1
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
2
|
Dynamic Ca 2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca 2+ puffs. Cell Calcium 2017; 71:34-44. [PMID: 29604962 DOI: 10.1016/j.ceca.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
Abstract
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.
Collapse
|
3
|
Molecular Tattoo: Subcellular Confinement of Drug Effects. ACTA ACUST UNITED AC 2015; 22:548-558. [DOI: 10.1016/j.chembiol.2015.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/23/2023]
|
4
|
HAERI HH, HASHEMIANZADEH SM, MONAJJEMI M. TEMPERATURE EFFECTS ON THE STOCHASTIC GATING OF THE IP3R CALCIUM RELEASE CHANNEL: A NUMERICAL SIMULATION STUDY. J BIOL SYST 2011. [DOI: 10.1142/s0218339009003058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The importance of the kinetic study of endoplasmatic calcium ion channels in different intracellular processes is known today. Although there are few experimental reports on the temperature dependency of IP3R channel functions, we did not find any detailed theoretical study on this subject. For this purpose, we used a modified Gillespie algorithm to investigate the effect of temperature on the conditions affecting the open state of a single subunit of the De Young-Keizer (DYK) model. Population of the states was considered as the subject of fluctuation. Key features of the channel, such as bell-shaped dependency of open probability to the Calcium concentrations were modeled at different temperatures, too. The range of temperature variation was selected by regarding the experimental data on IP3R channel. By increasing the temperature, we had the very slow time domains (t: 10-1 s ) and the much slower time domains (t: 100 s ) in addition to other time domains, which could be seen as new time categories in InsP3R studies, and so the results were reported in these time domains, as well. We found out that increase in temperature declined the open probability in some concentrations of Ca 2+ and/or IP3. Also, by introducing the intensity graphs, broadening of the range of fluctuations and lowering of the order of frequency of fluctuations for the population of each state were observed due to the temperature increments. The temperature effects on the activation and inactivation states of the channel were studied in the framework of the reaction paths. We did not find similar paths at different time domains; several paths observed which were totally different all together. These time-dependent reaction paths are also depending on the Ca 2+ and/or the IP3 concentrations. So, one can predict the most probable reaction paths at different concentrations and temperatures and also determine which kind of the path it is; a path for closing the channel or a path to open it. Finally, the temperature effects on the calcium inhibited states were studied. We found out that calcium ion inhibitions were shifted to lower calcium concentration by increasing the temperature. The results suggests that inhibiting role of calcium is not only [ Ca 2+] and/or [IP3] dependent, but also temperature dependent.
Collapse
Affiliation(s)
- H. H. HAERI
- Department of Physical Chemistry, Tehran-Sharq Branch, Islamic Azad University, P.O. Box 33955/163, Tehran, Iran
| | - S. M. HASHEMIANZADEH
- College of Chemistry, Iran University of Science and Technology (IUST), P.O. Box 16765-163, Tehran, Iran
| | - M. MONAJJEMI
- Department of Physical Chemistry, Science and Research Campus, Islamic Azad University, P.O. Box 33955/163, Tehran, Iran
| |
Collapse
|
5
|
Sobczak K, Bangel-Ruland N, Leier G, Weber WM. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane. Methods 2009; 51:183-9. [PMID: 19963061 DOI: 10.1016/j.ymeth.2009.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 11/15/2022] Open
Abstract
Oocytes of the South African clawed frog Xenopus laevis are widely used as a heterologous expression system for the characterization of transport systems such as passive and active membrane transporters, receptors and a whole plethora of other membrane proteins originally derived from animal or plant tissues. The large size of the oocytes and the high degree of expression of exogenous mRNA or cDNA makes them an optimal tool, when compared with other expression systems such as yeast, Escherichia coli or eukaryotic cell lines, for the expression and functional characterization of membrane proteins. This easy to handle expression system is becoming increasingly attractive for pharmacological research. Commercially available automated systems that microinject mRNA into the oocytes and perform electrophysiological measurements fully automatically allow for a mass screening of new computer designed drugs to target membrane transport proteins. Yet, the oocytes possess a large variety of endogenous membrane transporters and it is absolutely mandatory to distinguish the endogenous transporters from the heterologous, expressed transport systems. Here, we review briefly the endogenous membrane transport systems of the oocytes.
Collapse
Affiliation(s)
- Katja Sobczak
- Institute of Animal Physiology, Westfalian Wilhelms-University, Hindenburgplatz 55, Muenster, Germany
| | | | | | | |
Collapse
|
6
|
Smith IF, Wiltgen SM, Parker I. Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 2008; 45:65-76. [PMID: 18639334 DOI: 10.1016/j.ceca.2008.06.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 01/14/2023]
Abstract
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of these compounds into smaller mammalian cells, permitting control of [IP3]i and cytosolic Ca2+ buffering. Here, we establish the human neuroblastoma SH-SY5Y cell line as an advantageous experimental system for imaging Ca2+ signaling, and characterize IP3-mediated Ca2+ signaling mechanisms in these cells. Flash photo-release of increasing amounts of i-IP3 evokes Ca2+ puffs that transition to waves, but intracellular loading of EGTA decouples release sites, allowing discrete puffs to be studied over a wide range of [IP3]. Puff activity persists for minutes following a single photo-release, pointing to a slow rate of i-IP3 turnover in these cells and suggesting that repetitive Ca2+ spikes with periods of 20-30s are not driven by oscillations in [IP3]. Puff amplitudes are independent of [IP3], whereas their frequencies increase with increasing photo-release. Puff sites in SH-SY5Y cells are not preferentially localized near the nucleus, but instead are concentrated close to the plasma membrane where they can be visualized by total internal reflection microscopy, offering the potential for unprecedented spatio-temporal resolution of Ca2+ puff kinetics.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, 1146 McGaugh Hall, Irvine, CA 92697-4545, United States.
| | | | | |
Collapse
|
7
|
Abstract
The second messenger inositol 1,4,5-trisphosphate (InsP3) functions in large part by liberating calcium ions from intracellular stores. This release process is highly non-linear and shows a regenerative characteristic that allows production of all-or-none calcium spikes which propagate as waves. However, at low concentrations of InsP3 an additional mode of calcium liberation is seen in Xenopus oocytes, transient 'puffs' of cytosolic calcium that last for a few hundred milliseconds and are restricted to within a few micrometres. Puffs are generally of similar size and the amount of calcium released (about 3 x 10(-18) mol) suggests that they arise through the concerted opening of several InsP3-gated calcium release channels. Puff sites are present at a density of about one per 30 microns 2 in the animal hemisphere of the oocyte. Each site functions autonomously, producing puffs at largely random intervals. We conclude that calcium puffs represent 'quantal' units of InsP3-evoked calcium liberation, which may result from local regenerative feedback by cytosolic calcium ions at functionally discrete release sites.
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California, Irvine 92717-4550, USA
| | | |
Collapse
|
8
|
Towards Imaging the Dynamics of Protein Signalling. IMAGING CELLULAR AND MOLECULAR BIOLOGICAL FUNCTIONS 2007. [DOI: 10.1007/978-3-540-71331-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Montag S, Krüger K, Madeja M, Speckmann EJ, Musshoff U. Contribution of the cytoskeleton and the phospholipase C signaling pathway to fluid stream-induced membrane currents. Cell Calcium 2004; 35:333-43. [PMID: 15036950 DOI: 10.1016/j.ceca.2003.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 06/26/2003] [Accepted: 09/15/2003] [Indexed: 10/26/2022]
Abstract
A fluid stream induced by a concentration clamp system evokes in Xenopus oocytes a deformation of the membrane which results in transient chloride currents of high amplitude (stream-evoked inward current, I(i,st)) during calcium-activated chloride current oscillations. The involvement of cytoskeleton elements and of components of the phospholipase C-dependent signaling pathway on the generation of the I(i,st) were investigated. Incubation of the oocytes with cytoskeleton-disrupting agents exerted no effects on generation of the I(i,st), suggesting that the mechanotransduction is not mediated by these structures. The fluid stream induced an elevation of the submembraneous calcium concentration, as measured by an increase of Fluo-4-mediated fluorescence after the stimulus. Lowering the intracellular calcium concentration by injection of calcium chelators or depleting inositol 1,4,5-triphosphate (InsP(3))-sensitive calcium stores by blockers of the calcium pumps suppressed the generation of the I(i,st) in most cases. Furthermore, the phospholipase C inhibitor U73122 reversibly blocked the I(i,st). The results suggest that the fluid stream leads to a membrane stretch which modulates directly or indirectly the activity of a membrane-bound phospholipase C. The phospholipase C transiently elevates the InsP(3) concentration, in turn releasing calcium from InsP(3)-sensitive internal calcium stores, thus evoking an enhanced calcium-sensitive chloride current.
Collapse
Affiliation(s)
- Sebastian Montag
- Department of Medicine, Institute of Physiology, University of Muenster, Robert-Koch-Str. 27a, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
10
|
Dawson AP, Lea EJA, Irvine RF. Kinetic model of the inositol trisphosphate receptor that shows both steady-state and quantal patterns of Ca2+ release from intracellular stores. Biochem J 2003; 370:621-9. [PMID: 12479792 PMCID: PMC1223205 DOI: 10.1042/bj20021289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 12/04/2002] [Accepted: 12/13/2002] [Indexed: 11/17/2022]
Abstract
The release of Ca(2+) from intracellular stores via InsP(3) receptors shows anomalous kinetics. Successive additions of low concentrations of InsP(3) cause successive rapid transients of Ca(2+) release. These quantal responses have been ascribed to all-or-none release from stores with differing sensitivities to InsP(3) or, alternatively, to a steady-state mechanism where complex kinetic properties of the InsP(3) receptor allow partial emptying of all the stores. We present here an adaptive model of the InsP(3) receptor that can show either pattern, depending on the imposed experimental conditions. The model proposes two interconvertible conformational states of the receptor: one state binds InsP(3) rapidly, but with low affinity, whereas the other state binds slowly, but with high affinity. The model shows repetitive increments of Ca(2+) release in the absence of a Ca(2+) gradient, but more pronounced incremental behaviour when released Ca(2+) builds up at the mouth of the channel. The sensitivity to Ins P (3) is critically dependent on the density of InsP(3) receptors, so that different stores can respond to different concentration ranges of Ins P (3). Since the model generates very high Hill coefficients (h approximately 7), it allows all-or-none release of Ca(2+) from stores of differing receptor density, but questions the validity of the use of h values as a guide to the number of InsP(3) molecules needed to open the channel. The model presents a mechanism for terminating Ca(2+) release in the presence of positive feedback from released Ca(2+), thereby providing an explanation of why elementary Ca(2+) signals ('blips' and 'puffs') do not inevitably turn into regenerative waves.
Collapse
Affiliation(s)
- Alan P Dawson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
11
|
Kraus D, Khoury S, Fendyur A, Kachalsky SG, Abu-Hatoum T, Rahamimoff R. Intracellular calcium dynamics--sparks of insight. J Basic Clin Physiol Pharmacol 2001; 11:331-65. [PMID: 11248946 DOI: 10.1515/jbcpp.2000.11.4.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calcium ions are of key importance in a large number of cellular functions. In the past decade a large variety of cells have been found to show localized increases in the intracellular calcium concentration named calcium sparks. In this brief review, the methodology of detecting calcium sparks by confocal microscopy is summarized. Some of the properties of calcium sparks in muscle (cardiac, skeletal and smooth muscles), neurons, nerve terminals and oocytes aredescribed. Speculations are put forward regarding their possible role in microcontrol of cell function.
Collapse
Affiliation(s)
- D Kraus
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, The Hebrew University--Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Inositol (1,4,5)-trisphosphate (IP(3)) liberates intracellular Ca(2+) both as localized 'puffs' and as repetitive waves that encode information in a frequency-dependent manner. Using video-rate confocal imaging, together with photorelease of IP(3) in Xenopus oocytes, we investigated the roles of puffs in determining the periodicity of global Ca(2+) waves. Wave frequency is not delimited solely by cyclical recovery of the cell's ability to support wave propagation, but further involves sensitization of Ca(2+)-induced Ca(2+) release by progressive increases in puff frequency and amplitude at numerous sites during the interwave period, and accumulation of pacemaker Ca(2+), allowing a puff at a 'focal' site to trigger a subsequent wave. These specific 'focal' sites, distinguished by their higher sensitivity to IP(3) and close apposition to neighboring puff sites, preferentially entrain both the temporal frequency and spatial directionality of Ca(2+) waves. Although summation of activity from many stochastic puff sites promotes the generation of regularly periodic global Ca(2+) signals, the properties of individual Ca(2+) puffs control the kinetics of Ca(2+) spiking and the (higher) frequency of subcellular spikes in their local microdomain.
Collapse
Affiliation(s)
| | - Ian Parker
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California Irvine, CA 92697, USA
Corresponding author e-mail:
| |
Collapse
|
13
|
Frings S, Reuter D, Kleene SJ. Neuronal Ca2+ -activated Cl- channels--homing in on an elusive channel species. Prog Neurobiol 2000; 60:247-89. [PMID: 10658643 DOI: 10.1016/s0301-0082(99)00027-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+ -activated Cl- channels control electrical excitability in various peripheral and central populations of neurons. Ca2+ influx through voltage-gated or ligand-operated channels, as well as Ca2+ release from intracellular stores, have been shown to induce substantial Cl- conductances that determine the response to synaptic input, spike rate, and the receptor current of various kinds of neurons. In some neurons, Ca2+ -activated Cl- channels are localized in the dendritic membrane, and their contribution to signal processing depends on the local Cl- equilibrium potential which may differ considerably from those at the membranes of somata and axons. In olfactory sensory neurons, the channels are expressed in ciliary processes of dendritic endings where they serve to amplify the odor-induced receptor current. Recent biophysical studies of signal transduction in olfactory sensory neurons have yielded some insight into the functional properties of Ca2+ -activated Cl- channels expressed in the chemosensory membrane of these cells. Ion selectivity, channel conductance, and Ca2+ sensitivity have been investigated, and the role of the channels in the generation of receptor currents is well understood. However, further investigation of neuronal Ca2+ -activated Cl- channels will require information about the molecular structure of the channel protein, the regulation of channel activity by cellular signaling pathways, as well as the distribution of channels in different compartments of the neuron. To understand the physiological role of these channels it is also important to know the Cl- equilibrium potential in cells or in distinct cell compartments that express Ca2+ -activated Cl- channels. The state of knowledge about most of these aspects is considerably more advanced in non-neuronal cells, in particular in epithelia and smooth muscle. This review, therefore, collects results both from neuronal and from non-neuronal cells with the intent of facilitating research into Ca2+ -activated Cl- channels and their physiological functions in neurons.
Collapse
Affiliation(s)
- S Frings
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany.
| | | | | |
Collapse
|
14
|
Weber W. Ion currents of Xenopus laevis oocytes: state of the art. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1421:213-33. [PMID: 10518693 DOI: 10.1016/s0005-2736(99)00135-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W Weber
- Laboratory of Physiology, K.U. Leuven, Campus Gasthuisberg, B-3000, Leuven, Belgium.
| |
Collapse
|
15
|
Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 1999; 98:475-85. [PMID: 10481912 DOI: 10.1016/s0092-8674(00)81976-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Depletion of Ca2+ stores in Xenopus oocytes activated entry of Ca2+ across the plasma membrane, which was measured as a current I(soc) in subsequently formed cell-attached patches. I(soc) survived excision into inside-out configuration. If cell-attached patches were formed before store depletion, I(soc) was activated outside but not inside the patches. I(soc) was potentiated by microinjection of Clostridium C3 transferase, which inhibits Rho GTPase, whereas I(soc) was inhibited by expression of wild-type or constitutively active Rho. Activation of I(soc) was also inhibited by botulinum neurotoxin A and dominant-negative mutants of SNAP-25 but was unaffected by brefeldin A. These results suggest that oocyte I(soc) is dependent not on aqueous diffusible messengers but on SNAP-25, probably via exocytosis of membrane channels or regulatory molecules.
Collapse
Affiliation(s)
- Y Yao
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0647, USA
| | | | | | | |
Collapse
|
16
|
Ito K, Miyashita Y, Kasai H. Kinetic control of multiple forms of Ca(2+) spikes by inositol trisphosphate in pancreatic acinar cells. J Cell Biol 1999; 146:405-13. [PMID: 10427093 PMCID: PMC2156179 DOI: 10.1083/jcb.146.2.405] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanisms of agonist-induced Ca(2+) spikes have been investigated using a caged inositol 1,4,5-trisphosphate (IP(3)) and a low-affinity Ca(2+) indicator, BTC, in pancreatic acinar cells. Rapid photolysis of caged IP(3) was able to reproduce acetylcholine (ACh)-induced three forms of Ca(2+) spikes: local Ca(2+) spikes and submicromolar (<1 microM) and micromolar (1-15 microM) global Ca(2+) spikes (Ca(2+) waves). These observations indicate that subcellular gradients of IP(3) sensitivity underlie all forms of ACh-induced Ca(2+) spikes, and that the amplitude and extent of Ca(2+) spikes are determined by the concentration of IP(3). IP(3)-induced local Ca(2+) spikes exhibited similar time courses to those generated by ACh, supporting a role for Ca(2+)-induced Ca(2+) release in local Ca(2+) spikes. In contrast, IP(3)- induced global Ca(2+) spikes were consistently faster than those evoked with ACh at all concentrations of IP(3) and ACh, suggesting that production of IP(3) via phospholipase C was slow and limited the spread of the Ca(2+) spikes. Indeed, gradual photolysis of caged IP(3) reproduced ACh-induced slow Ca(2+) spikes. Thus, local and global Ca(2+) spikes involve distinct mechanisms, and the kinetics of global Ca(2+) spikes depends on that of IP(3) production particularly in those cells such as acinar cells where heterogeneity in IP(3) sensitivity plays critical role.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Miyashita
- Department of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruo Kasai
- Department of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Machaca K. Reversible Ca gradients between the subplasmalemma and cytosol differentially activate Ca-dependent Cl currents. J Gen Physiol 1999; 113:249-66. [PMID: 9925823 PMCID: PMC2223373 DOI: 10.1085/jgp.113.2.249] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus oocytes express several different Ca-activated Cl currents that have different waveforms and biophysical properties. We compared the stimulation of Ca-activated Cl currents measured by two-microelectrode voltage clamp with the Ca transients measured in the same cell by confocal microscopy and Ca-sensitive fluorophores. The purpose was to determine how the amplitude and/or spatio-temporal features of the Ca signal might explain how these different Cl currents were activated by Ca. Because Ca release from stores was voltage independent, whereas Ca influx depended upon the electrochemical driving force, we were able to separately assess the contribution of Ca from these two sources. We were surprised to find that Ca signals measured with a cytosolic Ca-sensitive dye, dextran-conjugated Ca-green-1, correlated poorly with Cl currents. This suggested that Cl channels located at the plasma membrane and the Ca-sensitive dye located in the bulk cytosol were sensing different [Ca]. This was true despite Ca measurement in a confocal slice very close to the plasma membrane. In contrast, a membrane-targeted Ca-sensitive dye (Ca-green-C18) reported a Ca signal that correlated much more closely with the Cl currents. We hypothesize that very local, transient, reversible Ca gradients develop between the subplasmalemmal space and the bulk cytosol. [Ca] is higher near the plasma membrane when Ca is provided by Ca influx, whereas the gradient is reversed when Ca is released from stores, because Ca efflux across the plasma membrane is faster than diffusion of Ca from the bulk cytosol to the subplasmalemmal space. Because dissipation of the gradients is accelerated by inhibition of Ca sequestration into the endoplasmic reticulum with thapsigargin, we conclude that [Ca] in the bulk cytosol declines slowly partly due to futile recycling of Ca through the endoplasmic reticulum.
Collapse
Affiliation(s)
- K Machaca
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| |
Collapse
|
18
|
Callamaras N, Parker I. Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging. J Gen Physiol 1999; 113:199-213. [PMID: 9925819 PMCID: PMC2223371 DOI: 10.1085/jgp.113.2.199] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 09/24/1998] [Indexed: 11/20/2022] Open
Abstract
The radial localization and properties of elementary calcium release events ("puffs") were studied in Xenopus oocytes using a confocal microscope equipped with a piezoelectric focussing unit to allow rapid (>100 Hz) imaging of calcium signals along a radial line into the cell with a spatial resolution of <0.7 micrometer. Weak photorelease of caged inositol 1,4,5-trisphosphate (InsP3) evoked puffs arising predominantly within a 6-micrometer thick band located within a few micrometers of the cell surface. Approximately 25% of puffs had a restricted radial spread, consistent with calcium release from a single site. Most puffs, however, exhibited a greater radial spread (3.25 micrometer), likely involving recruitment of radially neighboring release sites. Calcium waves evoked by just suprathreshold stimuli exhibited radial calcium distributions consistent with inward diffusion of calcium liberated at puff sites, whereas stronger flashes evoked strong, short-latency signals at depths inward from puff sites, indicating deep InsP3-sensitive stores activated at higher concentrations of InsP3. Immunolocalization of InsP3 receptors showed punctate staining throughout a region corresponding to the localization of puffs and subplasmalemmal endoplasmic reticulum. The radial organization of puff sites a few micrometers inward from the plasma membrane may have important consequences for activation of calcium-dependent ion channels and "capacitative" calcium influx. However, on the macroscopic (hundreds of micrometers) scale of global calcium waves, release can be considered to occur primarily within a thin, essentially two-dimensional subplasmalemmal shell.
Collapse
Affiliation(s)
- N Callamaras
- Laboratory of Cellular and Molecular Neurobiology, Department of Psychobiology, University of California Irvine, Irvine, California 92697-4550, USA
| | | |
Collapse
|
19
|
Kuruma A, Hartzell HC. Dynamics of calcium regulation of chloride currents in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C161-75. [PMID: 9886932 DOI: 10.1152/ajpcell.1999.276.1.c161] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca-activated Cl currents are widely expressed in many cell types and play diverse and important physiological roles. The Xenopus oocyte is a good model system for studying the regulation of these currents. We previously showed that inositol 1,4,5-trisphosphate (IP3) injection into Xenopus oocytes rapidly elicits a noninactivating outward Cl current (ICl1-S) followed several minutes later by the development of slow inward (ICl2) and transient outward (ICl1-T) Cl currents. In this paper, we investigate whether these three currents are mediated by the same or different Cl channels. Outward Cl currents were more sensitive to Ca than inward Cl currents, as shown by injection of different amounts of Ca or by Ca influx through a heterologously expressed ligand-gated Ca channel, the ionotropic glutamate receptor iGluR3. These data could be explained by two channels with different Ca affinities or one channel with a higher Ca affinity at depolarized potentials. To distinguish between these possibilities, we determined the anion selectivity of the three currents. The anion selectivity sequences for the three currents were the same (I > Br > Cl), but ICl1-S had an I-to-Cl permeability ratio more than twofold smaller than the other two currents. The different anion selectivities and instantaneous current-voltage relationships were consistent with at least two different channels mediating these currents. However, after consideration of possible errors, the hypothesis that a single type of Cl channel underlies the complex waveforms of the three different macroscopic Ca-activated Cl currents in Xenopus oocytes remains a viable alternative.
Collapse
Affiliation(s)
- A Kuruma
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | |
Collapse
|
20
|
Taylor CW, Broad LM. Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls. Trends Pharmacol Sci 1998; 19:370-5. [PMID: 9786025 DOI: 10.1016/s0165-6147(98)01243-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The complex changes in intracellular Ca2+ concentration that follow cell stimulation reflect the concerted activities of Ca2+ channels in the plasma membrane and in the membranes of intracellular stores, and the opposing actions of the mechanisms that extrude Ca2+ from the cytosol. Disentangling the roles of each of these processes is hampered by the lack of adequately selective pharmacological tools. In this review, Colin Taylor and Lisa Broad summarize the more serious problems associated with some of the commonly used drugs, and describe specific situations in which the multiple effects of drugs on Ca2(+)-signalling pathways have confused analysis of these pathways.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, UK
| | | |
Collapse
|
21
|
Callamaras N, Parker I. Caged inositol 1,4,5-trisphosphate for studying release of Ca2+ from intracellular stores. Methods Enzymol 1998; 291:380-403. [PMID: 9661160 DOI: 10.1016/s0076-6879(98)91024-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N Callamaras
- Department of Psychobiology, University of California, Irvine 92697, USA
| | | |
Collapse
|
22
|
Marriott G, Ottl J, Heidecker M, Gabriel D. Light-directed activation of protein activity from caged protein conjugates. Methods Enzymol 1998; 291:95-116. [PMID: 9661147 DOI: 10.1016/s0076-6879(98)91009-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- G Marriott
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | |
Collapse
|
23
|
Dupont G. Theoretical insights into the mechanism of spiral Ca2+ wave initiation in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C317-22. [PMID: 9688864 DOI: 10.1152/ajpcell.1998.275.1.c317] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spiral waves of intracellular Ca2+ have often been observed in Xenopus oocytes. Such waves can be accounted for by most realistic models for Ca2+ oscillations taking diffusion of cytosolic Ca2+ into account, but their initiation requires rather demanding and unphysiological initial conditions. Here, it is shown by means of numerical simulations that these spiral Ca2+ waves naturally arise if the cytoplasm is assumed to be heterogeneous both at the level of the synthesis and metabolism of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and at the level of the distribution of the Ins(1,4, 5)P3 receptors. In such conditions, a spiral can be initiated in the simulations after an increase in Ins(1,4,5)P3 concentration, with the direction of rotation being determined by the position of the region of high receptor density with respect to the locus of Ins(1,4, 5)P3 production.
Collapse
Affiliation(s)
- G Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| |
Collapse
|
24
|
Gomez-Hernandez JM, Stühmer W, Parekh AB. Calcium dependence and distribution of calcium-activated chloride channels in Xenopus oocytes. J Physiol 1997; 502 ( Pt 3):569-74. [PMID: 9279809 PMCID: PMC1159529 DOI: 10.1111/j.1469-7793.1997.569bj.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The Ca(2+)-dependent Cl- current (ICl,Ca), expressed in the plasma membrane of Xenopus oocytes, was examined in excised inside-out macropatches using a rapid perfusion system. 2. Application of Ca(2+)-containing Ringer solution resulted in the activation of a current whose reversal potential shifted to the right by 51 +/- 5.2 mV when Cl- in the pipette solution was lowered from 119.3 to 10 mM. No currents were generated when Ca2+ was omitted from the solution. The current is therefore a Ca(2+)-activated Cl- one. 3. Following exposure to Ca2+, the half-time for activation of ICl,Ca was not voltage dependent, whereas deactivation was strongly so. 4. ICl,Ca was stable in the continuous presence of Ca2+ and showed no sign of inactivation or adaptation. 5. Comparison of the size of the currents (normalized to pipette resistance) from the animal and vegetal poles revealed that ICl,Ca had a highly polarized distribution. The current density was almost 10 times higher in the animal pole. 6. The results suggest that Cl- channels provide a continuous and reliable indication of submembranous Ca2+, at least in an excised patch, and the clustering of the Cl- channels renders it necessary to exert caution in interpreting results involving the kinetics of Ca2+ signalling, when ICl,Ca is used as the sole monitor of calcium.
Collapse
|
25
|
Kupferman R, Mitra PP, Hohenberg PC, Wang SS. Analytical calculation of intracellular calcium wave characteristics. Biophys J 1997; 72:2430-44. [PMID: 9168020 PMCID: PMC1184442 DOI: 10.1016/s0006-3495(97)78888-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present a theoretical analysis of intracellular calcium waves propagated by calcium feedback at the inositol 1,4,5-trisphosphate (IP3) receptor. The model includes essential features of calcium excitability, but is still analytically tractable. Formulas are derived for the wave speed, amplitude, and width. The calculations take into account cytoplasmic Ca buffering, the punctate nature of the Ca release channels, channel inactivation, and Ca pumping. For relatively fast buffers, the wave speed is well approximated by V(infinity) = (J(eff)D(eff)/C0)1/2, where J(eff) is an effective, buffered source strength; D(eff) is the effective, buffered diffusion constant of Ca; and C(0) is the Ca threshold for channel activation. It is found that the saturability and finite on-rate of buffers must be taken into account to accurately derive the wave speed and front width. The time scale governing Ca wave propagation is T(r), the time for Ca release to reach threshold to activate further release. Because IP3 receptor inactivation is slow on this time scale, channel inactivation does not affect the wave speed. However, inactivation competes with Ca removal to limit wave height and front length, and for biological parameter ranges, it is inactivation that determines these parameters. Channel discreteness introduces only small corrections to wave speed relative to a model in which Ca is released uniformly from the surface of the stores. These calculations successfully predict experimental results from basic channel and cell parameters and explain the slowing of waves by exogenous buffers.
Collapse
Affiliation(s)
- R Kupferman
- Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
| | | | | | | |
Collapse
|
26
|
Rapid coupling of calcium release to depolarization in Limulus polyphemus ventral photoreceptors as revealed by microphotolysis and confocal microscopy. J Neurosci 1997. [PMID: 9030629 DOI: 10.1523/jneurosci.17-05-01701.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microphotolysis and confocal microscopy were used to investigate the timing of calcium release and of the electrical response in Limulus polyphemus ventral photoreceptors. The fluorescent dyes Fluo-3 and Calcium Green-5N were used to monitor local Ca2+ elevations. Photolysis of caged inositol trisphosphate (InsP3) close to the plasma membrane of the light-sensitive rhabdomeral (R-) lobe resulted in Ca2+ elevation within 10-20 msec, 20-45 msec before the physiological response to light normally would be detected. Inward ionic current flow and depolarization followed InsP3-induced calcium release within 2.5 +/- 3.3 msec. Voltage-clamping the cells and removal of extracellular Ca2+ did not affect the timing of the Ca2+ elevation that followed the photolysis of caged InsP3 or its relationship to the electrical response. In contrast to the physiological response to light, which only released calcium within the R-lobe, photolysis of InsP3 elevated Cai in both lobes, although with much greater effect in the R-lobe, as compared with the bulk of the A-lobe, suggesting the presence of InsP3-sensitive calcium stores in both lobes. Photolysis of caged calcium [o-nitrophenyl EGTA (NPE)] at the edge of the R-lobe activated an inward ionic current within 1.8 +/- 0.7 msec. This NPE-induced current reversed at a membrane potential of 10 +/- 6 mV in the range typical of that of the light-activated current under physiological conditions. Calcium release, therefore, activates an inward current rapidly enough to contribute to the electrical response to light.
Collapse
|
27
|
Ukhanov K, Payne R. Rapid coupling of calcium release to depolarization in Limulus polyphemus ventral photoreceptors as revealed by microphotolysis and confocal microscopy. J Neurosci 1997; 17:1701-9. [PMID: 9030629 PMCID: PMC6573376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microphotolysis and confocal microscopy were used to investigate the timing of calcium release and of the electrical response in Limulus polyphemus ventral photoreceptors. The fluorescent dyes Fluo-3 and Calcium Green-5N were used to monitor local Ca2+ elevations. Photolysis of caged inositol trisphosphate (InsP3) close to the plasma membrane of the light-sensitive rhabdomeral (R-) lobe resulted in Ca2+ elevation within 10-20 msec, 20-45 msec before the physiological response to light normally would be detected. Inward ionic current flow and depolarization followed InsP3-induced calcium release within 2.5 +/- 3.3 msec. Voltage-clamping the cells and removal of extracellular Ca2+ did not affect the timing of the Ca2+ elevation that followed the photolysis of caged InsP3 or its relationship to the electrical response. In contrast to the physiological response to light, which only released calcium within the R-lobe, photolysis of InsP3 elevated Cai in both lobes, although with much greater effect in the R-lobe, as compared with the bulk of the A-lobe, suggesting the presence of InsP3-sensitive calcium stores in both lobes. Photolysis of caged calcium [o-nitrophenyl EGTA (NPE)] at the edge of the R-lobe activated an inward ionic current within 1.8 +/- 0.7 msec. This NPE-induced current reversed at a membrane potential of 10 +/- 6 mV in the range typical of that of the light-activated current under physiological conditions. Calcium release, therefore, activates an inward current rapidly enough to contribute to the electrical response to light.
Collapse
Affiliation(s)
- K Ukhanov
- Department of Zoology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
28
|
Affiliation(s)
- M J Berridge
- The Babraham Institute Laboratory of Molecular Signalling, PO Box 158, Cambridge CB2 3ES UK.
| |
Collapse
|
29
|
Parker I, Choi J, Yao Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 1996; 20:105-21. [PMID: 8889202 DOI: 10.1016/s0143-4160(96)90100-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liberation of sequestered Ca2+ ions in Xenopus oocytes by the second messenger inositol 1,4,5-trisphosphate (InP3) occurs from functionally discrete sites, which are spaced at intervals of several microns and probably represent clusterings of InsP3 receptor/channels (InsP3R) in the endoplasmic reticulum. As well as requiring InsP3, opening of release channels is regulated by dual positive and negative feedback by cytosolic Ca2+, leading to regenerative Ca2+ transients. Because the sensitivity of this process is determined by [InsP3], the ability of Ca2+ ions diffusing from one location to activate increasingly distant InsP3R is enhanced by increasing [InsP3]. Together with the spatial distribution of receptors, this results in generation of a hierarchy of Ca2+ release events, which may involve individual InsP3R (Ca2+ 'blips'), concerted activation of several receptors within a single release site (Ca2+ 'puffs'), and recruitment of successive sites by Ca2+ diffusing over micron distances to produce propagating Ca2+ waves. Thus, Ca2+ signalling in the oocyte is organized as at least two sizes of elemental 'building blocks'; highly localized Ca2+ transients that arise autonomously and stochastically from discrete sites at low [InsP3], but which become coordinated at higher [InsP3] to produce global Ca2+ responses.
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California, Irvine 92171, USA
| | | | | |
Collapse
|
30
|
Abstract
Calcium release from intracellular stores occurs through two types of channels associated with intracellular membranes, namely, the ryanodine receptor and the inositol 1,4,5-trisphosphate receptor. Recently, it has been shown that these channels are regulated by allosteric mechanisms and associated proteins. Release of intracellular calcium induces the opening of calcium-permeable channels on the plasma membrane. Current work has focused on the molecular and functional characterization of these channels which have been identified as store-operated channels or calcium release activated channels.
Collapse
Affiliation(s)
- F Striggow
- Department of Physiology, Universityof Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3505, USA
| | | |
Collapse
|
31
|
Parker I, Yao Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 1996; 491 ( Pt 3):663-8. [PMID: 8815201 PMCID: PMC1158808 DOI: 10.1113/jphysiol.1996.sp021247] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The mechanisms underlying inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ liberation were studied in Xenopus oocytes by using scanning and stationary-point confocal fluorescence microscopy to record Ca2+ signals evoked by photorelease of InsP3 from a caged precursor. 2. Fluorescence measurements from confocal images showed that increasing [InsP3] evoked three distinct modes of Ca2+ liberation: a diffuse 'pacemaker' signal, localized transient puffs, and propagating waves. Peak free Ca2+ concentrations during waves and puffs (respectively, 2-5 microM and 100-200 nM) varied only slightly with [InsP3], whereas the pacemaker amplitude varied over a wider range (at least 1-30 nM Ca2+). 3. The improved resolution provided by confocal point recording revealed discontinuous Ca2+ 'blips' during pacemaker release. These events were resolved only at particular locations and had time courses similar to the puffs (rise, approximately 50 ms; decay, a few hundred milliseconds) but with amplitudes one-fifth or less of puff amplitudes. 4. We conclude that blips may arise through opening of single InsP3-gated channels, whereas puffs reflect the concerted opening of several clustered channels due to local regenerative feedback by Ca2+.
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California Irvine 92717, USA
| | | |
Collapse
|
32
|
Parker I, Yao Y, Ilyin V. Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate. Biophys J 1996; 70:222-37. [PMID: 8770200 PMCID: PMC1224922 DOI: 10.1016/s0006-3495(96)79565-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP3) acts on intracellular receptors to cause liberation of Ca2+ ions into the cytosol as repetitive spikes and propagating waves. We studied the processes underlying this regenerative release of Ca2+ by monitoring with high resolution the kinetics of Ca2+ flux evoked in Xenopus oocytes by flash photolysis of caged InsP3. Confocal microfluorimetry was used to monitor intracellular free [Ca2+] from femtoliter volumes within the cell, and the underlying Ca2+ flux was then derived from the rate of increase of the fluorescence signals. A threshold amount of InsP3 had to be photoreleased to evoke any appreciable Ca2+ signal, and the amount of liberated Ca2+ then increased only approximately fourfold with maximal stimulation, whereas the peak rate of increase of Ca2+ varied over a range of nearly 20-fold, reaching a maximum of approximately 150 microMs-1. Ca2+ flux increased as a first-order function of [InsP3]. Indicating a lack of cooperativity in channel opening, and was half-maximal with stimuli approximately 10 times threshold. After a brief photolysis flash, Ca2+ efflux began after a quiescent latent period that shortened from several hundred milliseconds with near-threshold stimuli to 25 ms with maximal flashes. This delay could not be explained by an initial "foot" of Ca2+ increasing toward a threshold at which regenerative release was triggered, and the onset of release seemed too abrupt to be accounted for by multiple sequential steps involved in channel opening. Ca2+ efflux increased to a maximum after the latent period in a time that reduced from > 100 ms to approximately 8 ms with increasing [InsP3] and subsequently declined along a two-exponential time course: a rapid fall with a time constant shortening from > 100 ms to approximately 25 ms with increasing [InsP3], followed by a much smaller fail persisting for several seconds. The results are discussed in terms of a model in which InsP3 receptors must undergo a slow transition after binding InsP3 before they can be activated by cytosolic Ca2+ acting as a co-agonist. Positive feedback by liberated Ca2+ ions then leads to a rapid increase in efflux to a maximal rate set by the proportion of receptors binding InsP3. Subsequently, Ca2+ efflux terminates because of a slower inhibitory action of cytosolic Ca2+ on gating of InsP3 receptor-channels.
Collapse
MESH Headings
- Animals
- Biophysical Phenomena
- Biophysics
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cytosol/metabolism
- Female
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/radiation effects
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating
- Ion Transport/drug effects
- Kinetics
- Oocytes/drug effects
- Oocytes/metabolism
- Photolysis
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Nicotinic/metabolism
- Stochastic Processes
- Xenopus laevis
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California, Irvine 92717 USA.
| | | | | |
Collapse
|
33
|
Parekh AB. Interaction between capacitative Ca2+ influx and Ca2+-dependent Cl- currents in Xenopus oocytes. Pflugers Arch 1995; 430:954-63. [PMID: 8594548 DOI: 10.1007/bf01837409] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between capacitative Ca2+ influx and activation of Ca2+-dependent Cl- channels was monitored in intact Xenopus oocytes following stimulation of 5-hydroxytryptamine (5-HT) receptors, through the activity of Ca2+-dependent Cl- channels using the double-electrode voltage-clamp technique. Under voltage-clamp conditions, 5-HT evoked a rapid transient inward current followed by a slowly developing secondary inward current. The secondary current reflected depletion-activated Ca2+ entry. Hyperpolarising pulses evoked sustained Ca2+-dependent Cl- currents when applied during the transient inward current, but evoked hump-like currents which inactivated rapidly when applied during the secondary inward current. Hump currents arose from Ca2+ entering through the depletion-activated pathway. The hump currents inactivated with hyperpolarising pulses at < 5-s intervals, and recovered monoexponentially with a time constant of around 8 s. Currents in response to hyperpolarising pulses during the transient current did not inactivate, suggesting that inactivation was associated with Ca2+ entry. When ca2+ release evoked by inositol 1,4,5-triphosphate [ins(1,4,5)p3] was prevented by heparin injection, hyperpolarising pulses during ca2+ ionophore application also generated hump currents that were dependent on external ca2+, inactivated and recovered from inactivation with a similar time course as the humps following 5-ht treatment. Pretreatment with the Ca2+ adenosine 5'-triphosphatase (Ca2+ATPase) inhibitor thapsigargin reduced the rate of rise of the hump current, increased the time-to-peak of the current and slowed the rate of decay. Pharmacological interventions to disrupt the cytoskeleton reduced the amplitude of the hump current. It is suggested that, following hyperpolarisation in the presence of Ca2+ entry, the ensuing Ca2+ influx interacts with Cl- channels in a way that might reflect both Ca2+ inhibition of Ca2+ entry and clustering of Cl- channels in the plasma membrane.
Collapse
Affiliation(s)
- A B Parekh
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077 Göttingen, Germany
| |
Collapse
|
34
|
Affiliation(s)
- I Bezprozvanny
- Department of Physiology, University of Connecticut, Farmington 06030, USA
| | | |
Collapse
|
35
|
Yao Y, Choi J, Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 1995; 482 ( Pt 3):533-53. [PMID: 7738847 PMCID: PMC1157780 DOI: 10.1113/jphysiol.1995.sp020538] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Ca2+ liberation induced in Xenopus oocytes by a poorly metabolized derivative of inositol 1,4,5-trisphosphate (3-deoxy-3-fluoro-D-myo-inositol 1,4,5-trisphosphate; 3-F-InsP3) was visualized using a video-rate confocal microscope to image fluorescence signals reported by the indicator dye calcium green-1. 2. Low (10-30 nM) intracellular concentrations of 3-F-InsP3 evoked Ca2+ release as localized transient 'puffs'. Progressively higher concentrations (30-60 nM) gave rise to abortive Ca2+ waves triggered by puffs, and then (> 60 nM) to a sustained elevation of Ca2+ followed by the appearance of propagating Ca2+ waves. At concentrations up to that giving waves, the frequency of puffs increased as about the third power of [InsP3], whereas their amplitudes increased only slightly. 3. The rise of cytosolic Ca2+ during a puff began abruptly, and peaked within about 50 ms. The peak free Ca2+ level was about 180 nM, and the total amount of Ca2+ liberated was several attomoles (10(-18) mol), too much to be accounted for by opening of a single InsP3-gated channel. The subsequent decline of Ca2+ occurred over a few hundred milliseconds, determined largely by diffusion of Ca2+ away from the release site, rather than by resequestration. Lateral spread of Ca2+ was restricted to a few micrometres, consistent with an effective diffusion coefficient for Ca2+ ions of about 27 microns2 s-1. 4. The peak amplitudes of puffs recorded at a given site were distributed in a roughly Gaussian manner, and a small proportion of sites consistently gave puffs much larger than the main population. Intervals between successive puffs at a single site were exponentially distributed, except for a progressive fall-off in puffs seen at intervals shorter than about 10 s. Thus, triggering of puffs appeared to be stochastically determined after recovery from a refractory period. 5. There was little correlation between the occurrence of puffs at sites more than a few micrometres apart, indicating that puff sites can function autonomously, but closely (ca 2 microns) adjacent sites showed highly correlated behaviour. 6. Puffs arose from sites-present at a density of about 1 per 30 microns2 in the animal hemisphere, located within a narrow band about 5-7 microns below the plasma membrane. 7. We conclude that Ca2+ puffs represent a 'quantal' unit of InsP3-evoked Ca2+ liberation, which may arise because local regenerative feedback by cytosolic Ca2+ ions causes the concerted opening of several closely clustered InsP3 receptor channels.
Collapse
Affiliation(s)
- Y Yao
- Department of Psychobiology, University of California Irvine 92717, USA
| | | | | |
Collapse
|
36
|
Humphreys BD, Jiang L, Chernova MN, Alper SL. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1295-307. [PMID: 7977693 DOI: 10.1152/ajpcell.1994.267.5.c1295] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
cRNA encoding the murine band 3-related protein AE2 was expressed in Xenopus oocytes. AE2-mediated transport function and regulation were analyzed by unidirectional 36Cl- influx and efflux studies. AE2 cRNA-injected oocytes took up 36Cl- as much as 40-fold faster than did water-injected oocytes. AE2-mediated 36Cl- uptake increased as a function of increasing uptake time, number of days after cRNA injection, and amount of injected cRNA. Among the functional properties of AE2 evaluated were transport mechanism and substrate specificity, inhibitor pharmacology, and regulation by pH. The apparent Km for external Cl- was 5.6 mM. AE2 was defined as a Cl-/anion exchanger by two criteria: 1) 36Cl- efflux from AE2-expressing oocytes was maximally stimulated by extracellular Cl- or nitrate; AE2-associated 36Cl- efflux was supported by substitution of extracellular Cl- with other anions in the rank order bromide > isethionate > or = gluconate > iodide and 2) prolonged preincubation of AE2 cRNA-injected oocytes in Cl(-)-free media containing isethionate, gluconate, or glutamate decreased subsequent AE2-associated 36Cl- uptake from Cl- media in rough proportion to the degree of intracellular Cl- depletion, whereas preincubation in nitrate medium had no effect. AE2-associated 36Cl- uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid at half-maximally inhibitory concentrations between 0.5 and 19 microM, depending on extracellular Cl- concentration, and progressed to irreversibility at 20 degrees C with a half-time of 20-30 min. Many additional inhibitors showed lower potency for AE2 than previously reported for AE1. Although AE2 expression did not change oocyte resting intracellular pH, AE2-associated 36Cl- influx and efflux were each decreased in acid incubation medium and increased in alkaline medium.
Collapse
Affiliation(s)
- B D Humphreys
- Molecular Medicine Unit, Beth Israel Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
37
|
Abstract
Application of acetylcholine to Xenopus oocytes evoked increases in the cytosolic free calcium ion concentration ([Ca2+]i) after latencies of up to several seconds depending on the agonist dose. Higher acetylcholine concentrations evoked responses with larger amplitudes and shorter latencies. The latencies of responses to acetylcholine could be increased by application of caffeine, injection of calcium buffers or depletion of intracellular calcium stores. Acute inhibition of endoplasmic reticulum calcium pumps without substantial reduction of the calcium store content (by application of thapsigargin shortly before agonist stimulation) reduced the latencies of responses to acetylcholine. A schematic and mathematical model are presented to show a possible mechanism by which a calcium signal is initiated following a latent period after the elevation of the inositol trisphosphate concentration. During the latent period, calcium is slowly released from the intracellular stores. The released calcium is rapidly buffered by cytosolic calcium-binding proteins and some is resequestered into the stores by calcium pumps. The [Ca2+]i changes very little until the buffering is locally saturated. The [Ca2+]i then rises above a threshold concentration which evokes an explosive release of calcium due to positive feedback by calcium on the inositol trisphosphate receptor.
Collapse
Affiliation(s)
- C C Petersen
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | |
Collapse
|
38
|
Swillens S, Combettes L, Champeil P. Transient inositol 1,4,5-trisphosphate-induced Ca2+ release: a model based on regulatory Ca(2+)-binding sites along the permeation pathway. Proc Natl Acad Sci U S A 1994; 91:10074-8. [PMID: 7937840 PMCID: PMC44960 DOI: 10.1073/pnas.91.21.10074] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A remarkable property of Ca2+ fluxes through the inositol 1,4,5-trisphosphate (InsP3)-gated Ca2+ channel is that successive increments of InsP3 induce repeated transient release of accumulated Ca2+. The initial aim of this study was to propose a model, based on hypotheses compatible with the current description of this Ca2+ channel, which could account for such experimental observations. The key feature of the model was the assumption that the Ca(2+)-binding sites on the receptor, whose occupancy leads to immediate channel activation but to subsequent slow channel desensitization, were located somewhere along the permeation pathway and were therefore sensitive to the flux of Ca2+ rather than the cytosolic or luminal Ca2+ concentration per se. Simulation showed that, provided Ca2+ bound to both activating and inhibitory sites with adequate cooperativity, addition of submaximal concentrations InsP3 resulted in transient opening well above the stationary state. The model also rationalized the documented existence of a threshold for InsP3 action, the puzzling control of channel sensitivity to InsP3 by luminal and cytosolic Ca2+, as well as the functional heterogeneity of the Ca2+ pools.
Collapse
Affiliation(s)
- S Swillens
- Institut de Recherche Interdisciplinaire, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
39
|
Bezprozvanny I. Theoretical analysis of calcium wave propagation based on inositol (1,4,5)-trisphosphate (InsP3) receptor functional properties. Cell Calcium 1994; 16:151-66. [PMID: 7828170 DOI: 10.1016/0143-4160(94)90019-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the presence of inositol (1,4,5)-trisphosphate (InsP3) repetitive waves of elevated cytosolic free Ca2+ (Ca waves) that travel through cellular cytoplasm are observed. Investigation of this phenomenon stimulated the view of cellular cytoplasm as 'an excitable medium composed of Ca release processes (InsP3R), coupled by a common stimulatory signal (Ca) through diffusion' [Lechleiter JD. Clapham DE. (1992) Molecular mechanisms of intracellular calcium excitability in Xenopus laevis oocytes. Cell, 69, 283-294]. Using a kinetic model of InsP3R gating, an analytical expression for the amplitude of Ca wave propagating through this excitable medium has been obtained. The amplitude of the Ca wave is determined by the combination of cell-specific parameters and the functional properties of a single InsP3R. An analytical expression for Ca wave propagation velocity has been also obtained using the Luther equation for diffusion-driven autocatalytic reaction. Both equations provided reasonable estimations for Ca wave amplitude (1.3 microM free Ca) and the velocity of the wave propagation (21 microns/s) for Ca waves in Xenopus oocytes when numerical values of parameters were used. The duration of refractory period has been shown to be determined mainly by the activity of CaATPase. Obtained results provide an insight into the mechanisms underlying the process of Ca wave propagation and define the interrelationship between different factors involved in this process. Some experimentally testable predictions can be done based on the analytical expressions obtained for Ca wave amplitude, the velocity of Ca wave propagation and the duration of refractory period.
Collapse
Affiliation(s)
- I Bezprozvanny
- Department of Medicine, University of Connecticut Health Center, Farmington
| |
Collapse
|
40
|
Berridge MJ. Relationship between latency and period for 5-hydroxytryptamine-induced membrane responses in the Calliphora salivary gland. Biochem J 1994; 302 ( Pt 2):545-50. [PMID: 8093009 PMCID: PMC1137262 DOI: 10.1042/bj3020545] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Following stimulation with a calcium-mobilizing agonist there is often a distinct latency (L) preceding the onset of the first calcium spike. In the continued presence of the agonist, repetitive spikes appear separated by a variable period (P). The relationship between L and P has been investigated in an insect salivary gland responding to 5-hydroxytryptamine (5-HT). Both L and P were found to decrease as the concentration of 5-HT was increased over its physiological range of 1-10 nM. Lowering the concentration of external calcium from 1 x 10(-3) M to 1 x 10(-5) M increased both P and L. However, the effect on L was apparent only at low levels of 5-HT. Reducing the content of the internal stores by repeated stimulation in a calcium-free medium resulted in a progressive prolongation of L. On the other hand, the effect of L decreased when glands were stimulated repetitively in normal calcium-containing medium. All these results are consistent with a hypothesis that calcium plays a critical role in determining the kinetics of calcium release during both L and P. An important component seems to be the entry of external calcium, which sets the stage for calcium release by loading up the internal stores. As these stores fill up with calcium, the Ins(1,4,5)P3 receptors will initiate a calcium spike once they become sensitized to the ambient level of Ins(1,4,5)P3.
Collapse
Affiliation(s)
- M J Berridge
- Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, Cambridge University, U.K
| |
Collapse
|
41
|
Cheek TR, Berridge MJ, Moreton RB, Stauderman KA, Murawsky MM, Bootman MD. Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Biochem J 1994; 301 ( Pt 3):879-83. [PMID: 8053911 PMCID: PMC1137068 DOI: 10.1042/bj3010879] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Low caffeine concentrations were unable to completely release the caffeine- and ryanodine-sensitive intracellular Ca2+ pool in intact adrenal chromaffin cells. This 'quantal' Ca2+ release is the same as that previously observed with inositol Ins(1,4,5)P3-induced Ca2+ release. The molecular mechanism underlying quantal Ca2+ release from the ryanodine receptor was investigated using fura-2 imaging of single chromaffin cells. Our data indicate that the intracellular caffeine-sensitive Ca2+ pool is composed of functionally discrete stores, that possess heterogeneous sensitivities to caffeine. These stores are mobilized by caffeine in a concentration-dependent fashion, and, when stimulated, individual stores release their Ca2+ in an 'all-or-none' manner. Such quantal Ca2+ release may be responsible for graded Ca2+ responses in single cells.
Collapse
Affiliation(s)
- T R Cheek
- Department of Zoology, University of Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- R G King
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
43
|
Combettes L, Hannaert-Merah Z, Coquil J, Rousseau C, Claret M, Swillens S, Champeil P. Rapid filtration studies of the effect of cytosolic Ca2+ on inositol 1,4,5-trisphosphate-induced 45Ca2+ release from cerebellar microsomes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Ilyin V, Parker I. Role of cytosolic Ca2+ in inhibition of InsP3-evoked Ca2+ release in Xenopus oocytes. J Physiol 1994; 477 ( Pt 3):503-9. [PMID: 7932238 PMCID: PMC1155614 DOI: 10.1113/jphysiol.1994.sp020211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Calcium liberation induced in Xenopus oocytes by flash photorelease of inositol 1,4,5-trisphosphate (InsP3) from a caged precursor was monitored by confocal microfluorimetry. The object was to determine whether inhibition of Ca2+ release seen with paired flashes arose as a direct consequence of elevated cytosolic free [Ca2+]. 2. Responses evoked by just-suprathreshold test flashes were not inhibited by subthreshold conditioning flashes, but were strongly suppressed when conditioning flashes were raised above threshold. 3. Inhibition at first increased progressively as the inter-flash interval was lengthened to about 2 s and thereafter declined, with a half-recovery at about 4 s. 4. Intracellular injections of Ca2+ caused relatively slight inhibition of InsP3-evoked signals, even when cytosolic free [Ca2+] was elevated to levels similar to those at which strong inhibition was seen in paired-flash experiments. 5. Recovery from inhibition was not appreciably slowed when Ca2+ was injected to raise the free Ca2+ level between paired flashes. 6. We conclude that inhibition of InsP3-evoked Ca2+ liberation is not directly proportional to cytosolic free Ca2+ level and that recovery from inhibition in paired-pulse experiments involves factors other than the decline of cytosolic [Ca2+] following a conditioning response.
Collapse
Affiliation(s)
- V Ilyin
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
45
|
Parker I, Yao Y. Relation between intracellular Ca2+ signals and Ca(2+)-activated Cl- current in Xenopus oocytes. Cell Calcium 1994; 15:276-88. [PMID: 8055544 DOI: 10.1016/0143-4160(94)90067-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activation of inositol 1,4,5-trisphosphate (InsP3) signalling in Xenopus oocytes causes intracellular Ca2+ mobilization and thereby activates a Ca(2+)-dependent Cl- membrane conductance. Measurements of cytosolic Ca2+ levels using fluorescent indicators, however, revealed little correspondence with Cl- currents. Intracellular photorelease of InsP3 from a caged precursor evoked transient currents that peaked while the Ca(2+)-fluorescence signal was rising, and subsequently declined within a few seconds, even though the Ca2+ signal remained elevated much longer. Also, Cl- currents evoked by agonist activation showed transient spikes while a wave of Ca2+ liberation swept across the cell, but then decreased when the Ca2+ signal attained a maximal level. Thus, the Cl- current corresponded better to the rate of rise of intracellular free Ca2+, rather than to its steady state level. Experiments using paired flashes to photolyse caged InsP3 and caged Ca2+ indicated that this relationship did not arise through desensitization or inactivation of the Cl- conductance. Furthermore, fluorescence measurements made at different depths into the cell using a confocal microscope revealed no evidence that a rapid decline of local Ca2+ levels near the plasma membrane was responsible for the decay of Ca(2+)-activated Cl- current. Instead, Cl- channels may show an adaptive or incremental response to Ca2+, which is likely to be important for the encoding and transmission of information by Ca2+ spikes.
Collapse
Affiliation(s)
- I Parker
- Department of Psychobiology, University of California at Irvine
| | | |
Collapse
|
46
|
Yao Y, Parker I. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J Physiol 1994; 476:17-28. [PMID: 8046631 PMCID: PMC1160415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP3) functions as a second messenger by liberating intracellular Ca2+ and by promoting influx of extracellular Ca2+. We examined the effects of Ca2+ influx on the temporal and spatial patterns of intracellular Ca2+ liberation in Xenopus oocytes by fluorescence imaging of cytosolic free Ca2+ together with voltage clamp recording of Ca(2+)-activated Cl- currents. Oocytes were injected with a poorly metabolized InsP3 analogue (3-F-InsP3; see Introduction) to induce sustained activation of InsP3 signalling, and Ca2+ influx was controlled by applying voltage steps to change the driving force for Ca2+ entry. Positive- and negative-going potential steps (corresponding, respectively, to decreases and increases in Ca2+ influx) evoked damped oscillatory Cl- currents, accompanied by cyclical changes in cytosolic free Ca2+. The source of this Ca2+ was intracellular, since oscillations persisted when Ca2+ entry was suppressed by removing extracellular Ca2+ or by polarization close to the Ca2+ equilibrium potential. Fluorescence recordings from localized (ca 5 microns) spots on the oocyte showed repetitive Ca2+ spikes. Their frequency increased at more negative potentials, but they became smaller and superimposed on a sustained 'pedestal' of Ca2+. Spike periods ranged from about 50 s at +20 mV to 4s at potentials between -60 and -120 mV. Ca2+ spike frequency decreased after removing extracellular Ca2+, but the spike amplitude was not reduced and low frequency spikes continued for at least 30 min in the absence of extracellular Ca2+. Membrane current oscillations decayed in amplitude following voltage steps, while locally recorded Ca2+ spikes did not. This probably arose because Ca2+ release was initially synchronous across the cell, leading to large Ca(2+)-activated Cl- currents, but the currents then diminished as different areas of the cell began to release Ca2+ asynchronously. Fluorescence imaging revealed that Ca2+ liberation in 3-F-InsP3-loaded oocytes occurred as transient localized puffs and as propagating waves. Polarization to more negative potentials increased the frequency of puffs and the number of sites at which they were seen, and enhanced their ability to initiate waves. The frequency and velocity of Ca2+ waves increased at more negative potentials. When the potential was returned to more positive levels, repetitive Ca2+ spikes at first occurred synchronously across the recording area, but this synchronization was gradually lost and Ca2+ waves began at several foci. We conclude that influx of extracellular Ca2+ regulates the temporal and spatial patterns of Ca2+ liberation from InsP3-sensitive intracellular stores, probably as a result of dual excitatory and inhibitory actions of cytosolic Ca2+ on the InsP3 receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Yao
- Department of Psychobiology, University of California Irvine 92717
| | | |
Collapse
|
47
|
Escobar AL, Monck JR, Fernandez JM, Vergara JL. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature 1994; 367:739-41. [PMID: 8107869 DOI: 10.1038/367739a0] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of mechanical force in skeletal muscle fibres is brought about by rapid increases in the intracellular calcium concentration (Ca2+ transients) which can be detected by optical methods. Local stimulation experiments and ultrastructural evidence suggest that, at a microscopic level, these Ca2+ transients are generated by the release of Ca2+ ions from the terminal cisternae of the sarcoplasmic reticulum in response to the depolarization of the transverse tubules (t-tubules). Nevertheless, to date, there is no functional information on the exact location at which Ca2+ release takes place. The present experiments were designed to obtain direct evidence about dynamic changes in localization and microscopic distribution of Ca2+ in a single sarcomere using two independent novel methodologies: confocal spot detection of Ca2+ transients and Ca2+ imaging with pulsed laser excitation.
Collapse
Affiliation(s)
- A L Escobar
- Department of Physiology, University of California at Los Angeles 90024
| | | | | | | |
Collapse
|
48
|
Abstract
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release depends on the cytoplasmic concentration of Ca2+ in a biphasic manner: activated with the increase in Ca2+ up to approximately 300 nM and inhibited by its further increase. Kinetic studies of the Ca2+ release with rapid increase in Ca2+ or InsP3 using respective caged compounds indicated that the effects of Ca2+ appear immediately upon change in the Ca2+ concentration. Recovery from the Ca(2+)-dependent inhibition seemed also rapid after reduction in the Ca2+ concentration. These results indicate that there is a Ca(2+)-mediated positive feedback control of InsP3-induced Ca2+ release below 300 nM Ca2+. This feedback control seems to explain, at least partly, the phenomenon that InsP3 is more effective in the Ca2+ stores with greater Ca2+ loading. The Ca(2+)-mediated feedback control is also expected to give rise to temporally or spatially confined Ca2+ release as well as Ca2+ wave within the cells.
Collapse
Affiliation(s)
- M Iino
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
49
|
Affiliation(s)
- M D Bootman
- AFRC Laboratory of Molecular Signalling, Department of Zoology, Cambridge University, UK
| |
Collapse
|
50
|
Abstract
Cellular oscillations of cytosolic free Ca2+ ([Ca2+]i) have been observed in many cell types in response to cell surface receptor agonists acting through inositol 1,4,5-trisphosphate (InsP3). In a number of cases where appropriate spatial and temporal resolution have been used to examine these [Ca2+]i oscillations, they have been found to be organized as repetitive waves of Ca2+ increase that propagate through the cytosol of individual cells. In some cases Ca2+ waves also occur as a single pass through stimulated cells. This review discusses the factors underlying the spatial organization of [Ca2+]i signals in the form of Ca2+ waves. In addition, potential mechanisms for the initiation and subsequent propagation of these Ca2+ waves are described.
Collapse
Affiliation(s)
- T A Rooney
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|