816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The C3-C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3-C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7-C8) rather than propriospinal (C3-C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.
Collapse
Affiliation(s)
- Karen M. Fisher
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N. Baker
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Extensive Cortical Convergence to Primate Reticulospinal Pathways. J Neurosci 2021; 41:1005-1018. [PMID: 33268548 PMCID: PMC7880280 DOI: 10.1523/jneurosci.1379-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Early evolution of the motor cortex included development of connections to brainstem reticulospinal neurons; these projections persist in primates. In this study, we examined the organization of corticoreticular connections in five macaque monkeys (one male) using both intracellular and extracellular recordings from reticular formation neurons, including identified reticulospinal cells. Synaptic responses to stimulation of different parts of primary motor cortex (M1) and supplementary motor area (SMA) bilaterally were assessed. Widespread short latency excitation, compatible with monosynaptic transmission over fast-conducting pathways, was observed, as well as longer latency responses likely reflecting a mixture of slower monosynaptic and oligosynaptic pathways. There was a high degree of convergence: 56% of reticulospinal cells with input from M1 received projections from M1 in both hemispheres; for SMA, the equivalent figure was even higher (70%). Of reticulospinal neurons with input from the cortex, 78% received projections from both M1 and SMA (regardless of hemisphere); 83% of reticulospinal cells with input from M1 received projections from more than one of the tested M1 sites. This convergence at the single cell level allows reticulospinal neurons to integrate information from across the motor areas of the cortex, taking account of the bilateral motor context. Reticulospinal connections are known to strengthen following damage to the corticospinal tract, such as after stroke, partially contributing to functional recovery. Extensive corticoreticular convergence provides redundancy of control, which may allow the cortex to continue to exploit this descending pathway even after damage to one area.SIGNIFICANCE STATEMENT The reticulospinal tract (RST) provides a parallel pathway for motor control in primates, alongside the more sophisticated corticospinal system. We found extensive convergent inputs to primate reticulospinal cells from primary and supplementary motor cortex bilaterally. These redundant connections could maintain transmission of voluntary commands to the spinal cord after damage (e.g., after stroke or spinal cord injury), possibly assisting recovery of function.
Collapse
|
13
|
Alibazi RJ, Pearce AJ, Rostami M, Frazer AK, Brownstein C, Kidgell DJ. Determining the Intracortical Responses After a Single Session of Aerobic Exercise in Young Healthy Individuals: A Systematic Review and Best Evidence Synthesis. J Strength Cond Res 2021; 35:562-575. [PMID: 33201155 DOI: 10.1519/jsc.0000000000003884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Alibazi, RJ, Pearce, AJ, Rostami, M, Frazer, AK, Brownstein, C, and Kidgell, DJ. Determining the intracortical responses after a single session of aerobic exercise in young healthy individuals: a systematic review and best evidence synthesis. J Strength Cond Res 35(2): 562-575, 2021-A single bout of aerobic exercise (AE) may induce changes in the excitability of the intracortical circuits of the primary motor cortex (M1). Similar to noninvasive brain stimulation techniques, such as transcranial direct current stimulation, AE could be used as a priming technique to facilitate motor learning. This review examined the effect of AE on modulating intracortical excitability and inhibition in human subjects. A systematic review, according to PRISMA guidelines, identified studies by database searching, hand searching, and citation tracking between inception and the last week of February 2020. Methodological quality of included studies was determined using the Downs and Black quality index and Cochrane Collaboration of risk of bias tool. Data were synthesized and analyzed using best-evidence synthesis. There was strong evidence for AE not to change corticospinal excitability and conflicting evidence for increasing intracortical facilitation and reducing silent period and long-interval cortical inhibition. Aerobic exercise did reduce short-interval cortical inhibition, which suggests AE modulates the excitability of the short-latency inhibitory circuits within the M1; however, given the small number of included studies, it remains unclear how AE affects all circuits. In light of the above, AE may have important implications during periods of rehabilitation, whereby priming AE could be used to facilitate motor learning.
Collapse
Affiliation(s)
- Razie J Alibazi
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Mohamad Rostami
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; and
| | - Ashlyn K Frazer
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Callum Brownstein
- University of Lyon, University Jean Monnet Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Dawson J Kidgell
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Journée SL, Journée HL, Berends HI, Reed SM, de Bruijn CM, Delesalle CJG. Comparison of Muscle MEPs From Transcranial Magnetic and Electrical Stimulation and Appearance of Reflexes in Horses. Front Neurosci 2020; 14:570372. [PMID: 33122992 PMCID: PMC7571265 DOI: 10.3389/fnins.2020.570372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Transcranial electrical (TES) and magnetic stimulation (TMS) are both used for assessment of the motor function of the spinal cord in horses. Muscular motor evoked potentials (mMEP) were compared intra-individually for both techniques in five healthy horses. mMEPs were measured twice at increasing stimulation intensity steps over the extensor carpi radialis (ECR), tibialis cranialis (TC), and caninus muscles. Significance was set at p < 0.05. To support the hypothesis that both techniques induce extracranially elicited mMEPs, literature was also reviewed. Results Both techniques show the presence of late mMEPs below the transcranial threshold appearing as extracranially elicited startle responses. The occurrence of these late mMEPs is especially important for interpretation of TMS tracings when coil misalignment can have an additional influence. Mean transcranial motor latency times (MLT; synaptic delays included) and conduction velocities (CV) of the ECR and TC were significantly different between both techniques: respectively, 4.2 and 5.5 ms (MLT TMS --MLT TES ), and -7.7 and -9.9 m/s (CV TMS -CV TES ). TMS and TES show intensity-dependent latency decreases of, respectively, -2.6 (ECR) and -2.7 ms (TC)/30% magnetic intensity and -2.6 (ECR) and -3.2 (TC) ms/30V. When compared to TMS, TES shows the lowest coefficients of variation and highest reproducibility and accuracy for MLTs. This is ascribed to the fact that TES activates a lower number of cascaded interneurons, allows for multipulse stimulation, has an absence of coil repositioning errors, and has less sensitivity for varying degrees of background muscle tonus. Real axonal conduction times and conduction velocities are most closely approximated by TES. Conclusion Both intracranial and extracranial mMEPs inevitably carry characteristics of brainstem reflexes. To avoid false interpretations, transcranial mMEPs can be identified by a stepwise latency shortening of 15-20 ms when exceeding the transcranial motor threshold at increasing stimulation intensities. A ring block around the vertex is advised to reduce interference by extracranial mMEPs. mMEPs reflect the functional integrity of the route along the brainstem nuclei, extrapyramidal motor tracts, propriospinal neurons, and motoneurons. The corticospinal tract appears subordinate in horses. TMS and TES are interchangeable for assessing the functional integrity of motor functions of the spinal cord. However, TES reveals significantly shorter MLTs, higher conduction velocities, and better reproducibility.
Collapse
Affiliation(s)
- Sanne Lotte Journée
- Equine Diagnostics, Wyns, Netherlands.,Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Henricus Louis Journée
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Orthopedics, University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke Irene Berends
- Department of Orthopedics, University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Steven Michael Reed
- Rood & Riddle Equine Hospital, Lexington, KY, United States.,M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington KY, United States
| | | | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Kurz A, Xu W, Wiegel P, Leukel C, N. Baker S. Non-invasive assessment of superficial and deep layer circuits in human motor cortex. J Physiol 2019; 597:2975-2991. [PMID: 31045242 PMCID: PMC6636705 DOI: 10.1113/jp277849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The first indirect (I) corticospinal volley from stimulation of the motor cortex consists of two parts: one that originates from infragranular layer 5 and a subsequent part with a delay of 0.6 ms to which supragranular layers contribute. Non-invasive probing of these two parts was performed in humans using a refined electrophysiological method involving transcranial magnetic stimulation and peripheral nerve stimulation. Activity modulation of these two parts during a sensorimotor discrimination task was consistent with previous results in monkeys obtained with laminar recordings. ABSTRACT Circuits in superficial and deep layers play distinct roles in cortical computation, but current methods to study them in humans are limited. Here, we developed a novel approach for non-invasive assessment of layer-specific activity in the human motor cortex. We first conducted brain slice and in vivo experiments on monkey motor cortex to investigate the output timing from layer 5 (including corticospinal neurons) following extracellular stimulation. Neuron responses contained cyclical waves. The first wave was composed of two parts: the earliest part originated only from stimulation of layer 5; after 0.6 ms, stimuli to superficial layers 2/3 could also contribute. In healthy humans we then assessed different parts of the first corticospinal volley elicited by transcranial magnetic stimulation (TMS), by interacting TMS with stimulation of the median nerve generating an H-reflex. By adjusting the delay between stimuli, we could assess the earliest volley evoked by TMS, and the part 0.6 ms later. Measurements were made while subjects performed a visuo-motor discrimination task, which has been previously shown in monkey to modulate superficial motor cortical cells selectively depending on task difficulty. We showed a similar selective modulation of the later part of the TMS volley, as expected if this part of the volley is sensitive to superficial cortical excitability. We conclude that it is possible to segregate different cortical circuits which may refer to different motor cortex layers in humans, by exploiting small time differences in the corticospinal volleys evoked by non-invasive stimulation.
Collapse
Affiliation(s)
- Alexander Kurz
- Department of Sport ScienceUniversity of FreiburgFreiburg79117Germany
- Bernstein Center FreiburgUniversity of FreiburgFreiburg79104Germany
| | - Wei Xu
- Medical SchoolInstitute of NeuroscienceNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| | - Patrick Wiegel
- Department of Sport ScienceUniversity of FreiburgFreiburg79117Germany
- Bernstein Center FreiburgUniversity of FreiburgFreiburg79104Germany
| | - Christian Leukel
- Department of Sport ScienceUniversity of FreiburgFreiburg79117Germany
- Bernstein Center FreiburgUniversity of FreiburgFreiburg79104Germany
| | - Stuart N. Baker
- Medical SchoolInstitute of NeuroscienceNewcastle UniversityNewcastle upon TyneNE2 4HHUK
| |
Collapse
|
16
|
Crossover Phenomena in Motor Evoked Potentials During Intraoperative Neurophysiological Monitoring of Cranial Surgeries. J Clin Neurophysiol 2019; 36:236-241. [PMID: 30893247 DOI: 10.1097/wnp.0000000000000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Transcranial motor evoked potentials (TcMEPs) are used to assess the corticospinal tract during surgery. Transcranial motor evoked potentials are elicited by preferentially activating the anode over the target cortex. Crossover occurs when stimulation also induces activation of ipsilateral motor evoked responses. These responses are believed to be generated by activation of corticospinal tract on more caudal neural structures. The presence of cross activation poses a problem in craniotomy surgeries because activation of neural structures occurs distal to the area of interest leading to false negatives. Eliminating crossover may lead to activation of the motor pathway proximal to the surgical site, thus potentially reducing false-negative responses. There are no data on how often crossover signals occur or the conditions in which they take place. This study examines the frequency of crossover, the surgical procedures in which they occur, and their stimulation parameters. METHODS We reviewed all the TcMEP data files for intracranial procedures performed in 2016 at Keck Hospital of USC. We recorded demographic information about the surgical side, lobe, diagnosis, age, and sex. Only baseline TcMEPs were analyzed. Crossover responses were deemed present if recorded amplitudes were greater than 25μv on the ipsilateral side. We evaluated the rate of crossover presence, the lowest voltage associated with crossover, the highest voltage without crossover, if crossover resolved, and the last muscles to remain present when crossover is eliminated. Transcranial motor evoked potentials were divided into four groups. Group A: crossover present and was not resolved, group B1: crossover present but resolved with desired signals, group B2: no crossover seen with desired signals in both limbs, and group C: crossover resolved with loss of signals in either limb. The Difference between lowest amplitude with crossover and highest amplitude without crossover was obtained for each patient, and the mean of this difference was calculated using paired t-test. RESULTS We analyzed 186 TcMEPs. Forty-four TcMEPs were in group A, 52 in B1, 68 in B2, and 22 TcMEPs were in group C. Of total crossovers (118), 63% resolved at baseline, whereas 37% did not resolve. The mean difference between minimum value with crossover and maximum value without crossover was 50 V (P < 0.0001). In five TcMEPs, this difference was 0 and the median was 250 V. There was no significant difference between surgical site, stimulation side, pathology, or sex between crossover (A) and noncrossover (B + C) groups. There was a significant association found between age group ≤50 years versus >50 years and being in crossover versus noncrossover groups (P = 0.01). For 95% of the cases in group C, the last muscles to stay were hand muscles. CONCLUSIONS Transcranial motor evoked potential crossover may pose a problem during surgeries leading to false-negative results. Crossover is a frequent phenomenon that should not be overlooked. Stimulation intensity is the main factor contributing to the reduction of crossover. Crossover can be reduced in most TcMEPs performed (63%) leading to adequate monitoring in 76% of TcMEPs. Despite best efforts, there are still one quarter (24%) of TcMEPs where crossover cannot be eliminated. Newer strategies should be sought to reduce crossover. Teams should focus their efforts on reducing crossover of TcMEPs to make monitoring of intracranial surgeries more reliable.
Collapse
|
17
|
Chen JH, Gonzalez AA, Shilian P, Cheongsiatmoy J. An Alternative Transcranial Motor Evoked Potential Montage to Minimize Ipsilateral "Crossover" Motor Responses. Neurodiagn J 2018; 58:218-225. [PMID: 30388936 DOI: 10.1080/21646821.2018.1532198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transcranial electrical motor evoked potential (TcMEP) is a modality utilized in intraoperative neurophysiological monitoring to assess the integrity of the corticospinal tract. Traditionally, TcMEPs are obtained by anodal stimulation of the scalp over the motor cortex of the selected hemisphere and referenced to the contralateral hemisphere. Subsequent compound motor action potential responses (CMAPs) are recorded at various muscles. The muscle responses of interest are usually those recorded in the limb contralateral to the hemisphere of stimulation. However, TcMEPs may elicit simultaneous muscle responses in the limbs ipsilateral to the hemisphere of stimulation, otherwise defined as "crossover" responses. Crossover TcMEPs are thought to be generated when electrical stimulation reaches the corticospinal tract at intracranial structures as deep as the medullary pyramids. If electrical stimulation penetrates deeper than the at-risk structures, false negatives motor evoked potential monitoring may occur. Therefore, in surgeries where cerebral cortical structures may be at risk, TcMEPs may be elicited so that contralateral CMAP responses are present without crossover responses. We present three cases using an alternative TcMEP montage in which anodal stimulation of the target hemisphere is referenced to Fpz at midline. Compared with the C3-C4/C4-C3 montage, crossover responses are minimized with the modified montage. C3-Fpz/C4-Fpz TcMEP stimulation may be a potential tool to implement in certain intraoperative neuromonitoring cases.
Collapse
Affiliation(s)
- Jonathan H Chen
- a Division of Surgical Neurophysiology Keck Hospital of University of Southern California , Los Angeles , California
| | - Andres A Gonzalez
- a Division of Surgical Neurophysiology Keck Hospital of University of Southern California , Los Angeles , California
| | - Parastou Shilian
- a Division of Surgical Neurophysiology Keck Hospital of University of Southern California , Los Angeles , California
| | - Justin Cheongsiatmoy
- a Division of Surgical Neurophysiology Keck Hospital of University of Southern California , Los Angeles , California
| |
Collapse
|
18
|
Multipulse transcranial electrical stimulation (TES): normative data for motor evoked potentials in healthy horses. BMC Vet Res 2018; 14:121. [PMID: 29615034 PMCID: PMC5883272 DOI: 10.1186/s12917-018-1447-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/27/2018] [Indexed: 12/04/2022] Open
Abstract
Background There are indications that transcranial electrical stimulation (TES) assesses the motor function of the spinal cord in horses in a more sensitive and reproducible fashion than transcranial magnetic stimulation (TMS). However, no normative data of TES evoked motor potentials (MEP) is available. Results In this prospective study normative data of TES induced MEP wave characteristics (motor latency times (MLT); amplitude and waveform) was obtained from the extensor carpi radialis (ECR) and tibial cranialis (TC) muscles in a group of healthy horses to create a reference frame for functional diagnostic purposes. For the 12 horses involved in the study 95% confidence intervals for MLTs were 16.1–22.6 ms and 31.9–41.1 ms for ECR and TC muscles respectively. Intra-individual coefficients of variation (CV) and mean of MLTs were: ECR: 2.2–8,2% and 4.5% and TC: 1.4–6.3% and 3.5% respectively. Inter-individual CVs for MLTs were higher, though below 10% on all occasions. The mean ± sd of MEP amplitudes was respectively 3.61 ± 2.55 mV (ECR muscle left) and 4.53 ± 3.1 mV (right) and 2.66 ± 2.22 mV (TC muscle left) and 2.55 ± 1.85 mV (right). MLTs showed no significant left versus right differences. All MLTs showed significant (p < 0.05) voltage dependent decreases with slope coefficients of linear regression for ECR: − 0.049; − 0.061 ms/V and TC: − 0.082; − 0.089 ms/V (left; right). There was a positive correlation found between height at withers and MLTs in all 4 muscle groups. Finally, reliable assessment of MEP characteristics was for all muscle groups restricted to a transcranial time window of approximately 15–19 ms. Conclusions TES is a novel and sensitive technique to assess spinal motor function in horses. It is easy applicable and highly reproducible. This study provides normative data in healthy horses on TES induced MEPs in the extensor carpi radialis and tibialis cranialis muscles bilaterally. No significant differences between MLTs of the left and right side could be demonstrated. A significant effect of stimulation voltage on MLTs was found. No significant effect of height at the withers could be found based upon the results of the current study. A study in which both TMS and TES are applied on the same group of horses is needed.
Collapse
|
19
|
Soteropoulos DS. Corticospinal gating during action preparation and movement in the primate motor cortex. J Neurophysiol 2018; 119:1538-1555. [PMID: 29357454 PMCID: PMC5966733 DOI: 10.1152/jn.00639.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During everyday actions there is a need to be able to withhold movements until the most appropriate time. This motor inhibition is likely to rely on multiple cortical and subcortical areas, but the primary motor cortex (M1) is a critical component of this process. However, the mechanisms behind this inhibition are unclear, particularly the role of the corticospinal system, which is most often associated with driving muscles and movement. To address this, recordings were made from identified corticospinal (PTN, n = 94) and corticomotoneuronal (CM, n = 16) cells from M1 during an instructed delay reach-to-grasp task. The task involved the animals withholding action for ~2 s until a GO cue, after which they were allowed to reach and perform the task for a food reward. Analysis of the firing of cells in M1 during the delay period revealed that, as a population, non-CM PTNs showed significant suppression in their activity during the cue and instructed delay periods, while CM cells instead showed a facilitation during the preparatory delay. Analysis of cell activity during movement also revealed that a substantial minority of PTNs (27%) showed suppressed activity during movement, a response pattern more suited to cells involved in withholding rather than driving movement. These results demonstrate the potential contributions of the M1 corticospinal system to withholding of actions and highlight that suppression of activity in M1 during movement preparation is not evenly distributed across different neural populations. NEW & NOTEWORTHY Recordings were made from identified corticospinal (PTN) and corticomotoneuronal (CM) cells during an instructed delay task. Activity of PTNs as a population was suppressed during the delay, in contrast to CM cells, which were facilitated. A minority of PTNs showed a rate profile that might be expected from inhibitory cells and could suggest that they play an active role in action suppression, most likely through downstream inhibitory circuits.
Collapse
Affiliation(s)
- Demetris S Soteropoulos
- Institute of Neuroscience, Newcastle University Medical School , Newcastle upon Tyne , United Kingdom
| |
Collapse
|
20
|
Jankowska E. Spinal control of motor outputs by intrinsic and externally induced electric field potentials. J Neurophysiol 2017; 118:1221-1234. [PMID: 28539396 DOI: 10.1152/jn.00169.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Despite numerous studies on spinal neuronal systems, several issues regarding their role in motor behavior remain unresolved. One of these issues is how electric fields associated with the activity of spinal neurons influence the operation of spinal neuronal networks and how effects of these field potentials are combined with other means of modulating neuronal activity. Another closely related issue is how external electric field potentials affect spinal neurons and how they can be used for therapeutic purposes such as pain relief or recovery of motor functions by transspinal direct current stimulation. Nevertheless, progress in our understanding of the spinal effects of electric fields and their mechanisms has been made over the last years, and the aim of the present review is to summarize the recent findings in this field.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
21
|
Kirton A. Advancing non-invasive neuromodulation clinical trials in children: Lessons from perinatal stroke. Eur J Paediatr Neurol 2017; 21:75-103. [PMID: 27470654 DOI: 10.1016/j.ejpn.2016.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
Abstract
Applications of non-invasive brain stimulation including therapeutic neuromodulation are expanding at an alarming rate. Increasingly established scientific principles, including directional modulation of well-informed cortical targets, are advancing clinical trial development. However, high levels of disease burden coupled with zealous enthusiasm may be getting ahead of rational research and evidence. Experience is limited in the developing brain where additional issues must be considered. Properly designed and meticulously executed clinical trials are essential and required to advance and optimize the potential of non-invasive neuromodulation without risking the well-being of children and families. Perinatal stroke causes most hemiplegic cerebral palsy and, as a focal injury of defined timing in an otherwise healthy brain, is an ideal human model of developmental plasticity. Advanced models of how the motor systems of young brains develop following early stroke are affording novel windows of opportunity for neuromodulation clinical trials, possibly directing neuroplasticity toward better outcomes. Reviewing the principles of clinical trial design relevant to neuromodulation and using perinatal stroke as a model, this article reviews the current and future issues of advancing such trials in children.
Collapse
Affiliation(s)
- Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, 2888 Shaganappi Trail NW, Calgary, AB T3B6A8, Canada.
| |
Collapse
|
22
|
Turton A. Mechanisms for Recovery of Hand and Arm Function after Stroke: A Review of Evidence from Studies Using Non-Invasive Investigative Techniques. Br J Occup Ther 2016. [DOI: 10.1177/030802269806100804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms for recovery of motor function after stroke are largely unknown. New non-invasive techniques of Positron Emission Tomography (PET) and Transcranial Magnetic Stimulation (TMS) have provided evidence for changes within the cortical motor areas and descending pathways after stroke in adult subjects. Reorganisation of the corticospinal tract originating from the damaged hemisphere is important for recovery of hand function. Some implications for occupational therapy are discussed.
Collapse
|
23
|
Seo H, Schaworonkow N, Jun SC, Triesch J. A multi-scale computational model of the effects of TMS on motor cortex. F1000Res 2016; 5:1945. [PMID: 28408973 PMCID: PMC5373428 DOI: 10.12688/f1000research.9277.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
The detailed biophysical mechanisms through which transcranial magnetic stimulation (TMS) activates cortical circuits are still not fully understood. Here we present a multi-scale computational model to describe and explain the activation of different pyramidal cell types in motor cortex due to TMS. Our model determines precise electric fields based on an individual head model derived from magnetic resonance imaging and calculates how these electric fields activate morphologically detailed models of different neuron types. We predict neural activation patterns for different coil orientations consistent with experimental findings. Beyond this, our model allows us to calculate activation thresholds for individual neurons and precise initiation sites of individual action potentials on the neurons’ complex morphologies. Specifically, our model predicts that cortical layer 3 pyramidal neurons are generally easier to stimulate than layer 5 pyramidal neurons, thereby explaining the lower stimulation thresholds observed for I-waves compared to D-waves. It also shows differences in the regions of activated cortical layer 5 and layer 3 pyramidal cells depending on coil orientation. Finally, it predicts that under standard stimulation conditions, action potentials are mostly generated at the axon initial segment of cortical pyramidal cells, with a much less important activation site being the part of a layer 5 pyramidal cell axon where it crosses the boundary between grey matter and white matter. In conclusion, our computational model offers a detailed account of the mechanisms through which TMS activates different cortical pyramidal cell types, paving the way for more targeted application of TMS based on individual brain morphology in clinical and basic research settings.
Collapse
Affiliation(s)
- Hyeon Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Korea, South
| | | | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Korea, South
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Fitzpatrick SC, Luu BL, Butler JE, Taylor JL. More conditioning stimuli enhance synaptic plasticity in the human spinal cord. Clin Neurophysiol 2016; 127:724-731. [DOI: 10.1016/j.clinph.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|
25
|
Journée SL, Journée HL, de Bruijn CM, Delesalle CJG. Design and Optimization of a Novel Method for Assessment of the Motor Function of the Spinal Cord by Multipulse Transcranial Electrical Stimulation in Horses. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Sclafani V, Simpson EA, Suomi SJ, Ferrari PF. Development of space perception in relation to the maturation of the motor system in infant rhesus macaques (Macaca mulatta). Neuropsychologia 2015; 70:429-41. [PMID: 25486636 PMCID: PMC5100747 DOI: 10.1016/j.neuropsychologia.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
To act on the environment, organisms must perceive object locations in relation to their body. Several neuroscientific studies provide evidence of neural circuits that selectively represent space within reach (i.e., peripersonal) and space outside of reach (i.e., extrapersonal). However, the developmental emergence of these space representations remains largely unexplored. We investigated the development of space coding in infant macaques and found that they exhibit different motor strategies and hand configurations depending on the objects' size and location. Reaching-grasping improved from 2 to 4 weeks of age, suggesting a broadly defined perceptual body schema at birth, modified by the acquisition and refinement of motor skills through early sensorimotor experience, enabling the development of a mature capacity for coding space.
Collapse
Affiliation(s)
- Valentina Sclafani
- Dipartimento di Neuroscienze, Università di Parma, Via Volturno 39 - 43100 Parma, Italy.
| | - Elizabeth A Simpson
- Dipartimento di Neuroscienze, Università di Parma, Via Volturno 39 - 43100 Parma, Italy; Eunice Kennedy Shiver National Institute of Child Health and Human Development, Laboratory of Comparative Ethology, Poolesville, MD, USA
| | - Stephen J Suomi
- Eunice Kennedy Shiver National Institute of Child Health and Human Development, Laboratory of Comparative Ethology, Poolesville, MD, USA
| | | |
Collapse
|
27
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1948] [Impact Index Per Article: 194.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
28
|
Pashut T, Magidov D, Ben-Porat H, Wolfus S, Friedman A, Perel E, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation. Front Cell Neurosci 2014; 8:145. [PMID: 24917788 PMCID: PMC4042461 DOI: 10.3389/fncel.2014.00145] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.
Collapse
Affiliation(s)
- Tamar Pashut
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dafna Magidov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Hana Ben-Porat
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel
| | - Shuki Wolfus
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Alex Friedman
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Eli Perel
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Michal Lavidor
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Psychology, Bar-Ilan University Ramat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Yosef Yeshurun
- Department of Physics, Bar-Ilan University Ramat-Gan, Israel
| | - Alon Korngreen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
29
|
BAUER PRISCAR, KALITZIN STILIYAN, ZIJLMANS MAEIKE, SANDER JOSEMIRW, VISSER GERHARDH. CORTICAL EXCITABILITY AS A POTENTIAL CLINICAL MARKER OF EPILEPSY: A REVIEW OF THE CLINICAL APPLICATION OF TRANSCRANIAL MAGNETIC STIMULATION. Int J Neural Syst 2014; 24:1430001. [DOI: 10.1142/s0129065714300010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used for safe, noninvasive probing of cortical excitability (CE). We review 50 studies that measured CE in people with epilepsy. Most showed cortical hyperexcitability, which can be corrected with anti-epileptic drug treatment. Several studies showed that decrease of CE after epilepsy surgery is predictive of good seizure outcome. CE is a potential biomarker for epilepsy. Clinical application may include outcome prediction of drug treatment and epilepsy surgery.
Collapse
Affiliation(s)
- PRISCA R. BAUER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - STILIYAN KALITZIN
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| | - MAEIKE ZIJLMANS
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - JOSEMIR W. SANDER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
- Epilepsy Society, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - GERHARD H. VISSER
- SEIN - Epilepsy Institute in the Netherlands Foundation, Heemstede, The Netherlands, P.O. Box 540, 2130 AM Hoofddorp, The Netherlands
| |
Collapse
|
30
|
Lakhani B, Bolton DAE, Miyasike-Dasilva V, Vette AH, McIlroy WE. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study. Behav Brain Res 2013; 261:177-84. [PMID: 24374169 DOI: 10.1016/j.bbr.2013.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/11/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
Abstract
'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Collapse
Affiliation(s)
- Bimal Lakhani
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada; Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada.
| | - David A E Bolton
- School of Psychology, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| | - William E McIlroy
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada; Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada; School of Psychology, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
31
|
Deng ZD, Lisanby SH, Peterchev AV. Controlling stimulation strength and focality in electroconvulsive therapy via current amplitude and electrode size and spacing: comparison with magnetic seizure therapy. J ECT 2013; 29:325-35. [PMID: 24263276 PMCID: PMC3905244 DOI: 10.1097/yct.10.1097/yct.0b013e3182a4b4a7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. METHODS Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. RESULTS By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. CONCLUSIONS The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
Collapse
Affiliation(s)
- Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Sarah H. Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Biomedical Engineering and Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Entakli J, Bonnard M, Chen S, Berton E, De Graaf JB. TMS reveals a direct influence of spinal projections from human SMAp on precise force production. Eur J Neurosci 2013; 39:132-40. [PMID: 24164635 DOI: 10.1111/ejn.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Abstract
The corticospinal (CS) system plays an important role in fine motor control, especially in precision grip tasks. Although the primary motor cortex (M1) is the main source of the CS projections, other projections have been found, especially from the supplementary motor area proper (SMAp). To study the characteristics of these CS projections from SMAp, we compared muscle responses of an intrinsic hand muscle (FDI) evoked by stimulation of human M1 and SMAp during an isometric static low-force control task. Subjects were instructed to maintain a small cursor on a target force curve by applying a pressure with their right precision grip on a force sensor. Neuronavigated transcranial magnetic stimulation was used to stimulate either left M1 or left SMAp with equal induced electric field values at the defined cortical targets. The results show that the SMAp stimulation evokes reproducible muscle responses with similar latencies and amplitudes as M1 stimulation, and with a clear and significant shorter silent period. These results suggest that (i) CS projections from human SMAp are as rapid and efficient as those from M1, (ii) CS projections from SMAp are directly involved in control of the excitability of spinal motoneurons and (iii) SMAp has a different intracortical inhibitory circuitry. We conclude that human SMAp and M1 both have direct influence on force production during fine manual motor tasks.
Collapse
Affiliation(s)
- Jonathan Entakli
- Institute of Movement Sciences, Aix-Marseille University, CNRS, ISM UMR 7287, 163 avenue de Luminy, Marseille Cedex 09, 13288, France
| | | | | | | | | |
Collapse
|
33
|
Nummenmaa A, McNab JA, Savadjiev P, Okada Y, Hämäläinen MS, Wang R, Wald LL, Pascual-Leone A, Wedeen VJ, Raij T. Targeting of white matter tracts with transcranial magnetic stimulation. Brain Stimul 2013; 7:80-4. [PMID: 24220599 DOI: 10.1016/j.brs.2013.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND TMS activations of white matter depend not only on the distance from the coil, but also on the orientation of the axons relative to the TMS-induced electric field, and especially on axonal bends that create strong local field gradient maxima. Therefore, tractography contains potentially useful information for TMS targeting. OBJECTIVE/METHODS Here, we utilized 1-mm resolution diffusion and structural T1-weighted MRI to construct large-scale tractography models, and localized TMS white matter activations in motor cortex using electromagnetic forward modeling in a boundary element model (BEM). RESULTS As expected, in sulcal walls, pyramidal cell axonal bends created preferred sites of activation that were not found in gyral crowns. The model agreed with the well-known coil orientation sensitivity of motor cortex, and also suggested unexpected activation distributions emerging from the E-field and tract configurations. We further propose a novel method for computing the optimal coil location and orientation to maximally stimulate a pre-determined axonal bundle. CONCLUSIONS Diffusion MRI tractography with electromagnetic modeling may improve spatial specificity and efficacy of TMS.
Collapse
Affiliation(s)
- Aapo Nummenmaa
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Jennifer A McNab
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Department of Radiology, Stanford University, CA, USA
| | - Peter Savadjiev
- Harvard Medical School, MA, USA; Brigham and Women's Hospital, MA, USA
| | - Yoshio Okada
- Harvard Medical School, MA, USA; Department of Neurology, Boston Children's Hospital, MA, USA
| | - Matti S Hämäläinen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MA, USA
| | - Ruopeng Wang
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Lawrence L Wald
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MA, USA
| | - Alvaro Pascual-Leone
- Harvard Medical School, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, MA, USA
| | - Van J Wedeen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA
| | - Tommi Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA; Harvard Medical School, MA, USA.
| |
Collapse
|
34
|
Avanzino L, Pelosin E, Abbruzzese G, Bassolino M, Pozzo T, Bove M. Shaping Motor Cortex Plasticity Through Proprioception. Cereb Cortex 2013; 24:2807-14. [PMID: 23709641 DOI: 10.1093/cercor/bht139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie
| | - Elisa Pelosin
- Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, 16132 Genoa, Italy
| | - Giovanni Abbruzzese
- Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, 16132 Genoa, Italy
| | - Michela Bassolino
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, 16163 Genoa, Italy and
| | - Thierry Pozzo
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, 16163 Genoa, Italy and Institut Universitaire de France, INSERM, U1093, Cognition Action Plasticité sensori motrice, 21078 Dijon, France
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie
| |
Collapse
|
35
|
Abstract
Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain.
Collapse
|
36
|
Flavel SC, White JM, Todd G. Motor cortex and corticospinal excitability in humans with a history of illicit stimulant use. J Appl Physiol (1985) 2012; 113:1486-94. [PMID: 22961269 DOI: 10.1152/japplphysiol.00718.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illicit use of stimulant drugs such as methamphetamine, ecstasy, and cocaine is a current and growing problem throughout the world. The aim of the current study was to investigate the long-term effect of illicit stimulant use on human motor cortical and corticospinal circuitry. We hypothesized that individuals with a history of primarily methamphetamine and ecstasy use would exhibit altered corticospinal excitability and intracortical inhibition within motor cortex. The study involved 52 healthy adults (aged 26 ± 7 yr) comprising 26 abstinent stimulant users, 9 cannabis users, and 17 nondrug users. The experiment involved a routine urine drug screen, drug history questionnaire, neuropsychological assessment, and single- and paired-pulse transcranial magnetic stimulation (TMS) over motor cortex. EMG responses to stimulation [motor evoked potentials (MEPs)] were recorded from the contralateral first dorsal interosseus. At a given stimulus intensity, MEP area was significantly larger in abstinent stimulant users than in nondrug users during both relaxation (P = 0.045) and muscle contraction (P < 0.001). MEP latency was also significantly longer in abstinent stimulant users (P < 0.009), and they exhibited significantly greater muscle activity during performance of a given task (P = 0.004). However, resting motor threshold and the response to paired-pulse TMS were unaffected. The results suggest that abstinent stimulant users exhibit long-term changes in the excitability of motor cortical and corticospinal circuitry and muscle activity during movement. These changes may partly underlie anecdotal and objective reports of movement dysfunction in chronic stimulant users.
Collapse
Affiliation(s)
- Stanley C Flavel
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, South Australia, Australia
| | | | | |
Collapse
|
37
|
Fisher KM, Zaaimi B, Baker SN. Reticular formation responses to magnetic brain stimulation of primary motor cortex. J Physiol 2012; 590:4045-60. [PMID: 22674723 PMCID: PMC3464356 DOI: 10.1113/jphysiol.2011.226209] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of cerebral cortex is a popular technique for the non-invasive investigation of motor function. TMS is often assumed to influence spinal circuits solely via the corticospinal tract. We were interested in possible trans-synaptic effects of cortical TMS on the ponto-medullary reticular formation in the brainstem, which is the source of the reticulospinal tract and could also generate spinal motor output. We recorded from 210 single units in the reticular formation of three anaesthetized macaque monkeys whilst TMS was performed over primary motor cortex. Short latency responses were observed consistent with activation of a cortico-reticular pathway. However, we also demonstrated surprisingly powerful responses at longer latency, which often appeared at lower threshold than the earlier effects. These late responses seemed to be generated partly as a consequence of the sound click made by coil discharge, and changed little with coil location. This novel finding has implications for the design of future studies using TMS, as well as suggesting a means of non-invasively probing an otherwise inaccessible important motor centre.
Collapse
Affiliation(s)
- Karen M Fisher
- Institute of Neuroscience, Henry Wellcome Building, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | |
Collapse
|
38
|
Todd G, Rogasch NC, Türker KS. Transcranial magnetic stimulation and peristimulus frequencygram. Clin Neurophysiol 2012; 123:1002-9. [DOI: 10.1016/j.clinph.2011.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022]
|
39
|
Loporto M, McAllister CJ, Edwards MG, Wright DJ, Holmes PS. Prior action execution has no effect on corticospinal facilitation during action observation. Behav Brain Res 2012; 231:124-9. [DOI: 10.1016/j.bbr.2012.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/21/2022]
|
40
|
Daily muscle vibration amelioration of neural impairments of the soleus muscle during 2weeks of immobilization. J Electromyogr Kinesiol 2011; 21:1017-22. [DOI: 10.1016/j.jelekin.2011.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 06/28/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022] Open
|
41
|
Lack of evidence for direct corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci 2011; 31:11208-19. [PMID: 21813682 DOI: 10.1523/jneurosci.0257-11.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong experimental evidence implicates the corticospinal tract in voluntary control of the contralateral forelimb. Its potential role in controlling the ipsilateral forelimb is less well understood, although anatomical projections to ipsilateral spinal circuits are identified. We investigated inputs to motoneurons innervating hand and forearm muscles from the ipsilateral corticospinal tract using multiple methods. Intracellular recordings from 62 motoneurons in three anesthetized monkeys revealed no monosynaptic and only one weak oligosynaptic EPSP after stimulation of the ipsilateral corticospinal tract. Single stimulus intracortical microstimulation of the primary motor cortex (M1) in awake animals failed to produce any responses in ipsilateral muscles. Strong stimulation (>500 μA, single stimulus) of the majority of corticospinal axons at the medullary pyramids revealed only weak suppressions in ipsilateral muscles at longer latencies than the robust facilitations seen contralaterally. Spike-triggered averaging of ipsilateral muscle activity from M1 neural discharge (184 cells) did not reveal any postspike effects consistent with monosynaptic corticomotoneuronal connections. We also examined the activity of 191 M1 neurons during ipsilateral or contralateral "reach to precision grip" movements. Many cells (67%) modulated their activity during ipsilateral limb movement trials (compared with 90% with contralateral trials), but the timing of this activity was best correlated with weak muscle activity in the contralateral nonmoving arm. We conclude that, in normal adults, any inputs to forelimb motoneurons from the ipsilateral corticospinal tract are weak and indirect and that modulation of M1 cell firing seems to be related primarily to control of the contralateral limb.
Collapse
|
42
|
Romero JR, Ramirez DM, Aglio LS, Gugino LD. Brain mapping using transcranial magnetic stimulation. Neurosurg Clin N Am 2011; 22:141-52, vii. [PMID: 21435567 DOI: 10.1016/j.nec.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a novel brain stimulation technique that has advanced the understanding of brain physiology, and has diagnostic value as well as therapeutic potential for several neuropsychiatric disorders. The stimulation involves restricted cortical and subcortical regions, and, when used in combination with a visually guided technique, results in improved accuracy to target specific areas, which may also influence the outcome desired. This article reviews the principles underlying the mechanism of action of TMS, and discusses its use to obtain functional maps of the motor and visual cortex, including technical considerations for accuracy and reproducibility of mapping procedures.
Collapse
Affiliation(s)
- José Rafael Romero
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
43
|
Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes. Exp Brain Res 2011; 210:1-11. [DOI: 10.1007/s00221-011-2571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
44
|
Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: Influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 2011; 93:59-98. [DOI: 10.1016/j.pneurobio.2010.10.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 01/10/2023]
|
45
|
Yazdan-Shahmorad A, Kipke DR, Lehmkuhle MJ. Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex. Brain Stimul 2010; 4:228-41. [PMID: 22032738 DOI: 10.1016/j.brs.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Cortical electrical stimulation (CES) techniques are practical tools in neurorehabilitation that are currently being used to test models of functional recovery after neurologic injury. However, the mechanisms by which CES has therapeutic effects, are not fully understood. OBJECTIVE In this study, we investigated the effects of CES on unit activity of different neuronal elements in layers of rat primary motor cortex after the offset of stimulation. We evaluated the effects of monopolar CES pulse polarity (anodic-first versus cathodic-first) using various stimulation frequencies and amplitudes on unit activity after stimulation. METHODS A penetrating single shank silicon microelectrode array enabled us to span the entirety of six layer motor cortex allowing simultaneous electrophysiologic recordings from different depths after monopolar CES. Neural spiking activity before the onset and after the offset of CES was modeled using point processes fit to capture neural spiking dynamics as a function of extrinsic stimuli based on generalized linear model methods. RESULTS We found that neurons in lower layers have a higher probability of being excited after anodic CES. Conversely, neurons located in upper cortical layers have a higher probability of being excited after cathodic stimulation. The opposing effects observed following anodic versus cathodic stimulation in upper and lower layers were frequency- and amplitude-dependent. CONCLUSIONS The data demonstrates that the poststimulus changes in neural activity after manipulation of CES parameters changes according to the location (depth) of the recorded units in rat primary motor cortex. The most effective pulse polarity for eliciting action potentials after stimulation in lower layers was not as effective in upper layers. Likewise, lower amplitudes and frequencies of CES were more effective than higher amplitudes and frequencies for eliciting action potentials. These results have important implications in the context of maximizing efficacy of CES for neurorehabilitation and neuroprosthetic applications.
Collapse
Affiliation(s)
- Azadeh Yazdan-Shahmorad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
46
|
The use of botulinum toxin for the treatment of muscle spasticity in the first 2 years of life. Int J Rehabil Res 2010; 33:104-8. [PMID: 19574925 DOI: 10.1097/mrr.0b013e32832c1e91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although there are sound theoretical reasons for the use of botulinum toxin (Btx) as early as possible in the management of severe childhood muscle spasticity, the experience with its safety in children younger than 2 years of age is limited and information about its possible effects on the development and maturation of the human motor system is still scarce. This study discusses the rationale and the potential pitfalls of the use of Btx in the first 2 years of the child's life. It also reviews the currently available evidence on the efficacy and safety of Btx in this age group. It concludes by suggesting a framework for studies of the optimal time to start treatment of childhood spasticity with Btx.
Collapse
|
47
|
Petersen NC, Butler JE, Taylor JL, Gandevia SC. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function. Acta Physiol (Oxf) 2010; 198:403-16. [PMID: 20003100 DOI: 10.1111/j.1748-1716.2009.02066.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of the cortex. In addition, corticospinal cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output and the output from the motoneurone pool. For example, recent studies have revealed that the efficacy of the human corticospinal connection with motoneurones undergoes activity-dependent changes which influence the size of voluntary contractions. Hence, corticospinal drives must be sculpted continuously to compensate for the changing functional efficacy of the descending systems which activate the motoneurones. This highlights the need for proprioceptive monitoring of movements to ensure their accurate execution.
Collapse
Affiliation(s)
- N C Petersen
- Department of Exercise and Sport Sciences, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
48
|
Roth Y, Pell GS, Zangen A. Motor evoked potential latency, motor threshold and electric field measurements as indices of transcranial magnetic stimulation depth. Clin Neurophysiol 2009; 121:255-8; author reply 258-9. [PMID: 19815456 DOI: 10.1016/j.clinph.2009.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
49
|
Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway. J Neurosci 2009; 29:11708-16. [PMID: 19759317 DOI: 10.1523/jneurosci.2217-09.2009] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Repeated pairs of timed presynaptic and postsynaptic potentials cause lasting changes in efficacy of transmission at many synapses. The corticospinal tract is the major pathway controlling voluntary movement in humans, and corticospinal neurons have monosynaptic connections to motoneurons of many muscles. We hypothesized that corticospinal transmission in humans could be altered by delivering, to the corticospinal-motoneuronal synapses, timed pairs of presynaptic volleys (produced by cortical stimulation) and antidromic postsynaptic volleys (by peripheral nerve stimulation). To test corticospinal transmission, electrical cervicomedullary stimuli evoked motor responses [cervicomedullary motor-evoked potentials (CMEPs)] in biceps brachii before and for 1 h after conditioning with 50 paired cortical and peripheral nerve stimuli. Seven interstimulus intervals (ISIs) of conditioning stimulus pairs were tested on different days. With one ISI (+3 ms; cortical before peripheral nerve stimulation), CMEPs were significantly increased in size by 33 +/- 30% (mean +/- SD; n = 7) from 4 until 32 min after conditioning. With two other ISIs (-13 ms, +22 ms), CMEPs were decreased from approximately 30 until 60 min after conditioning (by 25 +/- 23% and 27 +/- 32%; n = 8). The remaining ISIs produced no changes. In a second study, subjects performed weak bilateral voluntary elbow flexion contractions before and after conditioning of the right elbow flexors. Conditioning ISIs that increased or decreased CMEPs similarly increased or decreased voluntary force and EMG on the right. Thus, depending on their timing, repeated paired stimuli can potentiate or depress corticospinal transmission, and these changes are functionally relevant. We suggest that bidirectional spike-timing-dependent plasticity can be induced at corticospinal-motoneuronal synapses and can influence voluntary motor output.
Collapse
|
50
|
Tamm AS, Lagerquist O, Ley AL, Collins DF. Chronotype influences diurnal variations in the excitability of the human motor cortex and the ability to generate torque during a maximum voluntary contraction. J Biol Rhythms 2009; 24:211-24. [PMID: 19465698 DOI: 10.1177/0748730409334135] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability to generate torque during a maximum voluntary contraction (MVC) changes over the day. The present experiments were designed to determine the influence of an individual's chronotype on this diurnal rhythm and on cortical, spinal, and peripheral mechanisms that may be related to torque production. After completing a questionnaire to determine chronotype, 18 subjects (9 morning people, 9 evening people) participated in 4 data collection sessions (at 09:00, 13:00, 17:00, and 21:00) over 1 day. We used magnetic stimulation of the cortex, electrical stimulation of the tibial nerve, electromyographic (EMG) recordings of muscle activity, and isometric torque measurements to evaluate the excitability of the motor cortex, the spinal cord, and the torque-generating capacity of the triceps surae (TS) muscles. We found that for morning people, cortical excitability was highest at 09:00, spinal excitability was highest at 21:00, and there were no significant differences in TS EMG or torque produced during MVCs over the day. In contrast, evening people showed parallel increases in cortical and spinal excitability over the day, and these were associated with increased TS EMG and MVC torque. There were no differences at the level of the muscle over the day between morning and evening people. We propose that the simultaneous increases in cortical and spinal excitability increased central nervous system drive to the muscles of evening people, thus increasing torque production over the day. These differences in cortical excitability and performance of a motor task between morning and evening people have implications for maximizing human performance and highlight the influence of chronotype on an individual's diurnal rhythms.
Collapse
Affiliation(s)
- Alexander S Tamm
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, Centre for Neuroscience, 6-40 General Services Building, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|