1
|
Tong WC, Choi CY, Karche S, Holden AV, Zhang H, Taggart MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One 2011; 6:e18685. [PMID: 21559514 PMCID: PMC3084699 DOI: 10.1371/journal.pone.0018685] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/15/2011] [Indexed: 11/18/2022] Open
Abstract
Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels.
Collapse
Affiliation(s)
- Wing-Chiu Tong
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Cecilia Y. Choi
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Sanjay Karche
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Arun V. Holden
- Institute of Membrane and System Biology, University of Leeds, Leeds, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| | - Michael J. Taggart
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, University of Manchester, Manchester, United Kingdom
- * E-mail: (HZ); (MT)
| |
Collapse
|
2
|
Ma KT, Guan BC, Yang YQ, Zhao H, Jiang ZG. ACh-induced depolarization in inner ear artery is generated by activation of a TRP-like non-selective cation conductance and inactivation of a potassium conductance. Hear Res 2008; 239:20-33. [PMID: 18313244 DOI: 10.1016/j.heares.2008.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/03/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Adequate cochlear blood supply by the spiral modiolar artery (SMA) is critical for normal hearing. ACh may play a role in neuroregulation of the SMA but several key issues including its membrane action mechanisms remain poorly understood. Besides its well-known endothelium-dependent hyperpolarizing action, ACh can induce a depolarization in vascular cells. Using intracellular and whole-cell recording techniques on cells in guinea pig in vitro SMA, we studied the ionic mechanism underlying the ACh-depolarization and found that: (1) ACh induced a DAMP-sensitive depolarization when intermediate conductance KCa channels were blocked by charybdotoxin or nitrendipine. The ACh-depolarization was associated with a decrease in input resistance (R(input)) in high membrane potential (V(m)) ( approximately -40 mV) cells but with no change or an increase in R input in low Vm ( approximately -75 mV) cells. ACh-depolarization was attenuated by background membrane depolarization from approximately -70 mV in the majority of cells; (2) ACh-induced inward current in smooth muscle cells embedded in a SMA segment often showed a U-shaped I/V curve, the reversal potential of its two arms being near EK and 0 mV, respectively; (3) ACh-depolarization was reduced by low Na+, zero K+ or 20mM K+ bath solutions; (4) ACh-depolarization was inhibited by La3+ in all cells tested, by 4-AP and flufenamic acid in low Vm cells, but was not sensitive to Cd2+, Ni2+, nifedipine, niflumic acid, DIDS, IAA94, linopirdine or amiloride. We conclude that ACh-induced vascular depolarization was generated mainly by activation of a TRP-like non-selective cation channel and by inactivation of an inward rectifier K+ channel.
Collapse
Affiliation(s)
- Ke-Tao Ma
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
3
|
Nishimaru K, Fujiki S, Tanaka Y, Tanaka H, Shigenobu K. Endocardial endothelium-dependent positive inotropy by Ca2+ pump inhibitors: possible involvement of store-operated Ca2+ entry. Pharmacology 2007; 80:200-6. [PMID: 17622753 DOI: 10.1159/000104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 01/24/2007] [Indexed: 11/19/2022]
Abstract
Positive inotropy by sarcoplasmic/endoplasmic reticulum Ca(2+) pump inhibitors was found and its mechanisms were analyzed pharmacologically. Thapsigargin and cyclopiazonic acid produced positive inotropy in isolated mouse left atria. The responses were inhibited by pretreatment of the endocardial surface with Triton X-100 or by indomethacin, which suggests that the inotropic responses were mediated by prostaglandin(s) released from the endocardial endothelium as well as acetylcholine-induced positive inotropy. The thapsigargin- and acetylcholine-induced positive inotropy was significantly inhibited by Gd(3+), La(3+) and lavendustin A, a tyrosine kinase inhibitor, but not by Ni(2+) and LOE908, a non-selective cation channel inhibitor. Gd(3+) and lavendustin A had no effect on the exogenously applied PGF(2)alpha-induced positive inotropy. In addition, acetylcholine did not induce any positive inotropy when applied after the application of thapsigargin. These results strongly suggest that thapsigargin- as well as acetylcholine-induced prostaglandin release from endocardial endothelium is mediated by store-operated Ca(2+) entry through Gd(3+)-sensitive channels and activation of tyrosine kinase.
Collapse
Affiliation(s)
- Kazuhide Nishimaru
- Department of Pharmacology, Toho University Faculty of Pharmaceutical Sciences, Funabashi, Chiba, Japan
| | | | | | | | | |
Collapse
|
4
|
Bergeron PM, Jumarie C. Reciprocal inhibition of Cd(2+) and Ca(2+) uptake in human intestinal crypt cells for voltage-independent Zn-activated pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:702-12. [PMID: 16815241 DOI: 10.1016/j.bbamem.2006.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/19/2006] [Accepted: 04/26/2006] [Indexed: 11/25/2022]
Abstract
Cadmium-Ca-Zn interactions for uptake have been studied in human intestinal crypt cells HIEC. Our results failed to demonstrate any significant cross-inhibition between Cd and Ca uptake under single metal exposure conditions. However, they revealed a strong reciprocal inhibition for a Zn-stimulated mechanism of transport. Optimal stimulation was observed under exposure conditions that favor an inward-directed Zn gradient, suggesting activation by extracellular rather than intracellular Zn. The effect of Zn on the uptake of Ca was concentration-dependent, and zinc-induced stimulation of Cd uptake resulted in a 3- and 5.8-fold increase in the K(m) and V(max) values, respectively. Neither basal nor Zn-stimulated Ca uptakes were sensitive to membrane depolarization. However, the stimulated component of uptake was inhibited by the trivalent cations Gd(3+), and La(3+) and to a lesser extent by Mg(2+) and Ba(2+). RT-PCR analysis as well as uptake measurement performed with extracellular ATP and/or suramin do not support the involvement of purinergic P2X receptor channels. Uptake and fluorescence data led to the conclusion that Zn is unlikely to trigger Ca influx in response to Ca release from thapsigargin-sensitive intracellular pools. Our data show that Zn may potentiate Cd accumulation in intestinal crypt cells through mechanism that still needs to be clarified.
Collapse
Affiliation(s)
- Pierre-Michel Bergeron
- Département des Sciences Biologiques, Centre TOXEN, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal (Québec), Canada H3C 3P8
| | | |
Collapse
|
5
|
Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, Vereecke J, Mubagwa K. Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol 2004; 559:761-76. [PMID: 15272039 PMCID: PMC1665187 DOI: 10.1113/jphysiol.2004.067637] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiac tissue expresses several TRP proteins as well as a Mg2+ -inhibited, non-selective cation current (IMIC) that bears many characteristics of TRP channel currents. We used the whole-cell voltage clamp technique in pig and rat ventricular myocytes to characterize the permeation, blockage properties and regulation of the cardiac IMIC channels in order to compare them with TRP channels, in particular with Mg2+ -sensitive TRPM6 and TRPM7. We show that removing extracellular divalent cations unmasks large inward and outward monovalent currents, which can be inhibited by intracellular Mg2+. Inward currents are suppressed upon replacing extracellular Na+ by NMDG+. Divalent cations block monovalent IMIC and, at 10-20 mm, carry measurable currents. Their efficacy sequence in decreasing outward IMIC (Ni2+ = Mg2+ > Ca2+ > Ba2+) and in inducing inward IMIC (Ni2+ >> Mg2+ = Ca2+ approximately Ba2+), and their permeabilities calculated from reversal potentials are similar to those of TRPM6 and TRPM7 channels. The trivalent cations Gd3+ and Dy3+ also block IMIC in a voltage-dependent manner (delta = 0.4-0.5). In addition they inhibit the inward current carried by divalent cations. IMIC is regulated by pH. Decreasing or increasing extracellular pH decreased and increased IMIC, respectively (pH0.5 = 6.9, nH = 0.98). Qualitatively similar results were obtained on IMIC in rat basophilic leukaemia cells. These effects in cardiac myocytes were absent in the presence of high intracellular buffering by 40 mm Hepes. Our results suggest that IMIC in cardiac cells is due to TRPM channels, most probably to TRPM6 or TRPM7 channels or to their heteromultimeres.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Centre for Experimental Surgery & Anaesthesiology, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
7
|
Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003; 83:59-115. [PMID: 12506127 DOI: 10.1152/physrev.00017.2002] [Citation(s) in RCA: 491] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental work during the past 15 years has demonstrated that endothelial cells in the heart play an obligatory role in regulating and maintaining cardiac function, in particular, at the endocardium and in the myocardial capillaries where endothelial cells directly interact with adjacent cardiomyocytes. The emerging field of targeted gene manipulation has led to the contention that cardiac endothelial-cardiomyocytal interaction is a prerequisite for normal cardiac development and growth. Some of the molecular mechanisms and cellular signals governing this interaction, such as neuregulin, vascular endothelial growth factor, and angiopoietin, continue to maintain phenotype and survival of cardiomyocytes in the adult heart. Cardiac endothelial cells, like vascular endothelial cells, also express and release a variety of auto- and paracrine agents, such as nitric oxide, endothelin, prostaglandin I(2), and angiotensin II, which directly influence cardiac metabolism, growth, contractile performance, and rhythmicity of the adult heart. The synthesis, secretion, and, most importantly, the activities of these endothelium-derived substances in the heart are closely linked, interrelated, and interactive. It may therefore be simplistic to try and define their properties independently from one another. Moreover, in relation specifically to the endocardial endothelium, an active transendothelial physicochemical gradient for various ions, or blood-heart barrier, has been demonstrated. Linkage of this blood-heart barrier to the various other endothelium-mediated signaling pathways or to the putative vascular endothelium-derived hyperpolarizing factors remains to be determined. At the early stages of cardiac failure, all major cardiovascular risk factors may cause cardiac endothelial activation as an adaptive response often followed by cardiac endothelial dysfunction. Because of the interdependency of all endothelial signaling pathways, activation or disturbance of any will necessarily affect the others leading to a disturbance of their normal balance, leading to further progression of cardiac failure.
Collapse
|
8
|
Moccia F, Berra-Romani R, Baruffi S, Spaggiari S, Adams DJ, Taglietti V, Tanzi F. Basal nonselective cation permeability in rat cardiac microvascular endothelial cells. Microvasc Res 2002; 64:187-197. [PMID: 12204642 DOI: 10.1006/mvre.2002.2430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca(2+)-activated Cl(-) conductance was present. When the intracellular Ca(2+) was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na(+) by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K(+) > Cs(+) > Na(+) > Li(+) and was inhibited by Ca(2+), La(3+), Gd(3+), and amiloride. The K(+)/Na(+) permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K(+) was replaced by NMDG(+), but was not sensitive to substitution by Cs(+). Finally, microfluorimetric experiments indicated the existence of a basal Ca(2+) entry pathway, inhibited by La(3+) and Gd(3+). The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Hogg DS, Kozlowski RZ. Hypoxia activates a background conductance in freshly isolated pulmonary arterial endothelial cells of the rat. FEBS Lett 2002; 522:125-9. [PMID: 12095631 DOI: 10.1016/s0014-5793(02)02912-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Utilising the patch-clamp recording technique we have demonstrated for the first time the effects of hypoxia on the background current in pulmonary arterial endothelial cells. Electrophysiological studies revealed the presence of a novel oxygen-sensitive, non-selective cation conductance (I(NSC)) in these cells. The inward component of I(NSC) was significantly potentiated by hypoxia. Both the inward and outward components of I(NSC) were inhibited by both La(3+) and Gd(3+). Hypoxic activation of I(NSC) may provide an important Ca(2+) influx pathway essential for the release of a pulmonary-selective vasoconstrictor pivotal to the sustained phase of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Dayle S Hogg
- Department of Pharmacology, School of Medical Sciences, University of Bristol, University Walk, UK
| | | |
Collapse
|
10
|
Abstract
Endothelial cells (EC) form a unique signal-transducing surface in the vascular system. The abundance of ion channels in the plasma membrane of these nonexcitable cells has raised questions about their functional role. This review presents evidence for the involvement of ion channels in endothelial cell functions controlled by intracellular Ca(2+) signals, such as the production and release of many vasoactive factors, e.g., nitric oxide and PGI(2). In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator. Ion channels are also involved in controlling intercellular permeability, EC proliferation, and angiogenesis. These functions are supported or triggered via ion channels, which either provide Ca(2+)-entry pathways or stabilize the driving force for Ca(2+) influx through these pathways. These Ca(2+)-entry pathways comprise agonist-activated nonselective Ca(2+)-permeable cation channels, cyclic nucleotide-activated nonselective cation channels, and store-operated Ca(2+) channels or capacitative Ca(2+) entry. At least some of these channels appear to be expressed by genes of the trp family. The driving force for Ca(2+) entry is mainly controlled by large-conductance Ca(2+)-dependent BK(Ca) channels (slo), inwardly rectifying K(+) channels (Kir2.1), and at least two types of Cl( -) channels, i.e., the Ca(2+)-activated Cl(-) channel and the housekeeping, volume-regulated anion channel (VRAC). In addition to their essential function in Ca(2+) signaling, VRAC channels are multifunctional, operate as a transport pathway for amino acids and organic osmolytes, and are possibly involved in endothelial cell proliferation and angiogenesis. Finally, we have also highlighted the role of ion channels as mechanosensors in EC. Plasmalemmal ion channels may signal rapid changes in hemodynamic forces, such as shear stress and biaxial tensile stress, but also changes in cell shape and cell volume to the cytoskeleton and the intracellular machinery for metabolite traffic and gene expression.
Collapse
Affiliation(s)
- B Nilius
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|
11
|
Kimura S, Mieno H, Tamaki K, Inoue M, Chayama K. Nonselective cation channel as a Ca(2+) influx pathway in pepsinogen-secreting cells of bullfrog esophagus. Am J Physiol Gastrointest Liver Physiol 2001; 281:G333-41. [PMID: 11447012 DOI: 10.1152/ajpgi.2001.281.2.g333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In pepsinogen-secreting cells of bullfrog (Rana catesbeiana), recent evidence suggests that Ca(2+) release from internal stores followed by Ca(2+) influx across the plasma membrane elicits pepsinogen secretion. Such a Ca(2+) influx could be carried by a background current, potentiated by bombesin, that was found in these cells using the whole cell patch-clamp technique. The permeability ratio of Cs(+)-Rb(+)-K(+)-Na(+)-Li(+)-N-methyl-D-glucamine(+)-Ca(2+) was 1.01:1:1:0.86:0.72:0.54:0.34. The current was almost totally blocked by the nonselective cation channel blockers La(3+) (0.1 mM) and Gd(3+) (0.1 mM) and was activated by intracellular Ca(2+). These properties demonstrated that the current, which was activated by bombesin, was a nonselective cation current. At the same time, Gd(3+) suppressed pepsinogen secretion by 29 +/- 5.6% in isolated pepsinogen-secreting glands. These results are in accord with the idea that a nonselective cation channel in pepsinogen-secreting cells plays a role as a Ca(2+) influx pathway leading to secretion of pepsinogen in bullfrog esophageal mucosa.
Collapse
Affiliation(s)
- S Kimura
- Saiseikai Kure Hospital, Kure City, Hiroshima 737-0821, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Neurons of the cerebellar nuclei fire spontaneous action potentials both in vitro, with synaptic transmission blocked, and in vivo, in resting animals, despite ongoing inhibition from spontaneously active Purkinje neurons. We have studied the intrinsic currents of cerebellar nuclear neurons isolated from the mouse, with an interest in understanding how these currents generate spontaneous activity in the absence of synaptic input as well as how they allow firing to continue during basal levels of inhibition. Current-clamped isolated neurons fired regularly ( approximately 20 Hz), with shallow interspike hyperpolarizations (approximately -60 mV), much like neurons in more intact preparations. The spontaneous firing frequency lay in the middle of the dynamic range of the neurons and could be modulated up or down with small current injections. During step or action potential waveform voltage-clamp commands, the primary current active at interspike potentials was a tetrodotoxin-insensitive (TTX), cesium-insensitive, voltage-independent, cationic flux carried mainly by sodium ions. Although small, this cation current could depolarize neurons above threshold voltages. Voltage- and current-clamp recordings suggested a high level of inactivation of the TTX-sensitive transient sodium currents that supported action potentials. Blocking calcium currents terminated firing by preventing repolarization to normal interspike potentials, suggesting a significant role for K(Ca) currents. Potassium currents that flowed during action potential waveform voltage commands had high activation thresholds and were sensitive to 1 mm TEA. We propose that, after the decay of high-threshold potassium currents, the tonic cation current contributes strongly to the depolarization of neurons above threshold, thus maintaining the cycle of firing.
Collapse
|
13
|
Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 2000; 20:9004-16. [PMID: 11124976 PMCID: PMC6773000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Neurons of the cerebellar nuclei fire spontaneous action potentials both in vitro, with synaptic transmission blocked, and in vivo, in resting animals, despite ongoing inhibition from spontaneously active Purkinje neurons. We have studied the intrinsic currents of cerebellar nuclear neurons isolated from the mouse, with an interest in understanding how these currents generate spontaneous activity in the absence of synaptic input as well as how they allow firing to continue during basal levels of inhibition. Current-clamped isolated neurons fired regularly ( approximately 20 Hz), with shallow interspike hyperpolarizations (approximately -60 mV), much like neurons in more intact preparations. The spontaneous firing frequency lay in the middle of the dynamic range of the neurons and could be modulated up or down with small current injections. During step or action potential waveform voltage-clamp commands, the primary current active at interspike potentials was a tetrodotoxin-insensitive (TTX), cesium-insensitive, voltage-independent, cationic flux carried mainly by sodium ions. Although small, this cation current could depolarize neurons above threshold voltages. Voltage- and current-clamp recordings suggested a high level of inactivation of the TTX-sensitive transient sodium currents that supported action potentials. Blocking calcium currents terminated firing by preventing repolarization to normal interspike potentials, suggesting a significant role for K(Ca) currents. Potassium currents that flowed during action potential waveform voltage commands had high activation thresholds and were sensitive to 1 mm TEA. We propose that, after the decay of high-threshold potassium currents, the tonic cation current contributes strongly to the depolarization of neurons above threshold, thus maintaining the cycle of firing.
Collapse
Affiliation(s)
- I M Raman
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
14
|
Park SJ, Kim YC, Suh SH, Rhim H, Sim JH, Kim SJ, So I, Kim KW. Background nonselective cationic current and the resting membrane potential in rabbit aorta endothelial cells. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:635-43. [PMID: 11173559 DOI: 10.2170/jjphysiol.50.635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ion channel conductances that regulate the membrane potential was investigated by using a perforated patch-clamp technique in rabbit aorta endothelial cells (RAECs). The whole-cell current/voltage (I-V) relation showed a slight outward rectification under physiological ionic conditions. The resting membrane potential was -23.3 +/- 1.1 mV (mean +/- SEM, n = 19). The slope conductances at the potentials of -80 and 50 mV were 31.0 +/- 4.0 and 62.8 +/- 7.1 pS pF(-1), respectively (n = 15). Changes in the extracellular and intracellular Cl(-) concentrations did not affect the reversal potential on I-V curves. The background nonselective cationic (NSC) current was isolated after the K(+) current was suppressed. The relative permeabilities calculated from the changes in reversal potentials using the constant-field theory were P(K):P(Cs):P(Na):P(Li) = 1:0.87:0.40:0.27 and P(Cs):P(Ca) = 1:0.21. Increases in the external Ca(2+) decreased the background NSC current in a dose-dependent manner. The concentration for half block by Ca(2+) was 1.1 +/- 0.3 mM (n = 7). Through the continuous recording of the membrane potential in a current-clamp mode, it was found that the background NSC conductance is the major determinant of resting membrane potential. Taken together, it could be concluded that the background NSC channels function as the major determinant for the resting membrane potential and can be responsible for the background Ca(2+) entry pathway in freshly isolated RAECs.
Collapse
Affiliation(s)
- S J Park
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoshimura M, Oshima T, Matsuura H, Inoue T, Kambe M, Kajiyama G. Differential effects of extracellular Mg2+ on thrombin-induced and capacitative Ca2+ entry in human coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:3356-61. [PMID: 9409333 DOI: 10.1161/01.atv.17.11.3356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Receptor-mediated and capacitative Ca2+ entry are the primary Ca2+ entry pathways in endothelial cells (ECs). The mechanisms for Ca2+ entry via these pathways have not been fully elucidated. In this study, the effect of low and high external Mg2+ concentrations on these Ca2+ entry pathways was examined in human coronary arterial ECs. External Mg2+ concentration did not affect cytosolic free Mg2+ concentration. After exposure to thrombin in Ca(2+)-free medium, addition of Ca2+ to the medium caused a rise in cytosolic free Ca2+ concentration ([Ca2+]i), indicating thrombin-induced Ca2+ influx. Thrombin-induced Ca2+ influx was inhibited by not only low but also high external Mg2+ concentrations. After depletion of endoplasmic Ca2+ stores by thapsigargin, addition of Ca2+ to the medium induced an increase in [Ca2+]i, indicating capacitative Ca2+ entry. Capacitative entry was found to be accelerated by low external Mg2+ and inhibited by high external Mg2+ concentration. Results suggest that receptor-mediated Ca2+ influx requires external Mg2+ but is inhibited by increased external Mg2+ concentrations and that capacitative Ca2+ entry is reduced by external Mg2+ in human coronary arterial ECs.
Collapse
Affiliation(s)
- M Yoshimura
- First Department of Internal Medicine, Hiroshima University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The functional impact of ion channels in vascular endothelial cells (ECs) is still a matter of controversy. This review describes different types of ion channels in ECs and their role in electrogenesis, Ca2+ signaling, vessel permeability, cell-cell communication, mechano-sensor functions, and pH and volume regulation. One major function of ion channels in ECs is the control of Ca2+ influx either by a direct modulation of the Ca2+ influx pathway or by indirect modulation of K+ and Cl- channels, thereby clamping the membrane at a sufficiently negative potential to provide the necessary driving force for a sustained Ca2+ influx. We discuss various mechanisms of Ca2+ influx stimulation: those that activate nonselective, Ca(2+)-permeable cation channels or those that activate Ca(2+)-selective channels, exclusively or partially operated by the filling state of intracellular Ca2+ stores. We also describe the role of various Ca(2+)- and shear stress-activated K+ channels and different types of Cl- channels for the regulation of the membrane potential.
Collapse
Affiliation(s)
- B Nilius
- Laboratorium voor Fysiologie, KU Leuven, Belgium
| | | | | |
Collapse
|
17
|
Voets T, Droogmans G, Nilius B. Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J Physiol 1996; 497 ( Pt 1):95-107. [PMID: 8951714 PMCID: PMC1160915 DOI: 10.1113/jphysiol.1996.sp021752] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. We have used the whole-cell patch-clamp technique to characterize the ionic conductances that determine the resting membrane potential in cultured endothelial cells from calf pulmonary artery (CPAE cells). 2. Resting membrane potentials were scattered between -88 and +5 mV with a mean +/- S.E.M. of -26 +/- 3 mV (n = 104). 3. The most prominent membrane current in resting cells was an inwardly rectifying K+ current. This current showed Na(+)-dependent inactivation and was efficiently blocked by external Ba2+ (EC50 = 2.2 microM), but was relatively insensitive to quinine, quinidine and TEA. 4. Hypertonic cell shrinkage inhibited an outwardly rectifying Cl- current, which was also efficiently blocked by 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB; 100 microM), quinine (500 microM) and quinidine (500 microM). 5. A linear, time-independent background current remained after elimination of these two currents. This current was dependent on extracellular monovalent cations with a permeability sequence of Cs+ > Na+ > Li+ >> N-methyl-D-glucamine. It was partially blocked by millimolar concentrations of the divalent cations Ca2+, Ni2+ and Ba2+. Gd3+ (200 microM) had no significant effect on this background current. 6. Continuous measurements of the membrane potential confirm that the three described conductances are the major determinants of the membrane potential. Due to the low slope conductance in the region between -70 and 0 mV, small changes in one of the current components can evoke large depolarizations or hyperpolarizations, which explains the large scattering of the resting membrane potentials.
Collapse
Affiliation(s)
- T Voets
- Laboratory of Physiology, Catholic University of Leuven, Belgium
| | | | | |
Collapse
|
18
|
Brutsaert DL, De Keulenaer GW, Fransen P, Mohan P, Kaluza GL, Andries LJ, Rouleau JL, Sys SU. The cardiac endothelium: functional morphology, development, and physiology. Prog Cardiovasc Dis 1996; 39:239-62. [PMID: 8970576 DOI: 10.1016/s0033-0620(96)80004-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiac endothelial cells, regardless of whether they are from endocardial or from coronary (micro)vascular origin, directly modulate performance of the subjacent cardiomyocytes, resulting in control of the onset of ventricular relaxation and rapid filling of the heart. This review summarizes major features of the morphology, embryology, and comparative physiology of cardiac endothelial cells as well as the experimental observations on how cardiac endothelial cells affect the mechanical performance of the heart. As for the underlying mechanisms of the interaction between cardiac endothelial cells and cardiomyocytes, two working hypotheses have been postulated over the past years; (1) interaction mediated through a trans-endothelial physicochemical gradient for various ions (active blood-heart barrier), and (2) interaction mediated through the release by the cardiac endothelial cells of various cardioactive substances, eg, nitric oxide, endothelin, and prostacyclin. These two mechanisms may act in concert or in parallel.
Collapse
Affiliation(s)
- D L Brutsaert
- Laboratory of Human Physiology and Pathophysiology, Antwerp University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|