1
|
Furukawa T, Fukuda A. Maternal taurine as a modulator of Cl - homeostasis as well as of glycine/GABA A receptors for neocortical development. Front Cell Neurosci 2023; 17:1221441. [PMID: 37601283 PMCID: PMC10435090 DOI: 10.3389/fncel.2023.1221441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
During brain and spinal cord development, GABA and glycine, the inhibitory neurotransmitters, cause depolarization instead of hyperpolarization in adults. Since glycine and GABAA receptors (GABAARs) are chloride (Cl-) ion channel receptor, the conversion of GABA/glycine actions during development is influenced by changes in the transmembrane Cl- gradient, which is regulated by Cl- transporters, NKCC1 (absorption) and KCC2 (expulsion). In immature neurons, inhibitory neurotransmitters are released in a non-vesicular/non-synaptic manner, transitioning to vesicular/synaptic release as the neuron matures. In other word, in immature neurons, neurotransmitters generally act tonically. Thus, the glycine/GABA system is a developmentally multimodal system that is required for neurogenesis, differentiation, migration, and synaptogenesis. The endogenous agonists for these receptors are not fully understood, we address taurine. In this review, we will discuss about the properties and function of taurine during development of neocortex. Taurine cannot be synthesized by fetuses or neonates, and is transferred from maternal blood through the placenta or maternal milk ingestion. In developing neocortex, taurine level is higher than GABA level, and taurine tonically activates GABAARs to control radial migration as a stop signal. In the marginal zone (MZ) of the developing neocortex, endogenous taurine modulates the spread of excitatory synaptic transmission, activating glycine receptors (GlyRs) as an endogenous agonist. Thus, taurine affects information processing and crucial developmental processes such as axonal growth, cell migration, and lamination in the developing cerebral cortex. Additionally, we also refer to the possible mechanism of taurine-regulating Cl- homeostasis. External taurine is uptake by taurine transporter (TauT) and regulates NKCC1 and KCC2 mediated by intracellular signaling pathway, with-no-lysine kinase 1 (WNK1) and its subsequent kinases STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Through the regulation of NKCC1 and KCC2, mediated by the WNK-SPAK/OSR1 signaling pathway, taurine plays a role in maintaining Cl- homeostasis during normal brain development.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Deng Z, Chen X, Lin Z, Alahdal M, Wang D, Liu J, Li W. The Homeostasis of Cartilage Matrix Remodeling and the Regulation of Volume-Sensitive Ion Channel. Aging Dis 2022; 13:787-800. [PMID: 35656105 PMCID: PMC9116913 DOI: 10.14336/ad.2021.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Degenerative joint diseases of the hips and knees are common and are accompanied by severe pain and movement disorders. At the microscopic level, the main characteristics of osteoarthritis are the continuous destruction and degeneration of cartilage, increased cartilage extracellular matrix catabolism, decreased anabolism, increased synovial fluid, and decreased osmotic pressure. Cell volume stability is mainly regulated by ion channels, many of which are expressed in chondrocytes. These ion channels are closely related to pain regulation, volume regulation, the inflammatory response, cell proliferation, apoptosis, and cell differentiation. In this review, we focus on the important role of volume control-related ion channels in cartilage matrix remodeling and summarize current views. In addition, the potential mechanism of the volume-sensitive anion channel LRRC8A in the early occurrence of osteoarthritis is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianquan Liu
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| | - Wencui Li
- Correspondence should be addressed to: Dr. Jianquan Liu, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: ; Dr. Wencui Li, Shenzhen Second People’s Hospital, Shenzhen, China. E-mail: .
| |
Collapse
|
3
|
Bach MD, Sørensen BH, Lambert IH. Stress-induced modulation of volume-regulated anions channels in human alveolar carcinoma cells. Physiol Rep 2018; 6:e13869. [PMID: 30318853 PMCID: PMC6186816 DOI: 10.14814/phy2.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
Shift in the cellular homeostasis of the organic osmolyte taurine has been associated with dysregulation of the volume-regulated anion channel (VRAC) complex, which comprises leucine-rich repeat-containing family 8 members (LRRC8A-E). Using SDS-PAGE, western blotting, qRT-PCR, and tracer technique ([3 H]taurine) we demonstrate that reactive oxygen species (ROS) and the cell growth-associated kinases Akt/mTOR, play a role in the regulation of VRAC in human alveolar cancer (A549) cells. LRRC8A is indispensable for VRAC activity and long-term exposure to hypoosmotic challenges and/or ROS impairs VRAC activity, not through reduction in total LRRC8A expression or LRRC8A availability in the plasma membrane, but through oxidation/inactivation of kinases/phosphatases that control VRAC activity once it has been instigated. Pursuing Akt signaling via the serine/threonine kinase mTOR, using mTORC1 inhibition (rapamycin) and mTORC2 obstruction (Rictor knockdown), we demonstrate that interference with the PI3K-mTORC2-Akt signaling-axes obstructs stress-induced taurine release. Furthermore, we show that an increased LRRC8A expression, following exposure to cisplatin, ROS, phosphatase/lipoxygenase inhibitors, and antagonist of CysLT1-receptors, correlates an increased activation of the proapoptotic transcription factor p53. It is suggested that an increase in LRRC8A protein expression could be taken as an indicator for cell stress and limitation in VRAC activity.
Collapse
Affiliation(s)
- Martin D. Bach
- Section of Cell Biology and PhysiologyDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Belinda H. Sørensen
- Section of Cell Biology and PhysiologyDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Ian H. Lambert
- Section of Cell Biology and PhysiologyDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| |
Collapse
|
4
|
Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016; 5:610-618. [PMID: 27965220 PMCID: PMC5227059 DOI: 10.1302/2046-3758.512.bjr-2016-0102.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
Abstract
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610-618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.
Collapse
Affiliation(s)
- A A Abubakar
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M M Noordin
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - T I Azmi
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - U Kaka
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M Y Loqman
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
5
|
Restoration of chondrocytic phenotype on a two-dimensional micropatterned surface. Biointerphases 2015; 10:011003. [PMID: 25720765 DOI: 10.1116/1.4913565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocytes within mature cartilage reside in a 3D matrix and adopt a distinctive round morphology. A vast 2D-culture surface is well-known to induce chondrocyte dedifferentiation characterized by the loss of spherical morphology and ceased expression of chondrogenic markers. Methods to restore chondrogenesis so far only occur on a certain level producing varied cell subpopulations and inferior cartilage matrix; the critical parameters, especially for the pericellular microenvironment, are still to be precisely determined. In this study, arrays of 2D circular micropatterns were designed to hold single subcultured chondrocytes with stable adhesion. The chondrocytes rounded up forming a 3D architecture; they remodeled their cytoskeleton to resemble in-situ chondrocytes and expressed collagen II instead of collagen I or fibronectin. This technique suggested that pure physical constraints can induce chondrocytic phenotype restoration on a 2D surface; it also provides a new design pathway to precisely control the microenvironment surrounding every chondrocyte therefore to unify the redifferentiation level of individual cell.
Collapse
|
6
|
Karjalainen HM, Qu C, Leskelä SS, Rilla K, Lammi MJ. Chondrocytic cells express the taurine transporter on their plasma membrane and regulate its expression under anisotonic conditions. Amino Acids 2014; 47:561-70. [PMID: 25501278 DOI: 10.1007/s00726-014-1888-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Taurine is a small organic osmolyte which participates in cell volume regulation. Chondrocytes have been shown to accumulate and release taurine; in bone, taurine participates in bone metabolism. However, its role in skeletal cells is poorly understood, especially in chondrocytes. This study investigated the regulation of taurine transporter in chondrocytic cells. We examined the transcriptional regulation of the taurine transporter under anisotonia by reporter gene and real-time RT-PCR assays. The effect of providing supplementary taurine on cell viability was evaluated with the lactate dehydrogenase release assay. The localization of the taurine transporter in human chondrosarcoma cells was studied by overexpressing a taurine transporter-enhanced green fluorescent protein. We observed that the transcription of the taurine transporter gene was up-regulated in hypertonic conditions. Hyperosmolarity-related cell death could be partly abolished by taurine supplementation in the medium. As expected, the fluorescently labeled taurine transporter localized at the plasma membrane. In polarized epithelial MDCK cells, the strongest fluorescence signal was located in the lateral cell membrane area. We also observed that the taurine transporter gene was expressed in several human tissues and malignant cell lines. This is the first study to present information on the transcriptional regulation of taurine transporter gene and the localization of the taurine transporter protein in chondrocytic cells.
Collapse
Affiliation(s)
- Hannu M Karjalainen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland,
| | | | | | | | | |
Collapse
|
7
|
Huttu M, Turunen S, Sokolinski V, Tiitu V, Lammi M, Korhonen RK. Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage. J Funct Biomater 2014; 3:544-55. [PMID: 23807905 PMCID: PMC3691548 DOI: 10.3390/jfb3030544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
Collapse
Affiliation(s)
- Mari Huttu
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Siru Turunen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Viktoria Sokolinski
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Virpi Tiitu
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- SIB-Labs, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Mikko Lammi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
- Author to whom correspondence should be addressed; ; Tel.: +358-40-355-3027; Fax: +358-17-162-131
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| |
Collapse
|
8
|
Furukawa T, Yamada J, Akita T, Matsushima Y, Yanagawa Y, Fukuda A. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex. Front Cell Neurosci 2014; 8:88. [PMID: 24734001 PMCID: PMC3975117 DOI: 10.3389/fncel.2014.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/10/2014] [Indexed: 11/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose–response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Junko Yamada
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan ; Department of Neurophysiology, Hirosaki University Graduate School of Medicine Hirosaki, Aomori, Japan
| | - Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yoshitaka Matsushima
- Department of Chemistry, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Gunma, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine Hamamatsu, Shizuoka, Japan
| |
Collapse
|
9
|
CK8 phosphorylation induced by compressive loads underlies the downregulation of CK8 in human disc degeneration by activating protein kinase C. J Transl Med 2013; 93:1323-30. [PMID: 24166186 DOI: 10.1038/labinvest.2013.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/21/2013] [Accepted: 09/23/2013] [Indexed: 12/23/2022] Open
Abstract
Cytokeratin 8 (CK8) is a member of the cytokeratins family with multiple functions on the basis of its unique structural hallmark. The aberrant expression of CK8 and its phosphorylation are pertinent with various diseases. We have previously shown that CK8 exists in normal human nucleus pulposus (NP) cells and decreases as the intervertebral disc degenerates. However, the underlying molecular regulatory machinery of CK8 in intervertebral disc degeneration (IDD) has not been clarified. Here, we collected NP samples from patients with idiopathic scoliosis as control and IDD as degenerate groups. We found that CK8 expression decreased in IDD with an increased phosphorylation in degenerate NP cells. Moreover, NP cells were cultured under different compressive load schemes for diverse time duration. We found that compressive loads resulted in phosphorylation and disassembly of CK8 in a time-dependent and degree-dependent manner in vitro. The activation of protein kinase C was a significant molecular factor contributing to this phenomenon. Taken together, this study is the first to address the molecular mechanisms of CK8 downregulation in NP cells. Importantly, our findings provide clues regarding a molecular link between compressive loads and CK8 alterations, which shed a novel light on the etiology of IDD.
Collapse
|
10
|
Kumagai K, Kubo M, Imai S, Toyoda F, Maeda T, Okumura N, Matsuura H, Matsusue Y. The COX-2 selective blocker etodolac inhibits TNFα-induced apoptosis in isolated rabbit articular chondrocytes. Int J Mol Sci 2013; 14:19705-15. [PMID: 24084720 PMCID: PMC3821581 DOI: 10.3390/ijms141019705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 01/27/2023] Open
Abstract
Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA.
Collapse
Affiliation(s)
- Kousuke Kumagai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (F.T.); (H.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-77-548-2252; Fax: +81-77-548-2254
| | - Mitsuhiko Kubo
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
| | - Shinji Imai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (F.T.); (H.M.)
| | - Tsutomu Maeda
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (F.T.); (H.M.)
| | - Noriaki Okumura
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (F.T.); (H.M.)
| | - Yoshitaka Matsusue
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; E-Mails: (M.K.); (S.I.); (T.M.); (N.O.); (Y.M.)
| |
Collapse
|
11
|
Kumagai K, Imai S, Toyoda F, Okumura N, Isoya E, Matsuura H, Matsusue Y. 17β-Oestradiol inhibits doxorubicin-induced apoptosis via block of the volume-sensitive Cl(-) current in rabbit articular chondrocytes. Br J Pharmacol 2012; 166:702-20. [PMID: 22142024 DOI: 10.1111/j.1476-5381.2011.01802.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chondrocyte apoptosis contributes to disruption of cartilage integrity in osteoarthritis. Recent evidence suggested that the volume-sensitive organic osmolyte/anion channel [volume-sensitive (outwardly rectifying) Cl(-) current (I(Cl,vol) )] plays a functional role in the development of cell shrinkage associated with apoptosis (apoptotic volume decrease) in several cell types. In this study, we investigated the cellular effects of 17β-oestradiol on doxorubicin-induced apoptotic responses in rabbit articular chondrocytes. EXPERIMENTAL APPROACH Whole-cell membrane currents and cross-sectional area were measured from chondrocytes using a patch-clamp method and microscopic cell imaging, respectively. Caspase-3/7 activity was assayed as an index of apoptosis. KEY RESULTS Addition of doxorubicin (1 µM) to isosmotic bath solution rapidly activated the Cl(-) current with properties similar to those of I(Cl,vol) in chondrocytes. Doxorubicin also gradually decreased the cross-sectional area of chondrocytes, followed by enhanced caspase-3/7 activity; both of these responses were totally abolished by the I(Cl,vol) blocker DCPIB (20 µM). Pretreatment of chondrocytes with 17β-oestradiol (1 nM) for short (approximately 10 min) and long (24 h) periods almost completely prevented the doxorubicin-induced activation of I(Cl,vol) and subsequent elevation of caspase-3/7 activity. These effects of 17β-oestradiol were significantly attenuated by the oestrogen receptor blocker ICI 182780 (10 µM), as well as the phosphatidyl inositol-3-kinase (PI3K) inhibitors wortmannin (100 nM) and LY294002 (20 µM). Testosterone (10 nM) had no effect on the doxorubicin-induced Cl(-) current. CONCLUSIONS AND IMPLICATIONS 17β-Oestradiol prevents the doxorubicin-induced cell shrinkage mediated through activation of I(Cl,vol) and subsequent induction of apoptosis signals, through a membrane receptor-dependent PI3K pathway in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Kousuke Kumagai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Lewis R, Feetham CH, Barrett-Jolley R. Cell volume regulation in chondrocytes. Cell Physiol Biochem 2011; 28:1111-22. [PMID: 22179000 DOI: 10.1159/000335847] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Chondrocytes are the cells within cartilage which produce and maintain the extracellular matrix. Volume regulation in these cells is vital to their function and occurs in several different physiological and pathological contexts. Firstly, chondrocytes exist within an environment of changing osmolarity and compressive loads. Secondly, in osteoarthritic joint failure, cartilage water content changes and there is a notable increase in chondrocyte apoptosis. Thirdly, endochondral ossification requires chondrocyte swelling in association with hypertrophy. Regulatory volume decrease (RVD) and regulatory volume increase (RVI) have both been observed in articular chondrocytes and this review focuses on the mechanisms identified to account for these. There has been evidence so far to suggest TRPV4 is central to RVD; however other elements of the pathway have not yet been identified. Unlike RVD, RVI appears less robust in articular chondrocytes and there have been fewer mechanistic studies; the primary focus being on the Na(+)-K(+)-2Cl(-) co-transporter. The clinical significance of chondrocyte volume regulation remains unproven. Importantly however, transcript abundances of several ion channels implicated in volume control are changed in chondrocytes from osteoarthritic cartilage. A critical question is whether disturbances of volume regulation mechanisms lead to, result from or are simply coincidental to cartilage damage.
Collapse
Affiliation(s)
- Rebecca Lewis
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
13
|
Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:1796-812. [PMID: 21541667 DOI: 10.1007/s00586-011-1827-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 03/21/2011] [Accepted: 04/20/2011] [Indexed: 01/08/2023]
Abstract
Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.
Collapse
Affiliation(s)
- Samantha C W Chan
- ARTORG Center for Biomedical Engineering, Spine Research Center, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland
| | | | | |
Collapse
|
14
|
Amini S, Veilleux D, Villemure I. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: a confocal microscopy study. J Orthop Res 2011; 29:710-7. [PMID: 21437950 DOI: 10.1002/jor.21294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/04/2010] [Indexed: 02/04/2023]
Abstract
Longitudinal growth, occurring in growth plates with structurally distinct zones, has clinical implications in the treatment of progressive skeletal deformities. This study documents the three-dimensional morphology of chondrocytes within histological zones of growth plate using confocal microscopy combined with fluorescent labeling techniques. Three-dimensional reconstruction of Calcein AM-labeled chondrocytes was made from stacks of confocal images recorded in situ from 4-week-old swine growth plates. Three-dimensional quantitative morphological measurements were further performed and compared at both tissue and cell levels. Chondrocyte volume and surface area increased about five- and threefold, respectively, approaching the chondro-osseous junction from the pool of reserve cells. Chondrocytes from the proliferative zone were the most discoidal cells (sphericity of 0.81 ± 0.06) among three histological zones. Minimum and maximum cell/matrix volume ratios were identified in the reserve (11.0 ± 2.2) and proliferative zones (16.8 ± 3.0), respectively. Evaluated parameters revealed the heterogeneous and zone-dependent morphological state of the growth plate. Tissue and cellular morphology may have noteworthy contribution to the growth plate behavior during growth process. The ability to obtain in situ cell morphometry and monitor the changes in the growth direction could improve our understanding of the mechanisms through which abnormal growth is triggered.
Collapse
Affiliation(s)
- Samira Amini
- Department of Mechanical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7
| | | | | |
Collapse
|
15
|
Yin J, Xia Y. Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier Transform Infrared Microimaging. BIOMEDICAL OPTICS EXPRESS 2011; 2:937-945. [PMID: 21483615 PMCID: PMC3072132 DOI: 10.1364/boe.2.000937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
Fourier transform infrared imaging (FTIRI) and the attenuated total reflection Fourier transform infrared microimaging (ATR-FTIRM) were used to study the chemical and structural distributions of cellular components surrounding individual chondrocytes in canine humeral cartilage, at 6.25µm pixel resolution in FTIRI and 1.56µm pixel resolution in ATR-FTIRM. The chemical and structural distributions of the cellular components in chondrocytes and tissue can be successfully imaged in high resolution ATR-FTIRM. One can also study the territorial matrix of fine collagen fibrils surrounding the individual chondrocytes by the polarization experiments using the absorption ratio of amide I to amide II bands.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Internal environment regulation, particularly volume and osmoregulation, has been a fundamental concept important to physiologists and clinicians for almost two centuries. Na balance, intracellular K homeostasis, the crucial role of the Na,K-ATPase pump, osmotic forces, and the overriding effect of the kidney on maintaining homeostasis are notions that have been taught by many and accepted by most for over 50 years. Nevertheless, contradictory findings, problems with simplistic balance explanations, and the notion of salt-sensitive and salt-resistant hypertension have been nagging headaches in the straightforward, two-compartment model of electrolyte balance. RECENT FINDINGS Na can be accumulated without commensurate water retention in the interstitium of the skin, and this skin Na storage is paralleled by increased polymerization and sulfation of glycosaminoglycans in the Na reservoir. Subcutaneous tissue macrophages express the transcription factor tonicity enhancer binding protein in response to Na-mediated interstitial osmotic stress and thereby secrete vascular endothelial growth factor C, which stimulates lymphatic formation and endothelial nitric oxide synthase expression, suggesting that the immune system is a regulator of volume and blood pressure homeostasis. SUMMARY Our findings do not abrogate the notion of pressure natriuresis and renal regulatory function. However, we do suggest that extracellular Na, volume and blood pressure homeostasis cannot be maintained without extrarenal regulatory mechanisms.
Collapse
|
17
|
Kalujnaia S, McVee J, Kasciukovic T, Stewart AJ, Cramb G. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). FASEB J 2010; 24:3981-91. [PMID: 20547660 DOI: 10.1096/fj.10-161000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the expression and tissue distribution of inositol monophosphatase (IMPA1) and characterized its role in salinity adaptation in the eel. The coding sequence of eel IMPA1 was determined and confirmed to be orthologous to the mammalian gene/enzyme by phylogenetic analysis and structural modeling. Quantitative real-time PCR and Western blot techniques indicated up to 17-fold increases in mRNA expression and 2-fold increases in protein abundance in major osmoregulatory tissues following transfer of fish to seawater (SW). This was accompanied by up to 5-fold increases in enzyme activity, and 1.8- and 3-fold increases in inositol contents within the gill and kidney, respectively. Immunohistological studies revealed that IMPA1 protein expression predominated in SW-acclimated fish within basal epithelial/epidermal layers of the gill, esophagus, intestine, skin, and fins. SW transfer also induced a 10-fold increase in inositol content in the fin. IMPA1 immunoreactivity was also identified in chondrocytes within the cartilagenous matrix of the gills and fins, as well as in clusters of interstitial cells surrounding the kidney tubules. The observed increases in expression of IMPA1 highlight a protective role for inositol within various eel tissues following SW acclimation. This constitutes an adaptive mechanism in teleost fish naturally exposed to hypertonic environments.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | | | | | | | | |
Collapse
|
18
|
Guilak F, Leddy HA, Liedtke W. Transient receptor potential vanilloid 4: The sixth sense of the musculoskeletal system? Ann N Y Acad Sci 2010; 1192:404-9. [PMID: 20392266 DOI: 10.1111/j.1749-6632.2010.05389.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The critical discovery in the past two decades of the transient receptor potential (TRP) superfamily of ion channels has revealed the potential mechanisms by which cells sense diverse stimuli beyond the prototypical "five senses," identifying ion channels that are gated by heat, cold, mechanical loading, osmolarity, and other physical and chemical stimuli. TRP vanilloid 4 (TRPV4) is a Ca(2+)-permeable nonselective cation channel that appears to play a mechanosensory or osmosensory role in several musculoskeletal tissues. In articular cartilage, TRPV4 exhibits osmotic sensitivity, controlling cellular volume recovery, and other physiologic responses to osmotic stress. TRPV4 is expressed in both osteoblasts and osteoclasts, and the absence of TRPV4 prevents disuse-induced bone loss. TRPV4 activation promotes chondrogenesis by inducing SOX9 transcription, whereas a TRPV4 gain-of-function mutation leads to a developmental skeletal dysplasia, suggesting a critical role for TRPV4 in skeletal development. These studies provide mounting evidence for a regulatory role for the sensory channel TRPV4 in control of musculoskeletal tissues.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
19
|
Xu X, Urban JPG, Tirlapur UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthritis Cartilage 2010; 18:433-9. [PMID: 19840877 DOI: 10.1016/j.joca.2009.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 09/30/2009] [Accepted: 09/05/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE With the development of engineered cartilage, the determination of the appropriate culture conditions is vital in order to maximize extracellular matrix synthesis. As osmolarity could affect the fate of chondrocytes, the purpose of this study was to determine the effects of osmolarity on chondrocytes during relatively long-term culture. DESIGN Bovine articular chondrocytes were cultured in alginate beads in a biocarbonate free system at 280, 380 and 550 mOsm at pH 7.4 for up to 12 days, respectively. Cell volume, intracellular pH (pH(i)), cell number, glucosaminoglycan (GAG) and collagen retention were measured at day 5 and 12. Cell viability and volume were monitored over the 12 days of culture. RESULTS By day 5 and 12, compared to the cell volume at 380 mOsm, around 20% (P<0.01) swelling and 15% (P<0.05) shrinkage were observed when the cells were cultured at 280 and 550 mOsm. The pH(i) over the 12 days of culture varied with osmolarity of the culture medium. In comparison with fresh cells, pH(i) became slightly more acidic by 0.15 pH units at 280 mOsm at day 5. However, by day 12, an alkalization of pH(i), by 0.2 pH units, was noted. A higher proliferation rate was seen at 280 mOsm than at other osmolarities while less GAG was produced. CONCLUSIONS Chronic exposure to anisotonic conditions results in cell swelling at 280 mOsm and shrinkage at 550 mOsm. The osmolarity of 280 mOsm appears to encourage proliferation of chondrocytes, but inhibits matrix production.
Collapse
Affiliation(s)
- X Xu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
20
|
Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. ACTA ACUST UNITED AC 2009; 60:3028-37. [PMID: 19790068 DOI: 10.1002/art.24799] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. This study was undertaken to demonstrate the presence and functionality of TRPV4 in chondrocytes. METHODS TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca(2+) signaling, cell volume, and prostaglandin E(2) (PGE(2)) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. RESULTS TRPV4 was expressed abundantly at the RNA and protein levels. Exposure to 4alpha-phorbol 12,13-didecanoate (4alphaPDD), a TRPV4 activator, caused Ca(2+) signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca(2+) responsive cells, the regulatory volume decrease, and PGE(2) production. Ca(2+) signaling was inhibited by removal of extracellular Ca(2+) or depletion of intracellular stores. Specific activation of TRPV4 restored the defective regulatory volume decrease caused by IL-1. Chemical disruption of the primary cilium eliminated Ca(2+) signaling in response to either 4alphaPDD or hypo-osmotic stress. CONCLUSION Our findings indicate that TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca(2+) and intracellular Ca(2+) release. TRPV4 may also be involved in modulating the production or influence of proinflammatory molecules in response to osmotic stress.
Collapse
Affiliation(s)
- Mimi N Phan
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roos S, Lagerlöf O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol 2009; 297:C723-31. [PMID: 19587219 DOI: 10.1152/ajpcell.00191.2009] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition of mammalian target of rapamycin (mTOR) signaling in cultured human primary trophoblast cells reduces the activity of key placental amino acid transporters. However, the upstream regulators of placental mTOR are unknown. We hypothesized that glucose, insulin, and IGF-I regulate placental amino acid transporters by inducing changes in mTOR signaling. Primary human trophoblast cells were cultured for 24 h with media containing various glucose concentrations, insulin, or IGF-I, with or without the mTOR inhibitor rapamycin, and, subsequently, the activity of system A, system L, and taurine (TAUT) transporters was measured. Glucose deprivation (0.5 mM glucose) did not significantly affect Thr172-AMP-activated protein kinase phosphorylation or REDD1 expression but decreased S6 kinase 1 phosphorylation at Thr389. The activity of system L decreased in a dose-dependent manner in response to decreasing glucose concentrations. This effect was abolished in the presence of rapamycin. Glucose deprivation had two opposing effects on system A activity: 1) an "adaptive" upregulation mediated by an mTOR-independent mechanism and 2) downregulation by an mTOR-dependent mechanism. TAUT activity was increased after incubating cells with glucose-deprived media, and this effect was largely independent of mTOR signaling. Insulin and IGF-I increased system A activity and insulin stimulated system L activity, effects that were abolished by rapamycin. We conclude that the mTOR pathway represents an important intracellular regulatory link between nutrient and growth factor concentrations and amino acid transport in the human placenta.
Collapse
Affiliation(s)
- S Roos
- Perinatal Center, Dept. of Physiology, Institute of Neuroscience and Physiology, Univ. of Gothenburg, P.O. Box 432, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Okumura N, Imai S, Toyoda F, Isoya E, Kumagai K, Matsuura H, Matsusue Y. Regulatory role of tyrosine phosphorylation in the swelling-activated chloride current in isolated rabbit articular chondrocytes. J Physiol 2009; 587:3761-76. [PMID: 19528252 DOI: 10.1113/jphysiol.2009.174177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Articular chondrocytes are exposed in vivo to the continually changing osmotic environment and thus require volume regulatory mechanisms. The present study was designed to investigate (i) the functional role of the swelling-activated Cl(-) current (I(Cl,swell)) in the regulatory volume decrease (RVD) and (ii) the regulatory role of tyrosine phosphorylation in I(Cl,swell), in isolated rabbit articular chondrocytes. Whole-cell membrane currents were recorded from chondrocytes in isosmotic, hyposmotic and hyperosmotic external solutions under conditions where Na(+), K(+) and Ca(2+) currents were minimized. The cell surface area was also measured using microscope images from a separate set of chondrocytes and was used as an index of cell volume. The isolated chondrocytes exhibited a RVD during sustained exposure to hyposmotic solution, which was mostly inhibited by the I(Cl,swell) blocker 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl)oxobutyric acid (DCPIB) at 20 microM. Exposure to a hyposmotic solution activated I(Cl,swell), which was also largely inhibited by 20 microM DCPIB. I(Cl,swell) in rabbit articular chondrocytes had a relative taurine permeability (P(tau)/P(Cl)) of 0.21. Activation of I(Cl,swell) was significantly reduced by the protein tyrosine kinase (PTK) inhibitor genistein (30 microM) but was only weakly affected by its inactive analogue daidzein (30 microM). Intracellular application of protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate (250 and 500 microM) resulted in a gradual activation of a Cl(-) current even in isosmotic solutions. This Cl(-) current was almost completely inhibited by 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS, 500 microM) and was also largely suppressed by exposure to hyperosmotic solution, thus indicating a close similarity to I(Cl,swell). Pretreatment of chondrocytes with genistein significantly prevented the activation of the Cl(-) current by sodium orthovanadate, suggesting that the basal activity of endogenous PTK is required for the activation of this Cl(-) current. Our results provide evidence to indicate that activation of I(Cl,swell) is involved in RVD in isolated rabbit articular chondrocytes and is facilitated by tyrosine phosphorylation.
Collapse
Affiliation(s)
- Noriaki Okumura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Isoya E, Toyoda F, Imai S, Okumura N, Kumagai K, Omatsu-Kanbe M, Kubo M, Matsuura H, Matsusue Y. Swelling-Activated Cl− Current in Isolated Rabbit Articular Chondrocytes: Inhibition by Arachidonic Acid. J Pharmacol Sci 2009; 109:293-304. [DOI: 10.1254/jphs.08278fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
24
|
Tattersall AL, Wilkins RJ. Modulation of Na+-H+ exchange isoforms NHE1 and NHE3 by insulin-like growth factor-1 in isolated bovine articular chondrocytes. J Orthop Res 2008; 26:1428-33. [PMID: 18404734 DOI: 10.1002/jor.20617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incubation with serum modulates the transporters that regulate intracellular pH (pH(i)) in articular chondrocytes, upregulating acid extrusion by Na(+)-H(+) exchange (NHE). There is stimulation of NHE1, together with induction of NHE3 activity. These isoforms exhibit differential responses to components of mechanical load experienced by chondrocytes during joint loading. The identity of the component(s) of serum responsible is unknown. A possibility, however, is insulin-like growth factor-1 (IGF-1), present in normal cartilage and found at enhanced levels in osteoarthritic tissue. In the present study, the effects of IGF-1 on pH(i) regulation have been characterized using fluorescence measurements of bovine articular chondrocytes, and the sensitivity of pH(i) regulation to hyperosmotic shock and raised hydrostatic pressure determined. For cells isolated in the absence of IGF-1, pH(i) recovery following acidification was predominantly mediated by NHE1. Recovery was enhanced when cells were incubated for 18 h with 20 ng mL(-1) IGF; this effect represented increased acid extrusion by NHE1, supplemented by NHE3 activity. NHE3 activity was not detected in IGF-1-treated cells that had been incubated with the protein synthesis inhibitor cycloheximide, although NHE1 activity was unaffected. In the absence of IGF-1, suspension in hyperosmotic solutions or raised hydrostatic pressure enhanced pH(i) recovery of acidified cells. This response was missing in cells incubated with IGF-1. Unresponsiveness to hyperosmotic shock represented inhibition of NHE3 activity, and was prevented using the protein kinase A inhibitor KT5720. For raised hydrostatic pressure, a decrease in NHE1 activity was responsible, and was prevented by the protein kinase C inhibitor chelerythrine.
Collapse
Affiliation(s)
- Amanda L Tattersall
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | |
Collapse
|
25
|
Kerrigan MJP, Hall AC. Control of chondrocyte regulatory volume decrease (RVD) by [Ca2+]i and cell shape. Osteoarthritis Cartilage 2008; 16:312-22. [PMID: 17855127 DOI: 10.1016/j.joca.2007.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 07/16/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Optimal matrix metabolism by articular chondrocytes is controlled by the 'set-point' volume which is determined mainly by membrane transporters. The signal transduction pathway(s) for the key membrane transporter which responds to cell swelling ('osmolyte channel') and mediates regulatory volume decrease (RVD) is poorly understood, so here the role of Ca2+ and the effects of 2D culture have been clarified. METHODS Changes to the volume and intracellular calcium levels ([Ca2+]i) of freshly isolated and 2D cultured bovine articular chondrocytes subjected to hypotonic challenge using a 43% reduction in medium osmolarity were studied by single-cell fluorescence microscopy. The effects of ethylene glycol tetraacetic acid (EGTA), REV5901 and Gd(3+) were studied and the role of Ca2+ influx determined by Mn2+ quench. RESULTS In freshly isolated cells, approximately 50% of chondrocytes exhibited 'robust RVD' (6[120]). RVD was inhibited by REV 5901 (4+/-2% responding) (3[23]) and 2 mM EGTA (18+/-5% responding) (4[166]) whereas Gd3+ had no effect (3[89]). The hypotonic challenge resulted in a Gd3+-insensitive rise in [Ca2+]i that did not correlate with RVD in all cells. Following 2D culture, chondrocytes also demonstrated Gd3+-insensitive RVD, but in contrast, the [Ca2+]i rise was blocked by this agent. CONCLUSIONS The data suggested that in freshly isolated and 2D cultured chondrocytes, the rise in [Ca2+]i occurring during hypotonic challenge could be related to RVD, but only in some cells. However, with 2D culture, the Ca2+ response switched to being Gd3+-sensitive, suggesting that as a result of changes to chondrocyte shape, stretch-activated cation channels although present, do not appear to play a role in volume regulation.
Collapse
Affiliation(s)
- M J P Kerrigan
- School of Biosciences, Department of Human and Health Sciences, University of Westminster, London, UK.
| | | |
Collapse
|
26
|
Ueki M, Tanaka N, Tanimoto K, Nishio C, Honda K, Lin YY, Tanne Y, Ohkuma S, Kamiya T, Tanaka E, Tanne K. The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes. Ann Biomed Eng 2008; 36:793-800. [DOI: 10.1007/s10439-008-9462-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
|
27
|
Bush PG, Parisinos CA, Hall AC. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy. J Cell Physiol 2008; 214:621-9. [PMID: 17786946 DOI: 10.1002/jcp.21249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone elongation is predominantly driven by the volume expansion of growth plate chondrocytes. This mechanism was initially believed to be "hypertrophy", describing a proportional increase of cell water and organelles. However, morphometrical analysis subsequently assumed the increase to be "swelling", resulting in a disproportionate increase of cell water (osmotically active fraction). Histological approaches were performed on fixed tissue, and for the "swelling" assumption to be valid, the osmotic sensitivity of living cells before and during volume increase should differ. To test this, analysis of images acquired by 2-photon laser scanning microscopy (2PLSM) were used to determine the osmotic sensitivity, and osmotically active/inactive proportions of in situ chondrocytes from 15 living rat growth plates exposed to varying media osmolarities ( approximately 0-580 mOsm). The dimensions of cell volume swelling in hypotonic media were different to the preferential lengthening seen in vivo, confirming the complexity of directional cell volume increase. Boyle-van't Hoff analysis of cell volume over the range of media osmolarity indicated no significant difference (Student's t-test) in the osmotically inactive fraction, 39.5 +/- 2.9% and 47.0 +/- 4.3% (n = 13) for proliferative and hypertrophic zones, respectively, or the sensitivity of volume to changes in media osmolarity (proliferative 15.5 +/- 0.8 and hypertrophic zone 15.5 +/- 1.2%volume . Osm). The osmotic fractions did not change as chondrocytes progress from proliferative to hypertrophic regions of the growth plate. Our data suggest cell volume increase by hypertrophy may play a greater role in cell enlargement than swelling, and should be re-evaluated as a mechanism responsible for growth plate chondrocyte volume increase and hence bone elongation.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
28
|
Shennan DB. Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem 2008; 21:15-28. [PMID: 18209468 DOI: 10.1159/000113743] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2007] [Indexed: 11/19/2022] Open
Abstract
Cells have to regulate their volume in order to survive. Moreover, it is now evident that cell volume per se and the membrane transport processes which regulate it, comprise an important signalling unit. For example, macromolecular synthesis, apoptosis, cell growth and hormone secretion are all influenced by the cellular hydration state. Therefore, a thorough understanding of volume-activated transport processes could lead to new strategies being developed to control the function and growth of both normal and cancerous cells. Cell swelling stimulates the release of ions such as K(+) and Cl(-) together with organic osmolytes, especially the beta-amino acid taurine. Despite being the subject of intense research interest, the nature of the volume-activated taurine efflux pathway is still a matter of controversy. On the one hand it has been suggested that osmosensitive taurine efflux utilizes volume-sensitive anion channels whereas on the other it has been proposed that the band 3 anion-exchanger is a swelling-induced taurine efflux pathway. This article reviews the evidence for and against a role of anion channels and exchangers in osmosensitive taurine transport. Furthermore, the distinct possibility that neither pathway is involved in taurine transport is highlighted. The putative relationship between swelling-induced taurine transport and volume-activated anionic amino acid, alpha-neutral amino acid and K(+) transport is also examined.
Collapse
Affiliation(s)
- David B Shennan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
29
|
Gibson JS, Milner PI, White R, Fairfax TPA, Wilkins RJ. Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflugers Arch 2007; 455:563-73. [PMID: 17849146 DOI: 10.1007/s00424-007-0310-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022]
Abstract
Articular cartilage is an avascular tissue dependent on diffusion mainly from synovial fluid to service its metabolic requirements. Levels of oxygen (O(2)) in the tissue are low, with estimates of between 1 and 6%. Metabolism is largely, if not entirely, glycolytic, with little capacity for oxidative phosphorylation. Notwithstanding, the tissue requires O(2) and consumes it, albeit at low rates. Changes in O(2) tension also have profound effects on chondrocytes affecting phenotype, gene expression, and morphology, as well as response to, and production of, cytokines. Although chondrocytes can survive prolonged anoxia, low O(2) levels have significant metabolic effects, inhibiting glycolysis (the negative Pasteur effect), and also notably matrix production. Why this tissue should respond so markedly to reduction in O(2) tension remains a paradox. Ion homeostasis in articular chondrocytes is also markedly affected by the extracellular matrix in which the cells reside. Recent work has shown that ion homeostasis also responds to changes in O(2) tension, in such a way as to produce significant effects on cell function. For this purpose, O(2) probably acts via alteration in levels of reactive oxygen species. We discuss the possibility that O(2) consumption by this tissue is required to maintain levels of ROS, which are then used physiologically as an intracellular signalling device. This postulate may go some way towards explaining why the tissue is dependent on O(2) and why its removal has such marked effects. Understanding the role of oxygen has implications for disease states in which O(2) or ROS levels may be perturbed.
Collapse
Affiliation(s)
- J S Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, England
| | | | | | | | | |
Collapse
|
30
|
Bush PG, Hall AC. Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage. J Cell Physiol 2005; 204:309-19. [PMID: 15668989 DOI: 10.1002/jcp.20294] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoarthritis is characterized by many factors, including proteoglycan loss, decreased collagen stiffness, and increased cartilage hydration. Chondrocyte swelling also occurs, and correlates with the degree of osteoarthritis, however, the cause is unknown but might be related to alterations to their passive osmotic properties. We have used two-photon confocal laser scanning microscopy to measure the passive osmotic characteristics of in situ chondrocytes within relatively non-degenerate and degenerate human tibial plateau cartilage, and in chondrocytes isolated from relatively non-degenerate cartilage. Explants with bone attached were taken from a total of 42 patients undergoing arthroplasty and graded macroscopically and microscopically into two groups, grade 0 + 1 and grade 2 + 3. There was a significant increase in cartilage hydration between these two groups (P < 0.05), however, there was no change when medium osmolarity was varied over approximately 0-480 mOsm. The passive osmotic behavior of in situ chondrocytes (at 4 degrees C) was identical over a range of culture medium osmolarities ( approximately 0-515 mOsm), however, the maximum swelling of cells within degenerate cartilage and isolated chondrocytes was greater compared to those in non-degenerate cartilage. The swelling in the majority of in situ chondrocytes was accounted for by the reduced interstitial osmolarity occurring with cartilage degeneration. There was, however, a small population of in situ chondrocytes whose volume was in excess (>/=2,500 microm(3)) of that predicted from the decreased interstitial osmotic pressure. These results show that for the majority of cells studied, the differences in passive chondrocyte volume between relatively non-degenerate, degenerate, and isolated cells were entirely accounted for by changes to the extracellular osmolarity (180-515 mOsm).
Collapse
Affiliation(s)
- Peter G Bush
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, United Kingdom
| | | |
Collapse
|
31
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
32
|
Sánchez JC, Wilkins RJ. Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:575-83. [PMID: 12890547 DOI: 10.1016/s1095-6433(03)00138-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chondrocytes inhabit an unusual environment, in which they are repeatedly subjected to osmotic challenges as fluid is expressed from the extracellular matrix during static joint loading. In the present study, the effects of hypotonic shock on intracellular pH, pH(i), have been studied in isolated bovine articular chondrocytes using the pH-sensitive fluroprobe BCECF. Cells subjected to a 50% dilution rapidly alkalinised, by approximately 0.2 pH units, a sustained plateau being achieved within 300 s. The effect was not altered by inhibitors of pH regulators, such as amiloride, bafilomycin and SITS, but was absent when cells were subjected to hypotonic shocks in solutions in which Na(+) ions were replaced by NMDG(+). The response was found to be sensitive to Gd(3+) ions, blockers of stretch-activated cation channels. Alkalinisation was also inhibited by treatment with Zn(2+) ions, at a concentration reported to block voltage-activated H(+) channels (VAHC). Depolarisation using high K(+) solutions supplemented with valinomycin also induced intracellular alkalinisation. Measurements using a membrane potential (E(m)) fluorescent dye showed that E(m) was approximately -44 mV, but was depolarised by over 50 mV following HTS. The depolarisation was also inhibited by Na(+) substitution with NMDG(+) or treatment with Gd(3+). We conclude that in response to HTS the opening of a stretch-activated cation channel leads to Na(+) influx, which results in a membrane depolarisation. Subsequent activation of VAHC permits H(+) ion efflux along the prevailing electrochemcial gradient, leading to the alkalinisation, which we record.
Collapse
Affiliation(s)
- J C Sánchez
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford, UK
| | | |
Collapse
|
33
|
Wilkins RJ, Fairfax TPA, Davies ME, Muzyamba MC, Gibson JS. Homeostasis of intracellular Ca2+ in equine chondrocytes: response to hypotonic shock. Equine Vet J 2003; 35:439-43. [PMID: 12875320 DOI: 10.2746/042516403775600541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Ca2+ homeostasis in articular chondrocytes affects synthesis and degradation of the cartilage matrix, as well as other cellular functions, thereby contributing to joint integrity. Although it will be affected by mechanical loading, the sensitivity of intracellular Ca2+ concentration ([Ca2+]i) in equine articular chondrocytes to many stimuli remains unknown. HYPOTHESIS An improved understanding of Ca2+ homeostasis in equine articular chondrocytes, and how it is altered during joint loading and pathology, will be important in understanding how joints respond to mechanical loads. METHODS [Ca2+]i was determined using the fluorophore fura-2. We examined the effects of hypotonic shock, a perturbation experienced in vivo during mechanical loading cycles. We used inhibitors of Ca2+ transporters to ascertain the important factors in Ca2+ homeostasis. RESULTS Under isotonic conditions, [Ca2+]i was 148 +/- 23 nmol/l, increasing by 216 +/- 66 nmol/l in response to reduction in extracellular osmolality of 50%. Resting [Ca2+]i, and the increase following hypotonic shock, were decreased by Ca2+ removal; they were both elevated when extracellular [Ca2+] ([Ca2+]o) was raised or following Na+ removal. The hypotonicity-induced rise in [Ca2+]i was inhibited by exposure of cells to gadolinium (Gd3+; 10 micromol/l), an inhibitor of mechanosensitive channels. [Ca2+]i was also elevated following treatment of cells with thapsigargin (10 micromol/l), an inhibitor of the Ca2+ pump of intracellular stores. CONCLUSIONS A model is presented which interprets these findings in relation to Ca2+ homeostasis in equine articular chondrocytes, including the presence of mechanosensitive channels allowing Ca2+ entry, a Na+/Ca2+ exchanger for removal of intracellular Ca2+ and intracellular stores sensitive to thapsigargin. POTENTIAL RELEVANCE A more complete understanding of Ca2+ homeostasis in equine chondrocytes may allow development of future therapeutic regimes to ameliorate joint disease.
Collapse
Affiliation(s)
- R J Wilkins
- University of Oxford, University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
34
|
Bush PG, Hall AC. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis Cartilage 2003; 11:242-51. [PMID: 12681950 DOI: 10.1016/s1063-4584(02)00369-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage swelling is an early event in osteoarthritis (OA). However, the response of chondrocytes to increased tissue hydration is unknown. This work studied the volume and morphology of living in situ human chondrocytes as a function of cartilage degeneration. METHODS The tibial plateaus from knee joints of 40 patients were obtained following above-knee amputations or knee arthroplasty, and degree of cartilage degeneration from 0 (non-eroded) to 3 (extensive fibrillations) was assessed using several criteria. In situ chondrocytes were labeled with fluorescent indicators (calcein for living cells, propidium iodide for dead cells) permitting the quantification of volume and visualisation of morphology of cells within the cartilage zones by confocal scanning laser microscopy (CLSM). RESULTS Chondrocyte volume within superficial and mid-zones, but not of deep zone cells, increased significantly (P<0.05 and P<0.02, respectively; one-way analysis of variance), with degree of cartilage hydration and degeneration. The volume increase ( approximately 90% for mid-zone chondrocytes, grade 3 cartilage) was greater than that which might occur following loss/excision of sub-chondral bone (<15% swelling). The CLSM technique utilised here revealed that approximately 40% of chondrocytes within all cartilage grades exhibited at least one cytoplasmic processes of <8 microm. The presence of these processes did not indicate a cell body of larger volume than cells without processes, and did not contribute to cell volume. CONCLUSIONS The volume of in situ chondrocytes within the superficial and mid-zones increased with cartilage degeneration. Cell swelling was greater than that expected from the increased hydration in OA, suggesting that an increase in chondrocyte volume might play a role in the changes to matrix metabolism occurring in OA.
Collapse
Affiliation(s)
- P G Bush
- Division of Clinical and Laboratory Sciences, Department of Biomedical Sciences (Physiology), University Medical School, University of Edinburgh, Scotland, Edinburgh, UK
| | | |
Collapse
|
35
|
Erickson GR, Northrup DL, Guilak F. Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthritis Cartilage 2003; 11:187-97. [PMID: 12623290 DOI: 10.1053/s1063-4584(02)00347-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of hypo-osmotically induced calcium (Ca(2+)) transients on the organization of the actin cytoskeleton in articular chondrocytes. The secondary hypothesis tested was that actin restructuring following hypo-osmotic stress is mediated by gelsolin. METHODS Isolated porcine chondrocytes were exposed to hypo-osmotic stress, and [Ca(2+)](i)was monitored using laser scanning microscopy. Calcium transients were monitored using fluorescent ratiometric imaging. The intracellular distribution of actin was examined using fluorescent immunohistochemistry and transient transfection with the pEGFP-actin plasmid. The intracellular distribution of gelsolin was investigated using fluorescent immunohistochemistry. RESULTS Osmotic stress induced transient increases in [Ca(2+)](i)caused reorganization of intracellular actin through a mechanism that required Ca(2+)in the extracellular media. Fluorescence microscopy revealed that gelsolin was colocalized with F-actin immediately following hypo-osmotic stress but dissociated over time. CONCLUSION These results indicate that hypo-osmotic stress induces a gelsolin-mediated reorganization of actin through a transient increase in [Ca(2+)](i).
Collapse
Affiliation(s)
- G R Erickson
- Orthopaedic Research Laboratories, Department of Surgery, Duke University Medical Center, 27710, Durham,NC, USA
| | | | | |
Collapse
|
36
|
Yellowley CE, Hancox JC, Donahue HJ. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes. J Cell Biochem 2002; 86:290-301. [PMID: 12111998 DOI: 10.1002/jcb.10217] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.
Collapse
Affiliation(s)
- Clare E Yellowley
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | |
Collapse
|
37
|
Hing WA, Sherwin AF, Poole CA. The influence of the pericellular microenvironment on the chondrocyte response to osmotic challenge. Osteoarthritis Cartilage 2002; 10:297-307. [PMID: 11950253 DOI: 10.1053/joca.2002.0517] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine whether differences in the pericellular microenvironment of different chondron preparations influence the chondrocyte volume regulatory response to experimental osmotic challenge. DESIGN Mechanically extracted chondrons (MC), enzymatically extracted chondrons (EC) and isolated chondrocytes (IC) were seeded into agarose and sampled at 1, 3 and 7 days. Samples mounted in a perfusion chamber were subjected to osmotic challenge. The cross-sectional areas of the chondrocyte and pericellular microenvironment were measured under isotonic, hypertonic and hypotonic conditions, and percentage change calculated. Separate samples were immunolabeled for type VI collagen and keratan sulfate. RESULTS Initially, the microenvironment of MC represented 60% of the chondron area and was occupied by type VI collagen and keratan sulfate. In EC, the microenvironment comprised 18% of the chondron area with narrow bands of type VI collagen and keratan sulfate. IC had no visible microenvironment, with small amounts of type VI collagen and keratan sulfate present. All preparations sequestered additional pericellular macromolecules during culture. Under isotonic conditions, the EC and IC chondrocytes were larger than those of MC. All chondrocytes shrank under hypertonic conditions and swelled under hypotonic conditions. MC were the least responsive, displaying the most efficient volume regulation. IC showed the largest response initially but this decreased with time. EC exhibited intermediate responses that decreased as the microenvironment increased in size. CONCLUSIONS The composition and structural integrity of the pericellular microenvironment do influence the cellular response to experimental osmotic challenge. This suggests that the microenvironment functions in situ to mediate the chondrocyte response to physicochemical changes associated with joint loading.
Collapse
Affiliation(s)
- W A Hing
- Division of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
38
|
Guilak F, Erickson GR, Ting-Beall HP. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J 2002; 82:720-7. [PMID: 11806914 PMCID: PMC1301881 DOI: 10.1016/s0006-3495(02)75434-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The metabolic activity of chondrocytes in articular cartilage is influenced by alterations in the osmotic environment of the tissue, which occur secondary to mechanical compression. The mechanism by which osmotic stress modulates cell physiology is not fully understood and may involve changes in the physical properties of the membrane or the cytoskeleton. The goal of this study was to determine the effect of the osmotic environment on the mechanical and physical properties of chondrocytes. In isoosmotic medium, chondrocytes exhibited a spherical shape with numerous membrane ruffles. Normalized cell volume was found to be linearly related to the reciprocal of the extracellular osmolality (Boyle van't Hoff relationship) with an osmotically active intracellular water fraction of 61%. In deionized water, chondrocytes swelled monotonically until lysis at a mean apparent membrane area 234 +/- 49% of the initial area. Biomechanically, chondrocytes exhibited viscoelastic solid behavior. The instantaneous and equilibrium elastic moduli and the apparent viscosity of the cell were significantly decreased by hypoosmotic stress, but were unchanged by hyperosmotic stress. Changes in the viscoelastic properties were paralleled by the rapid dissociation and remodeling of cortical actin in response to hypoosmotic stress. These findings indicate that the physicochemical environment has a strong influence on the viscoelastic and physical properties of the chondrocyte, potentially through alterations in the actin cytoskeleton.
Collapse
Affiliation(s)
- Farshid Guilak
- Orthopaedic Research Laboratories, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710 USA.
| | | | | |
Collapse
|
39
|
Erickson GR, Alexopoulos LG, Guilak F. Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 2001; 34:1527-35. [PMID: 11716854 DOI: 10.1016/s0021-9290(01)00156-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mechanical compression of cartilage is associated with a rise in the interstitial osmotic pressure, which can alter cell volume and activate volume recovery pathways. One of the early events implicated in regulatory volume changes and mechanotransduction is an increase of intracellular calcium ion ([Ca(2+)](i)). In this study, we tested the hypothesis that osmotic stress initiates intracellular Ca(2+) signaling in chondrocytes. Using laser scanning microscopy and digital image processing, [Ca(2+)](i) and cell volume were monitored in chondrocytes exposed to hyper-osmotic solutions. Control experiments showed that exposure to hyper-osmotic solution caused significant decreases in cell volume as well as transient increases in [Ca(2+)](i). The initial peak in [Ca(2+)](i) was generally followed by decaying oscillations. Pretreatment with gadolinium, a non-specific blocker of mechanosensitive ion channels, inhibited this [Ca(2+)](i) increase. Calcium-free media eliminated [Ca(2+)](i) increases in all cases. Pretreatment with U73122, thapsigargin, or heparin (blockers of the inositol phosphate pathway), or pertussis toxin (a blocker of G-proteins) significantly decreased the percentage of cells responding to osmotic stress and nearly abolished all oscillations. Cell volume decreased with hyper-osmotic stress and recovered towards baseline levels throughout the duration of the control experiments. The peak volume change with 550 mOsm osmotic stress, as well as the percent recovery of cell volume, was dependent on [Ca(2+)](i.) These findings indicate that osmotic stress causes significant volume change in chondrocytes and may activate an intracellular second messenger signal by inducing transient increases in [Ca(2+)](i).
Collapse
Affiliation(s)
- G R Erickson
- Orthopaedic Research Laboratories, Department of Surgery, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
Abstract
Articular chondrocytes experience changes to matrix hydration during both physiological (static load) and pathophysiological (osteoarthrosis, OA) conditions. Such changes should alter chondrocytes' volume, which has been shown to modify matrix metabolism. However, the osmometric behaviour of chondrocytes is not well understood. Here, using confocal laser scanning microscopy (CLSM), we have investigated the 'passive' osmotic responses of fluorescent-labelled chondrocytes within, and isolated from, the matrix. The volume-regulatory pathways normally activated by cell shrinkage/swelling, were blocked by bumetanide/REV5901, respectively. Chondrocytes in situ were broadly grouped into superficial (SZ), mid (MZ) and deep (DZ) zones, and there was a significant increase in resting cell volume with depth into the cartilage. Variation in medium osmolarity (range 0-530 mOsm; corresponding to an extracellular osmolarity of approximately 150 to approximately 600 mOsm) caused a rapid and sustained change to in situ MZ chondrocytes' volume. Over the range 180-380 mOsm, the change to in situ or isolated chondrocytes' volume was similar. For MZ chondrocytes. ideal osmometric (Boyle-van't Hoff) behaviour was apparent over the extracellular osmolarity range of approximately 250 to approximately 600 mOsm. Chondrocytes within the SZ appeared to be more sensitive to reduced osmolarity, swelling more for a given reduction in osmolarity, than MZ or DZ chondrocytes. These data show that over wide variations in osmolarity, articular chondrocytes in situ were osmotically sensitive, and for MZ chondrocytes behaved as perfect osmometers with the extracellular matrix (ECM) not restraining cell volume changes. Changes to matrix hydration may therefore alter passive chondrocytes' volume and unless compensated by volume-regulatory pathways, could lead to changes in cell volume, and hence matrix metabolism.
Collapse
Affiliation(s)
- P G Bush
- Department of Physiology, Medical School, University of Edinburgh, Scotland, UK
| | | |
Collapse
|
41
|
Fan HT, Morishima S, Kida H, Okada Y. Phloretin differentially inhibits volume-sensitive and cyclic AMP-activated, but not Ca-activated, Cl(-) channels. Br J Pharmacol 2001; 133:1096-106. [PMID: 11487521 PMCID: PMC1572865 DOI: 10.1038/sj.bjp.0704159] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Some phenol derivatives are known to block volume-sensitive Cl(-) channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl(-) channels in comparison with cyclic AMP-activated CFTR Cl(-) channels and Ca(2+)-activated Cl(-) channels using the whole-cell patch-clamp technique. Extracellular application of phloretin (over 10 microM) voltage-independently, and in a concentration-dependent manner (IC(50) approximately 30 microM), inhibited the Cl(-) current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells. In contrast, at 30 microM phloretin failed to inhibit cyclic AMP-activated Cl(-) currents in T84 and C127/CFTR cells. Higher concentrations (over 100 microM) of phloretin, however, partially inhibited the CFTR Cl(-) currents in a voltage-dependent manner. At 30 and 300 microM, phloretin showed no inhibitory effect on Ca(2+)-dependent Cl(-) currents induced by ionomycin in T84 cells. It is concluded that phloretin preferentially blocks volume-sensitive Cl(-) channels at low concentrations (below 100 microM) and also inhibits cyclic AMP-activated Cl(-) channels at higher concentrations, whereas phloretin does not inhibit Ca(2+)-activated Cl(-) channels in epithelial cells.
Collapse
Affiliation(s)
- Hai-Tian Fan
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- Faculty of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Shigeru Morishima
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Corporation, Okazaki 444-8585, Japan
| | - Hajime Kida
- Department of Gastroenterological Endoscopy, Faculty of Medicine, Kyoto 606-8507, Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
- CREST, Japan Science and Technology Corporation, Okazaki 444-8585, Japan
- Faculty of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Author for correspondence:
| |
Collapse
|
42
|
Pierce SK, Warren JW. The Taurine Efflux Portal Used to Regulate Cell Volume in Response to Hypoosmotic Stress Seems to Be Similar in Many Cell Types: Lessons to Be Learned from Molluscan Red Blood Cells1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0710:tteput]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Bush PG, Hall AC. Regulatory volume decrease (RVD) by isolated and in situ bovine articular chondrocytes. J Cell Physiol 2001; 187:304-14. [PMID: 11319754 DOI: 10.1002/jcp.1077] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Articular chondrocytes in vivo are exposed to a changing osmotic environment under both physiological (static load) and pathological (osteoarthritis) conditions. Such changes to matrix hydration could alter cell volume in situ and influence matrix metabolism. However the ability of chondrocytes to regulate their volume in the face of osmotic perturbations have not been studied in detail. We have investigated the regulatory volume decrease (RVD) capacity of bovine articular chondrocytes within, and isolated from the matrix, before and following acute hypotonic challenge. Cell volumes were determined by visualising fluorescently-labelled chondrocytes using confocal laser scanning microscopy (CLSM) at 21 degrees C. Chondrocytes in situ were grouped into superficial (SZ), mid (MZ), and deep zones (DZ). When exposed to 180mOsm or 250mOsm hypotonic challenge, cells in situ swelled rapidly (within approximately 90 sec). Chondrocytes then exhibited rapid RVD (t(1/2) approximately 8 min), with cells from all zones returning to approximately 3% of their initial volume after 20 min. There was no significant difference in the rates of RVD between chondrocytes in the three zones. Similarly, no difference in the rate of RVD was observed for an osmotic shock from 280 to 250 or 180mOsm. Chondrocytes isolated from the matrix into medium of 380mOsm and then exposed to 280mOsm showed an identical RVD response to that of in situ cells. The RVD response of in situ cells was inhibited by REV 5901. The results suggested that the signalling pathways involved in RVD remained intact after chondrocyte isolation from cartilage and thus it was likely that there was no role for cell-matrix interactions in mediating RVD.
Collapse
Affiliation(s)
- P G Bush
- Department of Biomedical Sciences (Physiology), University Medical School, Hugh Robson Building, George Square, Edinburgh, UK
| | | |
Collapse
|
44
|
Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 2000; 33:81-95. [PMID: 10609521 DOI: 10.1016/s0021-9290(99)00160-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanotransduction events in articular cartilage may be resolved into extracellular components followed by intracellular signalling events, which finally lead to altered cell response. Cell deformation is one of the former components, which has been examined using a model involving bovine chondrocytes seeded in agarose constructs. Viable fluorescent labels and confocal laser scanning microscopy were used to examine cellular and sub-cellular morphology. It was observed that cell size increased up to day 6 in culture, associated with an increase in the contents of proteoglycan and collagen. In addition, the organisation of the cytoskeleton components, described using a simple scoring scale, revealed temporal changes for actin fibres, microtubules and vimentin intermediate filaments. The constructs on day 1 were also subjected to unconfined compressive strains. A series of confocal scans through the centre of individual cells revealed a change from a spherical to an elliptical morphology. This was demonstrated by a change in diameter ratio, from a mean value of 1.00 at 0% strain to 0.60 at 25% strain. Using simple equations, the volume and surface areas were also estimated from the scans. Although the former revealed little change with increasing construct strain, surface area appeared to increase significantly. However further examination, using transmission electron microscopy to reveal fine ultrastructural detail at the cell periphery, suggest that this increase may be due to an unravelling of folds at the cell membrane. Cell deformation was associated with a decrease in the nuclear diameter, in the direction of the applied strain. The resulting nuclear strain in one direction increased in constructs compressed at later time points, although its values at all three assessment times were less than the corresponding values for cell strain. It is suggested that the nuclear behaviour may be a direct result of temporal changes observed in the organisation of the cytoskeleton. The study demonstrated that the chondrocyte-agarose model provides a useful system for the examination of compression events at both cellular and sub-cellular levels.
Collapse
Affiliation(s)
- D A Lee
- IRC in Biomedical Materials, University College London Medical School, Stanmore, Middlesex, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cells in slices prepared from the superficial cerebral cortex of normonatraemic rats underwent moderate swelling when exposed to low Na+ medium (122 mmol/l) accompanied by a large increase in the rate of efflux of preloaded taurine. In contrast, cells in slices from chronically (4 day) hyponatraemic rats did not increase in volume and the rate of taurine efflux was unchanged. The anion transport inhibitor 4,4'-diisothiocyanato-stilbene-2,2'-sulphonic acid (25 micromol/l) caused marked (-44%) reduction in taurine efflux in cells from normonatraemic rats; this response was strongly attenuated (-16%) by hyponatraemia. When slices from hyponatraemic rats were acutely exposed to medium containing 142 mmol/Na+ cells exhibited marked and paradoxical swelling. This response was completely abolished by the NaCl co-transport inhibitor bumetanide (50 micromol/l) and was not observed in slices that had not been pre-loaded with taurine. Forty eight hours after the start of the remission of hyponatraemia, cells from post-hyponatraemic rats displayed normal responses (i.e., moderate swelling and greatly accelerated taurine efflux) on exposure to 122 mmol/Na+. But at 24 h there was only partial restoration of the efflux response to 122 mmol/Na+, with an enhanced cell swelling response that was not significantly affected by bumetanide. It is concluded that (i) during chronic hyponatraemia, unlike acute hyposmotic stress, cortical cells preserve their volume and that this is not associated with any increase in the rate of taurine loss; there does however, appear to be a decrease in the anionic component of cellular taurine efflux; (ii) acute re-incubation of slices in medium containing 142 mmol/l Na+ is associated with cell swelling that may reflect up-regulation of Na/Cl/taurine co-transport; (iii) following restoration of normonatraemia the pattern of normal cellular response to acute hyposmotic stress is only gradually re-established.
Collapse
Affiliation(s)
- R O Law
- Department of Cell Physiology and Pharmacology, University of Leicester, UK
| |
Collapse
|
46
|
Calvert DT, Shennan DB. Volume-activated taurine efflux from the in situ perfused lactating rat mammary gland. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:97-105. [PMID: 9492907 DOI: 10.1046/j.1365-201x.1998.0267f.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of cell swelling on the efflux of amino acids from the in situ perfused lactating rat mammary gland has been examined. Cell swelling, induced by a hyposmotic shock, increased the fractional release of [3H]taurine. In contrast, a hyposmotic shock did not stimulate the efflux of D-[3H]aspartate, suggesting that the effect of a hyposmotic challenge on taurine release cannot be attributed to cell lysis. Volume-activated taurine efflux was reversible, dependent upon the extent of the osmotic challenge and inactivated with a prolonged hyposmotic shock. The release of taurine was also reversibly increased following isosmotic cell swelling (using urea). The results confirm the presence of a volume-sensitive taurine efflux transport system in lactating rat mammary tissue and suggest that the volume-activated amino acid efflux pathway is located at the blood-facing aspect of the mammary epithelium.
Collapse
Affiliation(s)
- D T Calvert
- Hannah Research Institute, Ayr, Scotland, UK
| | | |
Collapse
|
47
|
Martina M, Mozrzymas JW, Vittur F. Membrane stretch activates a potassium channel in pig articular chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:205-10. [PMID: 9371412 DOI: 10.1016/s0005-2736(97)00154-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activity of stretch-activated potassium channels has been recorded in articular chondrocytes using patch-clamp technique. Pressure dependence is described by a sigmoidal function with a half-maximum effect at -20.5 mbar. Selectivity for potassium is demonstrated by agreement between the reversal potential measured at different [K+]o and the prediction of Nernst equation and by block of these channels by caesium.
Collapse
Affiliation(s)
- M Martina
- Biophysics Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | |
Collapse
|
48
|
Errington RJ, Fricker MD, Wood JL, Hall AC, White NS. Four-dimensional imaging of living chondrocytes in cartilage using confocal microscopy: a pragmatic approach. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1040-51. [PMID: 9124506 DOI: 10.1152/ajpcell.1997.272.3.c1040] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of cell volume is a fundamental cellular homeostatic mechanism in the face of osmotic stress. In normal articular cartilage, chondrocytes are exposed to a changing osmotic environment. We present a comprehensive protocol for studying the volume regulatory behavior of chondrocytes within intact cartilage tissue using confocal laser-scanning microscopy. Our data acquisition regime optimizes both signal-to-noise and cell viability during time-lapsed three-dimensional (3-D) (x, y, z, t) imaging. The porcine cartilage is treated as an integrated component of the imaging system, and we demonstrate methods for the direct assessment of tissue-induced axial attenuation and image distortion. Parameterized functions describing these two components of image degradation are used to correct experimental data. The current study also highlights the problems associated with the analysis and visualization of four-dimensional (4-D) images. We have devised two new types of data reconstruction. The first compresses each 3-D time point into a single quantitative view, termed a coordinate view. From these reconstructions we are able to simultaneously view and extract cell measurements. A second type, a 4-D reconstruction, uses color to represent relative changes in cell volume, again while maintaining the morphological and spatial information. Both these approaches of image analysis and visualization have been implemented to study the morphology, spatial distribution, and dynamic volume behavior of chondrocytes after osmotic perturbation. We have mapped chondrocyte shape, arrangement, and absolute volume in situ, which vary significantly from the tissue surface through to the underlying bone. Despite the rigid nature of the extracellular matrix, cartilage cells are osmotically sensitive and respond to stimulation of volume regulatory mechanisms. The combined techniques of confocal laser-scanning microscopy and vital cell labeling have enabled us to study, for the first time, the response of chondrocytes in situ to changes in interstitial osmotic pressure.
Collapse
Affiliation(s)
- R J Errington
- Department of Physiology, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Horwitz ER, Higgins TM, Harvey BJ. Histamine-induced cytosolic calcium increase in porcine articular chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:95-100. [PMID: 8781555 DOI: 10.1016/0167-4889(96)00057-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chondrocytes have been shown to possess two types of histamine receptors, H1 and H2. The application of histamine to isolated porcine chondrocytes was found to significantly increase intracellular calcium and this increase was partially dependent upon the presence of extracellular calcium. This, therefore, implies that there is some role for a plasma membrane calcium transport system in the increase of cytosolic calcium in response to histamine. The increase in intracellular calcium in response to the application of histamine was found to be reduced by both H1 and H2 receptor antagonists.
Collapse
Affiliation(s)
- E R Horwitz
- Department of Physiology, University College Cork, Ireland.
| | | | | |
Collapse
|
50
|
Hall AC, Starks I, Shoults CL, Rashidbigi S. Pathways for K+ transport across the bovine articular chondrocyte membrane and their sensitivity to cell volume. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1300-10. [PMID: 8967429 DOI: 10.1152/ajpcell.1996.270.5.c1300] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The contributions of various K+ transport pathways in bovine chondrocytes isolated from articular cartilage and their responses to changes in cell volume have been studied. K+(86Rb+) uptake mediated by the Na(+)-K(+) pump and Na(+)-K(+)-2Cl- cotransporter were stimulated by cell shrinkage, the latter as part of the regulatory volume increases (RVI) response, the former as an indirect effect resulting from the rise in intracellular Na+ concentration during RVI. For both transporters, there was an increase in the maximum velocity with no detectable effect on the Michaelis constant. There was no evidence for volume-sensitive K+ transport mediated by the K(+)-Cl- cotransporter, or Ca(2+)-activated K+ channels. However, chondrocyte swelling stimulated a ouabain- and bumetanide-insensitive K+ flux sensitive to pimozide and other drugs, which exhibited some of the properties of the relatively nonspecific volume-sensitive "osmolyte" channel described in other cell types.
Collapse
Affiliation(s)
- A C Hall
- University Laboratory of Physiology, Oxford, United Kingdom
| | | | | | | |
Collapse
|