1
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Xiao GS, Zhang YH, Wang Y, Sun HY, Baumgarten CM, Li GR. Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes. Br J Pharmacol 2018; 175:3422-3432. [PMID: 29900525 DOI: 10.1111/bph.14392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Adrenergic regulation of cell volume-regulated chloride current (ICl.vol ) is species-dependent. The present study investigates the mechanism underlying adrenergic regulation of ICl.vol in human atrial myocytes. EXPERIMENTAL APPROACH Conventional whole-cell patch voltage-clamp techniques were used to record membrane current in human atrial myocytes. ICl.vol was evoked by hyposmotic bath solution (0.6 times isosmotic, 0.6 T). KEY RESULTS ICl.vol was augmented by noradrenaline (1 μM) during cell swelling in 0.6 T but not under isosmotic (1 T) conditions. Up-regulation of ICl.vol in 0.6 T was blocked by the β-adrenoceptor antagonist propranolol (2 μM), but not by the α1 -adrenoceptor antagonist prazosin (2 μM). This β-adrenergic response involved cAMP but was independent of PKA; the protein kinase inhibitor H-89 (2 μM) or PKI (10 μM in pipette solution) failed to prevent ICl.vol up-regulation by noradrenaline. Moreover, the PI3K/PKB inhibitor LY294002 (50 μM) and the PKG inhibitor KT5823 (10 μM) did not affect noradrenaline-induced increases in ICl.vol . Interestingly, the exchange protein directly activated by cAMP (Epac) agonist 8-pCPT-2'-O-Me-cAMP (50 μM) also up-regulated ICl.vol , and the noradrenaline-induced increase of ICl.vol in 0.6 T was reversed or prevented by the Epac inhibitor ESI-09 (10 μM). CONCLUSION AND IMPLICATIONS These data show that ICl.vol evoked by cell swelling of human atrial myocytes is up-regulated by noradrenaline via a PKA-independent cAMP/Epac pathway in human atrial myocytes. cAMP/Epac-induced ICl.vol is expected to shorten action potential duration during human atrial myocytes swelling and may be involved in abnormal cardiac electrical activity during cardiac pathologies that evoke β-adrenoceptor signalling.
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Clive M Baumgarten
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
3
|
Kelder TP, Vicente-Steijn R, Poelmann RE, Mummery CL, DeRuiter MC, Jongbloed MRM. The avian embryo to study development of the cardiac conduction system. Differentiation 2016; 91:90-103. [PMID: 26856662 DOI: 10.1016/j.diff.2016.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
Abstract
The avian embryo has long been a popular model system in developmental biology. The easy accessibility of the embryo makes it particularly suitable for in ovo microsurgery and manipulation. Re-incubation of the embryo allows long-term follow-up of these procedures. The current review focuses on the variety of techniques available to study development of the cardiac conduction system in avian embryos. Based on the large amount of relevant data arising from experiments in avian embryos, we conclude that the avian embryo has and will continue to be a powerful model system to study development in general and the developing cardiac conduction system in particular.
Collapse
Affiliation(s)
- Tim P Kelder
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Rebecca Vicente-Steijn
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands; ICIN Netherlands Heart Institute, Utrecht, The Netherlands
| | - Robert E Poelmann
- Cardiology, Leiden University Medical Center, The Netherlands; Integrative Zoology, Institute Biology, University Leiden, The Netherlands
| | | | - Marco C DeRuiter
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands
| | - Monique R M Jongbloed
- Anatomy & Embryology, Leiden University Medical Center, The Netherlands; Cardiology, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
4
|
Missan S, Shuba LM, Zhabyeyev P, McDonald TF. Osmotic modulation of slowly activating IKs in guinea-pig ventricular myocytes. Cardiovasc Res 2011; 91:429-36. [DOI: 10.1093/cvr/cvr074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Bell JR, Lloyd D, Curl CL, Delbridge LMD, Shattock MJ. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM? Exp Physiol 2008; 94:330-43. [PMID: 19074587 DOI: 10.1113/expphysiol.2008.045823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Physiology, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| | | | | | | | | |
Collapse
|
6
|
Rose U, Derst C, Wanischeck M, Marinc C, Walther C. Properties and possible function of a hyperpolarisation-activated chloride current in Drosophila. J Exp Biol 2007; 210:2489-500. [PMID: 17601953 DOI: 10.1242/jeb.006361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARY
A chloride current, ICl,H, slowly activating on hyperpolarisation was investigated in Drosophila melanogaster larval muscles using the two-electrode voltage clamp. Sizeable currents were observed after the intracellular chloride concentration([Cl–]i) had been elevated by diffusion of Cl– from the electrodes. The time course of ICl,H was rather variable and required two exponentials to be accurately described. The reversal potential, –40 to –20 mV in Cl–-loaded fires, shifted on lowering external[Cl–] in the positive direction. Steady-state activation of ICl,H was characterised by V0.5 of≈–120 mV and a slope factor, k, of ≈10 mV at a[Cl–]i ≈35 mmol l–1. Raising[Cl–]i to ≈50 mmol l–1 caused a negative shift of V0.5 equivalent to the change of ECl and led to a nearly threefold increase in maximal steady-state conductance. ICl,H was resistant to 10 mmol l–1 Zn2+ and 1 mmol l–1Cd2+ but was greatly reduced by 1 mmol l–19-anthracenecarboxylic acid (9-AC). ICl,H was affected by changes of extracellular pH and increased on lowering extracellular osmolality. 9-AC also decreased muscle fibre resting conductance by approximately 20% and increased muscle contractions. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed the expression of all three ClC genes in muscle, and immunohistochemistry indicated location of Drosophila melanogaster chloride channel-2(DmClC-2) at the Z-lines. We conclude that DmClC-2 accounts for the channels underlying ICl,H, and in part for the resting chloride conductance. DmClC-2 may serve general homeostatic mechanisms such as pH- and osmo-regulation or may support muscle function on high motor activity or during a particular neurohormonal state of the animal.
Collapse
Affiliation(s)
- Uwe Rose
- Institute of Neurobiology, University Ulm, Albert-Einstein-Allee 11, Ulm 89160, Germany.
| | | | | | | | | |
Collapse
|
7
|
Wang GL, Wang GX, Yamamoto S, Ye L, Baxter H, Hume JR, Duan D. Molecular mechanisms of regulation of fast-inactivating voltage-dependent transient outward K+ current in mouse heart by cell volume changes. J Physiol 2005; 568:423-43. [PMID: 16081489 PMCID: PMC1474744 DOI: 10.1113/jphysiol.2005.091264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The K(v)4.2/4.3 channels are the primary subunits that contribute to the fast-inactivating, voltage-dependent transient outward K(+) current (I(to,fast)) in the heart. I(to,fast) is the critical determinant of the early repolarization of the cardiac action potential and plays an important role in the adaptive remodelling of cardiac myocytes, which usually causes cell volume changes, during myocardial ischaemia, hypertrophy and heart failure. It is not known, however, whether I(to,fast) is regulated by cell volume changes. In this study we investigated the molecular mechanism for cell volume regulation of I(to,fast) in native mouse left ventricular myocytes. Hyposmotic cell swelling caused a marked increase in densities of the peak I(to,fast) and a significant shortening in phase 1 repolarization of the action potential duration. The voltage-dependent gating properties of I(to,fast) were, however, not altered by changes in cell volume. In the presence of either protein kinase C (PKC) activator (12,13-dibutyrate) or phosphatase inhibitors (calyculin A and okadaic acid), hyposmotic cell swelling failed to further up-regulate I(to,fast). When expressed in NIH/3T3 cells, both K(v)4.2 and K(v)4.3 channels were also strongly regulated by cell volume in the same voltage-independent but PKC- and phosphatase-dependent manner as seen in I(to,fast) in the native cardiac myocytes. We conclude that K(v)4.2/4.3 channels in the heart are regulated by cell volume through a phosphorylation/dephosphorylation pathway mediated by PKC and serine/threonine phosphatase(s). These findings suggest a novel role of K(v)4.2/4.3 channels in the adaptive electrical and structural remodelling of cardiac myocytes in response to myocardial hypertrophy, ischaemia and reperfusion.
Collapse
Affiliation(s)
- Guan-Lei Wang
- Center of Biomedical Research Excellence, Department of Pharmacology, University of Nevada School of Medicine, Reno, 89557-0270, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
d'Anglemont de Tassigny A, Ghaleh B, Souktani R, Henry P, Berdeaux A. Hypo-osmotic stress inhibits doxorubicin-induced apoptosis via a protein kinase A-dependent mechanism in cardiomyocytes. Clin Exp Pharmacol Physiol 2005; 31:438-43. [PMID: 15236631 DOI: 10.1111/j.1440-1681.2004.04025.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The clinical use of doxorubicin is limited by the development of severe cardiomyopathies linked, at least in part, to an abnormal increase in the rate of apoptotic cell death. Because cell shrinkage is considered to be a crucial step at the onset of apoptosis, the aim of the present study was to investigate whether a brief hypo-osmotic stress, which leads to an increase in cell volume, could interfere with the induction of apoptosis by doxorubicin in adult cardiomyocytes. 2. Cell volume expansion results in intracellular accumulation of cAMP, so we secondarily tested whether the protective effect of hypo-osmotic stress could be related to the cAMP pathway. Accordingly, apoptosis was induced by doxorubicin (1 micromol/L) in cardiomyocytes freshly isolated from New Zealand adult rabbit hearts. 3. Exposure to doxorubicin in an iso-osmotic medium (290 mOsmol/kg H2O) induced a rapid decrease in cell volume, as well as increases in annexin V labelling and caspase-3 activity, two biological markers of apoptosis. These effects of doxorubicin were abolished by 15 min pretreatment with hypo-osmotic stress at 220 mOsmol/kgH2O (HS 220). 4. This cytoprotective effect of HS 220 was still observed when doxorubicin was added to the medium 60 min later, but it was abolished when the pretreatment by HS 220 was associated with the protein kinase A inhibitor KT 5720 (200 nmol/L). 5. Conversely, 15 min pretreatment with either the cAMP analogue 8-bromo-cAMP (0.5 mmol/L) or the adenylate cyclase activator forskolin (10 micromol/L) inhibited apoptosis induced by doxorubicin. 6. In conclusion, these results demonstrate that: (i) apoptosis induced by doxorubicin can be counteracted by a hypo-osmotic stress in adult cardiomyocytes; and (ii) activation of the protein kinase A-dependent pathway plays a major role in the mechanism leading to the cytoprotective effect induced by a hypo-osmotic stress.
Collapse
|
9
|
d'Anglemont de Tassigny A, Souktani R, Ghaleh B, Henry P, Berdeaux A. Structure and pharmacology of swelling-sensitive chloride channels, I(Cl,swell). Fundam Clin Pharmacol 2004; 17:539-53. [PMID: 14703715 DOI: 10.1046/j.1472-8206.2003.00197.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since several years, the interest for chloride channels and more particularly for the enigmatic swelling-activated chloride channel (I(Cl,swell)) is increasing. Despite its well-characterized electrophysiological properties, the I(Cl,swell) structure and pharmacology are not totally elucidated. These channels are involved in a variety of cell functions, such as cardiac rhythm, cell proliferation and differentiation, cell volume regulation and cell death through apoptosis. This review will consider different aspects regarding structure, electrophysiological properties, pharmacology, modulation and functions of these swelling-activated chloride channels.
Collapse
|
10
|
Ding Y, Schwartz D, Posner P, Zhong J. Hypotonic swelling stimulates L-type Ca2+ channel activity in vascular smooth muscle cells through PKC. Am J Physiol Cell Physiol 2004; 287:C413-21. [PMID: 15070808 DOI: 10.1152/ajpcell.00537.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that L-type Ca(2+) channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca(2+) channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca(2+) channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba(2+) currents (I(Ba)) through L-type Ca(2+) channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca(2+) channel activity but did not alter the voltage-dependent characteristics of Ca(2+) channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31-8425 or Go-6983, prevented I(Ba) enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased I(Ba) under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on I(Ba) when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca(2+) channel activity in rabbit portal vein smooth muscle cells through activation of PKC.
Collapse
Affiliation(s)
- Yanfeng Ding
- Dept. of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
11
|
Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RKH. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2004; 148:1-80. [PMID: 12687402 DOI: 10.1007/s10254-003-0009-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems-channels and carriers alike-have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand.
Collapse
Affiliation(s)
- F Wehner
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| | | | | | | | | |
Collapse
|
12
|
Cho WK, Siegrist VJ, Zinzow W. Impaired regulatory volume decrease in freshly isolated cholangiocytes from cystic fibrosis mice: implications for cystic fibrosis transmembrane conductance regulator effect on potassium conductance. J Biol Chem 2004; 279:14610-8. [PMID: 14722124 DOI: 10.1074/jbc.m310855200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K(+) efflux pathway, which could not be reversed by cAMP nor calcium agonists.
Collapse
Affiliation(s)
- Won Kyoo Cho
- Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine and The Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
13
|
Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 82:25-42. [PMID: 12732266 DOI: 10.1016/s0079-6107(03)00003-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characteristics and functions of the cardiac swelling-activated Cl current (I(Cl,swell)) are considered in physiologic and pathophysiologic settings. I(Cl,swell) is broadly distributed throughout the heart and is stimulated not only by osmotic and hydrostatic increases in cell volume, but also by agents that alter membrane tension and direct mechanical stretch. The current is outwardly rectifying, reverses between the plateau and resting potentials (E(m)), and is time-independent over the physiologic voltage range. Consequently, I(Cl,swell) shortens action potential duration, depolarizes E(m), and acts to decrease cell volume. Because it is activated by stimuli that also activate cation stretch-activated channels, I(Cl,swell) should be considered as a potential effector of mechanoelectrical feedback. I(Cl,swell) is activated in ischemic and non-ischemic dilated cardiomyopathies and perhaps during ischemia and reperfusion. I(Cl,swell) plays a role in arrhythmogenesis, myocardial injury, preconditioning, and apoptosis of myocytes. As a result, I(Cl,swell) potentially is a novel therapeutic target.
Collapse
Affiliation(s)
- Clive M Baumgarten
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0551, USA. clive.baumgarten.vcu.edu
| | | |
Collapse
|
14
|
Wei H, Mei YA, Sun JT, Zhou HQ, Zhang ZH. Regulation of swelling-activated chloride channels in embryonic chick heart cells. Cell Res 2003; 13:21-8. [PMID: 12643346 DOI: 10.1038/sj.cr.7290147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Swelling-activated Cl- currents, I(Cl,swell) were measured during hyposmotic shock in white Leghorn embryonic chick heart cells using the whole-cell recording of patch-clamp technique. Genistein, an inhibitor of protein tyrosine kinase (PTK), suppressed I(Cl,swell). Under isosmotic condition phorbol 12-myristate 13-acetate (PMA), an activator of PKC, elicited the Cl- current similar to that in hyposmotic solution, whereas hyposmotic shock did not elicit I(Cl,swell) in chelerythrine chloride(an inhibitor of PKC)-treated cells. Confocal microscopy experiments using FITC-phalloidin as a fluorescent label of F-actin showed that the actin network was moved from cortical region of the cell to the center after hyposmotic shock as compared with the image under isosmotic condition. When the cells were treated with cytochalasin B (CB) or cytochalasin D (CD) under isosmotic condition the disruption of the F-actin integrity was observed, and I(Cl,swell) was not elicited. With combination treatment of CB with PMA, hyposmotic solution could not elicited I(Cl,swell). The results suggested that the role of PTK, probably receptor tyrosine kinase, for regulation of I(Cl,swell) appeared to be at upstream site related to the role of F-actin. Then PKC signal pathway was activated somehow and finally change in the polymerization state of cytoskeleton led to activate the swelling-activated Cl- channels. These results demonstrate clearly that PTK, PKC and F-actin are important factors for regulation of I(Cl,swell), in embryonic chick heart cells as compared with often controversial results reported in different cell types.
Collapse
Affiliation(s)
- Hua Wei
- Department of Physiology and Biophysics, Liren Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Ellershaw DC, Greenwood IA, Large WA. Modulation of volume-sensitive chloride current by noradrenaline in rabbit portal vein myocytes. J Physiol 2002; 542:537-47. [PMID: 12122151 PMCID: PMC2290416 DOI: 10.1113/jphysiol.2002.018770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of noradrenaline on the volume-sensitive chloride current (I(Cl(swell))) was studied with conventional whole-cell recording techniques in freshly dispersed isolated smooth muscle cells of the rabbit portal vein. In the absence of receptor antagonists, noradrenaline produced an increase in the amplitude of I(Cl(swell)) in some cells and a decrease in others. In the presence of the beta-adrenoceptor antagonist propranolol, noradrenaline increased I(Cl(swell)) and in the presence of the alpha(1)-adrenoceptor antagonist prazosin, noradrenaline reduced I(Cl(swell).) The phospholipase C (PLC) inhibitor U73122 reduced the amplitude of I(Cl(swell)) whereas the inactive analogue U73343 had no effect. The phorbol esters phorbol-12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu) increased the amplitude of I(Cl(swell)) by approximately 60 and 100 %, respectively, in a voltage-independent fashion. Inhibitors of protein kinase C (PKC) chelerythrine and calphostin-C decreased the amplitude of I(Cl(swell)) in a concentration-dependent but voltage-independent manner. Bath application of 8-Br-cAMP decreased I(Cl(swell)) by about 60 % whereas the inhibitor of protein kinase A (PKA) KT5720 increased the amplitude of I(Cl(swell)) by approximately 80-90 %. In the presence of propranolol, chelerythrine prevented the increase of I(Cl(swell)) by noradrenaline; in the presence of prazosin, KT5720 blocked the inhibitory action of noradrenaline. The results show that in rabbit portal vein myocytes noradrenaline enhances I(Cl(swell)) by acting on alpha(1)-adrenoceptors and reduces I(Cl(swell)) by stimulating beta-adrenoceptors. The data suggest that the potentiating and inhibitory effects of noradrenaline are mediated, respectively, by PKC and PKA.
Collapse
Affiliation(s)
- D C Ellershaw
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
17
|
Wang CM, Chang YY, Kuo JS, Sun SH. Activation of P2X(7) receptors induced [(3)H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl(-)/HCO(3)(-)-dependent mechanism. Glia 2002; 37:8-18. [PMID: 11746779 DOI: 10.1002/glia.10004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP is an important signaling molecule in the nervous system and it's signaling is mediated through the metabotropic P2Y and ionotropic P2X receptors. ATP is known to stimulate Ca(2+) influx and phospholipase D (PLD) activity in the type-2 astrocyte cell line, RBA-2; in this study, we show that the release of preloaded [(3)H]GABA from RBA-2 cells is mediated through the P2X(7) receptors. ATP and the ATP analogue 3'-O-(4-benoylbenoyl)-adenosine-5'-triphosphate (BzATP) both stimulated [(3)H]GABA release in a concentration dependent manner, while the nonselective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), the P2X(7)-sensitive antagonist oxidized ATP (oATP), and high extracellular Mg(2+) all inhibited the ATP-stimulated [(3)H]GABA release. The ATP-stimulated [(3)H]GABA release was not affected neither by removing extracellular Na(+) nor by changes in the intracellular or extracellular Ca(2+) concentration. The GABA transporter inhibitors nipecotic acid and beta-alanine also had no effect. The ATP-stimulated [(3)H]GABA release was blocked, however, when media Cl(-) was replaced with gluconate and when extracellular HCO(3)(-) was removed. The Cl(-) channel/exchanger blockers 4,4'-diisothiocyanatostilbene-2',2'-disulfonic acid (DIDS) and 4-acetamido-4'- isothiocyanatostilbene-2',2'-disulfonic acids (SITS), but not diphenylamine-2-carboxylic acid (DPC) and furosemide, blocked the ATP-stimulated [(3)H]GABA release. The anionic selectivity of the process was F(-) > Cl(-) > Br(-) which is the same as that reported for volume-sensitive Cl(-) conductance. Treating cells with phorbol-12-myristate 13-acetate (PMA), forskolin, dibutyryl-cAMP, PD98059, neomycin, and D609 all inhibited the ATP-stimulated [(3)H]GABA release. We concluded that in RBA-2 cells, ATP stimulates [(3)H]GABA release through the P2X(7) receptors via a Cl(-)/HCO(3)(-)-dependent mechanism that is regulated by PKC, PKA, MEK/ERK, and PLD.
Collapse
Affiliation(s)
- Chia-Mei Wang
- Institute of Neuroscience, College of Life Science, National Yang Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
18
|
Shuba YM, Prevarskaya N, Lemonnier L, Van Coppenolle F, Kostyuk PG, Mauroy B, Skryma R. Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line. Am J Physiol Cell Physiol 2000; 279:C1144-54. [PMID: 11003595 DOI: 10.1152/ajpcell.2000.279.4.c1144] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patch-clamp recordings were used to study ion currents induced by cell swelling caused by hypotonicity in human prostate cancer epithelial cells, LNCaP. The reversal potential of the swelling-evoked current suggested that Cl(-) was the primary charge carrier (termed I(Cl,swell)). The selectivity sequence of the underlying volume-regulated anion channels (VRACs) for different anions was Br(-) approximately I(-) > Cl(-) > F(-) > methanesulfonate >> glutamate, with relative permeability numbers of 1.26, 1.20, 1.0, 0.77, 0.49, and 0.036, respectively. The current-voltage patterns of the whole cell currents as well as single-channel currents showed moderate outward rectification. Unitary VRAC conductance was determined at 9.6 +/- 1.8 pS. Conventional Cl(-) channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (100 microM) and DIDS (100 microM) inhibited whole cell I(Cl,swell) in a voltage-dependent manner, with the block decreasing from 39.6 +/- 9.7% and 71.0 +/- 11. 0% at +50 mV to 26.2 +/- 7.2% and 14.5 +/- 6.6% at -100 mV, respectively. Verapamil (50 microM), a standard Ca(2+) antagonist and P-glycoprotein function inhibitor, depressed the current by a maximum of 15%. Protein tyrosine kinase inhibitors downregulated I(Cl,swell) (genistein with an IC(50) of 2.6 microM and lavendustin A by 60 +/- 14% at 1 microM). The protein tyrosine phosphatase inhibitor sodium orthovanadate (500 microM) stimulated I(Cl,swell) by 54 +/- 11%. We conclude that VRACs in human prostate cancer epithelial cells are modulated via protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Y M Shuba
- Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale EPI 9938, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Pasantes-Morales H, Cardin V, Tuz K. Signaling events during swelling and regulatory volume decrease. Neurochem Res 2000; 25:1301-14. [PMID: 11059803 DOI: 10.1023/a:1007652330703] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain cell swelling compromises neuronal function and survival by the risk of generation of ischemia episodes as compression of small vessels occurs due to the limits to expansion imposed by the rigid skull. External osmolarity reductions or intracellular accumulation of osmotically active solutes result in cell swelling which can be counteracted by extrusion of osmolytes through specific efflux pathways. Characterization of these pathways has received considerable attention, and there is now interest in the understanding of the intracellular signaling events involved in their activation and regulation. Calcium and calmodulin, phosphoinositides and cAMP may act as second messengers, carrying the information about a cell volume change into signaling enzymes. Small GTPases, protein tyrosine kinases and phospholipases, also appear to be part of the signaling cascades ultimately modulating the osmolyte efflux pathways. This review focus on i) the influence of hyposmotic and isosmotic swelling on these signaling events and molecules and ii) the effects of manipulating their function on the osmolyte fluxes, particularly K+, CI- and amino acids, and on the consequent efficiency of cell volume adjustment.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico, Mexico City.
| | | | | |
Collapse
|
20
|
Bryan-Sisneros A, Sabanov V, Thoroed SM, Doroshenko P. Dual role of ATP in supporting volume-regulated chloride channels in mouse fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:63-72. [PMID: 11018652 DOI: 10.1016/s0005-2736(00)00243-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of inhibitors of protein tyrosine kinases (PTKs) on the Cl(-) current (I(Cl(vol))) through volume-regulated anion/chloride (VRAC) channels whilst manipulating cellular ATP have been studied in mouse fibroblasts using the whole-cell patch clamp technique. Removal of ATP from the pipette-filling solution prevented activation of the current during osmotic cell swelling and when the volume of patched cells was increased by the application of positive pressure through the patch pipette to achieve rates exceeding 100%/min. Equimolar substitution of ATP in the pipette solution with its non-hydrolyzable analogs, adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) or adenylyl-(beta,gamma-methylene)-diphosphonate (AMP-PCP), not only supported activation of the current but also maintained its amplitude. The PTK inhibitors, tyrphostins A25, B46, 3-amino-2,4-dicyano-5-(4-hydroxyphenyl)penta-2,4-dienonitrile++ + and genistein (all at 100 microM), inhibited I(Cl(vol)) in a time-dependent manner. Tyrphostin A1, which does not inhibit PTK activity, did not affect the current amplitude. The PTK inhibitors also inhibited I(Cl(vol)) under conditions where ATP in the pipette was substituted with ATPgammaS or AMP-PCP. We conclude that in mouse fibroblasts ATP has a dual role in the regulation of the current: it is required for protein phosphorylation to keep VRAC channels operational and, through non-hydrolytic binding, determines the magnitude of I(Cl(vol)). We also suggest that tyrosine-specific protein kinases and phosphatases exhibit an interdependent involvement in the regulation of VRAC channels.
Collapse
Affiliation(s)
- A Bryan-Sisneros
- Loeb Health Research Institute, Ottawa University, 725 Parkdale Avenue, K1Y 4E9, Ottawa, Ont., Canada
| | | | | | | |
Collapse
|
21
|
Nagasaki M, Ye L, Duan D, Horowitz B, Hume JR. Intracellular cyclic AMP inhibits native and recombinant volume-regulated chloride channels from mammalian heart. J Physiol 2000; 523 Pt 3:705-17. [PMID: 10718749 PMCID: PMC2269833 DOI: 10.1111/j.1469-7793.2000.00705.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. ClC-3 encodes a volume-regulated Cl- channel (ICl,vol) in heart. We studied the regulation of native and recombinant cardiac ICl,vol by intracellular cyclic AMP (cAMPi). 2. Symmetrical high Cl- concentrations were used to effectively separate outwardly rectifying ICl,vol from other non-rectifying Cl- currents, such as the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca2+-activated Cl- currents (ICl,CFTR and ICl,Ca, respectively), which are concomitantly expressed in cardiac myocytes. 3. 8-Bromo-cyclic AMP (8-Br-cAMP) significantly inhibited ICl,vol in most guinea-pig atrial myocytes. In approximately 30 % of the atrial myocytes examined, 8-Br-cAMP increased macroscopic Cl- currents. However, the 8-Br-cAMP-stimulated difference currents exhibited a linear current-voltage (I-V ) relation, consistent with activation of ICl,CFTR, not ICl,vol. 4. In canine atrial myocytes, isoprenaline (1 microM) consistently reduced ICl,vol in Ca2+-free hypotonic bath solutions with strong intracellular Ca2+ (Ca2+i) buffering. In Ca2+-containing hypotonic bath solutions with weak Ca2+i buffering, however, isoprenaline increased net macroscopic Cl- currents. Isoprenaline-stimulated difference currents were not outwardly rectifying, consistent with activation of ICl,Ca, not ICl, vol. 5. In NIH/3T3 cells transfected with gpClC-3 (the gene encoding ICl,vol), 8-Br-cAMP consistently inhibited ICl,ClC-3. These effects were prevented by a protein kinase A (PKA) inhibitor, KT5720, or by mutation of a single consensus protein kinase C (PKC) phosphorylation site (S51A) on the N-terminus of ClC-3, which also mediates PKC inhibition of ICl,ClC-3. 6. We conclude that cAMPi causes inhibition of ICl,vol in mammalian heart due to cross-phosphorylation of the same PKC consensus site on ClC-3 by PKA. Our results suggest that contamination of macroscopic ICl,vol by ICl,CFTR and/or ICl,Ca may account for some of the inconsistent and controversial effects of cAMPi on ICl,vol previously reported in native cardiac myocytes.
Collapse
Affiliation(s)
- M Nagasaki
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV 89557-0046, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Abstract
—Although the cationic inward rectifiers (Kir and hyperpolarization-activated
I
f
channels) have been well characterized in cardiac myocytes, the expression and physiological role of anionic inward rectifiers in heart are unknown. In the present study, we report the functional and molecular identification of a novel chloride (Cl
−
) inward rectifier (Cl.ir) in mammalian heart. Under conditions in which cationic inward rectifier channels were blocked, membrane hyperpolarization (−40 to −140 mV) activated an inwardly rectifying whole-cell current in mouse atrial and ventricular myocytes. Under isotonic conditions, the current activated slowly with a biexponential time course (time constants averaging 179.7±23.4 [mean±SEM] and 2073.6±287.6 ms at −120 mV). Hypotonic cell swelling accelerated the activation and increased the current amplitude whereas hypertonic cell shrinkage inhibited the current. The inwardly rectifying current was carried by Cl
−
(
I
Cl.ir
) and had an anion permeability sequence of Cl
−
>
I
−
≫aspartate.
I
Cl.ir
was blocked by 9-anthracene-carboxylic acid and cadmium but not by stilbene disulfonates and tamoxifen. A similar
I
Cl.ir
was also observed in guinea pig cardiac myocytes. The properties of
I
Cl.ir
are consistent with currents generated by expression of ClC-2 Cl
−
channels. Reverse transcription polymerase chain reaction and Northern blot analysis confirmed transcriptional expression of ClC-2 in both atrial and ventricular tissues and isolated myocytes of mouse and guinea pig hearts. These results indicate that a novel
I
Cl.ir
is present in mammalian heart and support a potentially important role of ClC-2 channels in the regulation of cardiac electrical activity and cell volume under physiological and pathological conditions. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- Dayue Duan
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev
| | - Lingyu Ye
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev
| | - Fiona Britton
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev
| | - Burton Horowitz
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev
| | - Joseph R. Hume
- From the Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nev
| |
Collapse
|
23
|
Abstract
Anion transport proteins in mammalian cells participate in a wide variety of cell and intracellular organelle functions, including regulation of electrical activity, pH, volume, and the transport of osmolites and metabolites, and may even play a role in the control of immunological responses, cell migration, cell proliferation, and differentiation. Although significant progress over the past decade has been achieved in understanding electrogenic and electroneutral anion transport proteins in sarcolemmal and intracellular membranes, information on the molecular nature and physiological significance of many of these proteins, especially in the heart, is incomplete. Functional and molecular studies presently suggest that four primary types of sarcolemmal anion channels are expressed in cardiac cells: channels regulated by protein kinase A (PKA), protein kinase C, and purinergic receptors (I(Cl.PKA)); channels regulated by changes in cell volume (I(Cl.vol)); channels activated by intracellular Ca(2+) (I(Cl.Ca)); and inwardly rectifying anion channels (I(Cl.ir)). In most animal species, I(Cl.PKA) is due to expression of a cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator Cl(-) channel. New molecular candidates responsible for I(Cl.vol), I(Cl.Ca), and I(Cl.ir) (ClC-3, CLCA1, and ClC-2, respectively) have recently been identified and are presently being evaluated. Two isoforms of the band 3 anion exchange protein, originally characterized in erythrocytes, are responsible for Cl(-)/HCO(3)(-) exchange, and at least two members of a large vertebrate family of electroneutral cotransporters (ENCC1 and ENCC3) are responsible for Na(+)-dependent Cl(-) cotransport in heart. A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel. The molecular entities responsible for other types of electroneutral anion exchange or Cl(-) conductances in intracellular membranes of the sarcoplasmic reticulum or nucleus are unknown. Evidence of cardiac expression of up to five additional members of the ClC gene family suggest a rich new variety of molecular candidates that may underlie existing or novel Cl(-) channel subtypes in sarcolemmal and intracellular membranes. The application of modern molecular biological and genetic approaches to the study of anion transport proteins during the next decade holds exciting promise for eventually revealing the actual physiological, pathophysiological, and clinical significance of these unique transport processes in cardiac and other mammalian cells.
Collapse
Affiliation(s)
- J R Hume
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | | | | | |
Collapse
|
24
|
Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173-210. [PMID: 10617768 DOI: 10.1152/physrev.2000.80.1.173] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Collapse
Affiliation(s)
- S Herzig
- Institut für Pharmakologie, Universität Köln, Köln, Germany.
| | | |
Collapse
|
25
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Befroy DE, Powell T, Radda GK, Clarke K. Osmotic shock: modulation of contractile function, pHi, and ischemic damage in perfused guinea pig heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1236-44. [PMID: 10199848 DOI: 10.1152/ajpheart.1999.276.4.h1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the contribution of changes in extracellular osmolarity to ischemic injury, isolated guinea pig hearts were perfused with hyposmotic (220 mosM) or hyperosmotic (380 mosM) buffer. 31P NMR spectroscopy was used to follow changes in intracellular pH (pHi) and energetics. Hyposmotic buffer decreased myocardial developed pressure by 30 +/- 2% and pHi by 0.02 +/- 0.01 unit, whereas hyperosmotic buffer increased myocardial developed pressure by 34 +/- 1% and pHi by 0.14 +/- 0.01 unit. All hearts recovered to control values on restoration of isosmotic (300 mosM) buffer. The hyperosmolar-induced intracellular alkalosis and developed pressure increase were not prevented by inhibition of Na+/H+ exchange with use of 1 microM HOE-642 but were abolished with use of bicarbonate-free buffers. After 20 min of total global ischemia, hearts perfused with hyposmotic buffer showed significantly greater recoveries of developed pressure, phosphocreatine, and ATP than control hearts, but hearts perfused with hyperosmotic buffer did not recover after ischemia. In conclusion, buffer osmolarities between 220 and 380 mosM alter myocardial pHi and developed pressure but are not deleterious during perfusion. However, buffer osmolarity significantly alters the extent of myocardial ischemic injury.
Collapse
Affiliation(s)
- D E Befroy
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
27
|
Vanoye CG, Castro AF, Pourcher T, Reuss L, Altenberg GA. Phosphorylation of P-glycoprotein by PKA and PKC modulates swelling-activated Cl- currents. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C370-8. [PMID: 9950764 DOI: 10.1152/ajpcell.1999.276.2.c370] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several proteins belonging to the ATP-binding cassette superfamily can affect ion channel function. These include the cystic fibrosis transmembrane conductance regulator, the sulfonylurea receptor, and the multidrug resistance protein P-glycoprotein (MDR1). We measured whole cell swelling-activated Cl- currents (ICl,swell) in parental cells and cells expressing wild-type MDR1 or a phosphorylation-defective mutant (Ser-661, Ser-667, and Ser-671 replaced by Ala). Stimulation of protein kinase C (PKC) with a phorbol ester reduced the rate of increase in ICl,swell only in cells that express MDR1. PKC stimulation had no effect on steady-state ICl,swell. Stimulation of protein kinase A (PKA) with 8-bromoadenosine 3',5'-cyclic monophosphate reduced steady-state ICl, swell only in MDR1-expressing cells. PKA stimulation had no effect on the rate of ICl,swell activation. The effects of stimulation of PKA and PKC on ICl,swell were additive (i.e., decrease in the rate of activation and reduction in steady-state ICl,swell). The effects of PKA and PKC stimulation were absent in cells expressing the phosphorylation-defective mutant. In summary, it is likely that phosphorylation of MDR1 by PKA and by PKC alters swelling-activated Cl- channels by independent mechanisms and that Ser-661, Ser-667, and Ser-671 are involved in the responses of ICl,swell to stimulation of PKA and PKC. These results support the notion that MDR1 phosphorylation affects ICl,swell.
Collapse
Affiliation(s)
- C G Vanoye
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | | | | | | | |
Collapse
|
28
|
Duan D, Cowley S, Horowitz B, Hume JR. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume. J Gen Physiol 1999; 113:57-70. [PMID: 9874688 PMCID: PMC2222988 DOI: 10.1085/jgp.113.1.57] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1998] [Accepted: 11/12/1998] [Indexed: 01/30/2023] Open
Abstract
In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.
Collapse
Affiliation(s)
- D Duan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | | | |
Collapse
|
29
|
Cazorla O, Pascarel C, Brette F, Le Guennec JY. Modulation of ions channels and membrane receptors activities by mechanical interventions in cardiomyocytes: possible mechanisms for mechanosensitivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:29-58. [PMID: 10070211 DOI: 10.1016/s0079-6107(98)00036-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- O Cazorla
- Laboratoire de Physiologie des Cellules Cardiaques et Vasculaires, CNRS UMR 6542, Faculté des Sciences, Tours, France
| | | | | | | |
Collapse
|
30
|
Wright AR, Rees SA. Cardiac cell volume: crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 1998; 80:89-121. [PMID: 9804055 DOI: 10.1016/s0163-7258(98)00025-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The osmolarity of bodily fluids is strictly controlled so that most cells do not experience changes in osmotic pressure under normal conditions, but osmotic changes can occur in pathological states such as ischemia, septic shock, and diabetic coma. The primary effect of a change in osmolarity is to acutely alter cell volume. If the osmolarity around a cell is decreased, the cell swells, and if increased, it shrinks. In order to tolerate changes in osmolarity, cells have evolved volume regulatory mechanisms activated by osmotic challenge to normalise cell volume and maintain normal function. In the heart, osmotic stress is encountered during a period of myocardial ischemia when metabolites such as lactate accumulate intracellularly and to a certain degree extracellularly, and cause cell swelling. This swelling may be exacerbated further on reperfusion when the hyperosmotic extracellular milieu is replaced by normosmotic blood. In this review, we describe the theory and mechanisms of volume regulation, and draw on findings in extracardiac tissues, such as kidney, whose responses to osmotic change are well characterised. We then describe cell volume regulation in the heart, with particular emphasis on the effect of myocardial ischemia. Finally, we describe the consequences of osmotic cell swelling for the cell and for the heart, and discuss the implications for antiarrhythmic drug efficacy. Using computer modelling, we have summated the changes induced by cell swelling, and predict that swelling will shorten the action potential. This finding indicates that cell swelling is an important component of the response to ischemia, a component modulating the excitability of the heart.
Collapse
Affiliation(s)
- A R Wright
- University Laboratory of Physiology, University of Oxford, UK
| | | |
Collapse
|
31
|
Lei M, Kohl P. Swelling-induced decrease in spontaneous pacemaker activity of rabbit isolated sino-atrial node cells. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:1-12. [PMID: 9777019 DOI: 10.1046/j.1365-201x.1998.00390.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heart responds to an increase in sino-atrial node wall stress with an augmentation in rate of contraction. It has been suggested that swelling-activated ion channels may play a key role in that response. This paper investigates directly the effects of cell swelling on spontaneous activity of rabbit isolated sino-atrial node pacemaker cells. The main finding is that sino-atrial node cells, studied in current clamp mode using amphotericin-permeabilized patches, decrease their spontaneous pacemaker rate by 24.2 +/- 7.8% (P < 0.01, n = 9) during 75% hyposmotic swelling. This response is opposite to the predicted impact of volume-activation of sarcolemmal ion conductances. Computer modelling (OXSOFT Heart v4.8) suggests that swelling-induced dilution of the cytosol, reduction in intracellular potassium concentration, and decrease in the delayed rectifier potassium current, IK, are leading mechanisms in the response. This is supported by voltage-clamp data that show a swelling-induced positive shift in the reversal potential of IK by between 5 and 10 mV (n = 7) and a reduction in amplitude of its rapidly activating component, IKr, (n = 6). Thus, spontaneously active sino-atrial node cells reduce pacemaking rate during swelling. This response cannot be explained by the known volume-activated sarcolemmal ion conductances, but appears to be dictated by other mechanisms including dilution of the cytosol and reduction in IK. The results re-enforce the view that cardiac responses to cell volume changes may be quite different from those to longitudinal stretch.
Collapse
Affiliation(s)
- M Lei
- University Laboratory of Physiology, Oxford, UK
| | | |
Collapse
|
32
|
Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos V, Droogmans G. Properties of volume-regulated anion channels in mammalian cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 68:69-119. [PMID: 9481145 DOI: 10.1016/s0079-6107(97)00021-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- B Nilius
- KU Leuven, Laboratorium voor Fysiologie, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Clark S, Jordt SE, Jentsch TJ, Mathie A. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. J Physiol 1998; 506 ( Pt 3):665-78. [PMID: 9503329 PMCID: PMC2230754 DOI: 10.1111/j.1469-7793.1998.665bv.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Dissociated rat superior cervical ganglion (SCG) neurons have been shown to possess a hyperpolarization-activated inwardly rectifying chloride current. The current was not altered by changes in external potassium concentration, replacing external cations with NMDG (N-methyl-D-glucamine) or by addition of 10 mM caesium or barium ions. 2. The reversal potential of the current was altered by changing external anions. The anion selectivity of the current was Cl- > Br- > I- > cyclamate. All substituted permeant anions also blocked the current. 3. The current was blocked by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid), 9AC (anthracene-9-carboxylic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) but was unaffected by SITS (4-acetamido-4'-isothiocyanatostilbene- 2,2'-disulphonic acid) and niflumic acid. The effective blockers were voltage dependent; DIDS and NPPB were more effective at depolarized potentials while 9AC was more effective at hyperpolarized potentials. 4. The current was enhanced by extracellular acidification and reduced by extracellular alkalinization. Reducing external osmolarity was without effect in conventional whole-cell recording but enhanced current amplitude in those perforated-patch recordings where little current was evident in control external solution. 5. The current in SCG neurons was blocked by external cadmium and zinc. ClC-2 chloride currents expressed in Xenopus oocytes were also sensitive to block by these divalent ions and by DIDS but the sensitivity of ClC-2 to block by cadmium ions was lower than that of the current in SCG neurons. 6. Reverse transcriptase-polymerase chain reaction (RT-PCR) experiments showed the presence of mRNA for ClC-2 in SCG neurons but not in rat cerebellar granule cells which do not possess a hyperpolarization-activated Cl- current. 7. The data suggest that ClC-2 may be functionally expressed in rat SCG neurons. This current may play a role in regulating the internal chloride concentration in these neurons and hence their response to activation of GABAA receptors.
Collapse
Affiliation(s)
- S Clark
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| | | | | | | |
Collapse
|
34
|
Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Mikala G, Peers C. Inhibition of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by 3-isobutyl-1-methylxanthine. Eur J Pharmacol 1998; 342:353-8. [PMID: 9548408 DOI: 10.1016/s0014-2999(97)01497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibition of ion channels by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and related compounds has been demonstrated in various cell types, including the neuromuscular junction, GH3 cells and vascular smooth muscle cells. These effects may be unrelated to the actions of these compounds on cellular metabolism, intracellular Ca2+ stores and phosphodiesterase inhibition. In this study, the inhibition of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by IBMX was examined using the whole-cell configuration of the patch clamp technique. Inhibition was repeatable, voltage-independent and associated with increased apparent channel inactivation. The actions of IBMX were unaffected in the presence of inhibitors of protein kinases A and G. The non-xanthine phosphodiesterase inhibitor rolipram had a small inhibitory effect on currents, but this was also unaffected by a protein kinase A inhibitor. These effects of IBMX could not be attributed to release of Ca2+ from intracellular stores. Our findings indicate that methylxanthines can inhibit the cardiac L-type Ca2+ channel alpha1C subunit in the absence of auxiliary subunits by an undetermined, possibly direct mechanism.
Collapse
Affiliation(s)
- I M Fearon
- Institute for Cardiovascular Research, University of Leeds, UK
| | | | | | | | | | | |
Collapse
|
35
|
Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78:247-306. [PMID: 9457175 DOI: 10.1152/physrev.1998.78.1.247] [Citation(s) in RCA: 1275] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To survive, cells have to avoid excessive alterations of cell volume that jeopardize structural integrity and constancy of intracellular milieu. The function of cellular proteins seems specifically sensitive to dilution and concentration, determining the extent of macromolecular crowding. Even at constant extracellular osmolarity, volume constancy of any mammalian cell is permanently challenged by transport of osmotically active substances across the cell membrane and formation or disappearance of cellular osmolarity by metabolism. Thus cell volume constancy requires the continued operation of cell volume regulatory mechanisms, including ion transport across the cell membrane as well as accumulation or disposal of organic osmolytes and metabolites. The various cell volume regulatory mechanisms are triggered by a multitude of intracellular signaling events including alterations of cell membrane potential and of intracellular ion composition, various second messenger cascades, phosphorylation of diverse target proteins, and altered gene expression. Hormones and mediators have been shown to exploit the volume regulatory machinery to exert their effects. Thus cell volume may be considered a second message in the transmission of hormonal signals. Accordingly, alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Collapse
Affiliation(s)
- F Lang
- Institute of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang J, Larsen TH, Lieberman M. F-actin modulates swelling-activated chloride current in cultured chick cardiac myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1215-24. [PMID: 9357765 DOI: 10.1152/ajpcell.1997.273.4.c1215] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The integrity of F-actin and its association with the activation of a Cl- current (I(Cl)) in cultured chick cardiac myocytes subjected to hyposmotic challenge were monitored by whole cell patch clamp and fluorescence confocal microscopy. Disruption of F-actin by 25 microM cytochalasin B augmented hyposmotic cell swelling by 51% (from a relative volume of 1.54 +/- 0.10 in control to 2.33 +/- 0.21), whereas stabilization of F-actin by 20 microM phalloidin attenuated swelling by 15% (relative volume of 1.31 +/- 0.05). Trace fluorochrome-labeled (fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate) phalloidin revealed an intact F-actin conformation in control cells under hyposmotic conditions despite the considerable changes in cell volume. Sarcoplasmic F-actin was very disorganized and occurred only randomly beneath the sarcolemma in cells treated with cytochalasin B, whereas no changes in F-actin distribution occurred under either isosmotic or hyposmotic conditions in cells treated with phalloidin. Swelling-activated I(Cl) (68.0 +/- 6.0 pA/pF at +60 mV) was suppressed by both cytochalasin B (22.7 +/- 5.1 pA/pF) and phalloidin (22.5 +/- 3.5 pA/pF). On the basis of these results, we suggest that swelling of cardiac myocytes initiates dynamic changes in the cytoarchitecture of F-actin, which may be involved in the volume transduction processes associated with activation of I(Cl).
Collapse
Affiliation(s)
- J Zhang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
37
|
Clemo HF, Baumgarten CM. Swelling-activated Gd3+-sensitive cation current and cell volume regulation in rabbit ventricular myocytes. J Gen Physiol 1997; 110:297-312. [PMID: 9276755 PMCID: PMC2229368 DOI: 10.1085/jgp.110.3.297] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1997] [Accepted: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
The role of swelling-activated currents in cell volume regulation is unclear. Currents elicited by swelling rabbit ventricular myocytes in solutions with 0.6-0.9x normal osmolarity were studied using amphotericin perforated patch clamp techniques, and cell volume was examined concurrently by digital video microscopy. Graded swelling caused graded activation of an inwardly rectifying, time-independent cation current (ICir,swell) that was reversibly blocked by Gd3+, but ICir,swell was not detected in isotonic or hypertonic media. This current was not related to IK1 because it was insensitive to Ba2+. The PK/PNa ratio for ICir,swell was 5.9 +/- 0.3, implying that inward current is largely Na+ under physiological conditions. Increasing bath K+ increased gCir,swell but decreased rectification. Gd3+ block was fitted with a K0.5 of 1.7 +/- 0.3 microM and Hill coefficient, n, of 1.7 +/- 0.4. Exposure to Gd3+ also reduced hypotonic swelling by up to approximately 30%, and block of current preceded the volume change by approximately 1 min. Gd3+-induced cell shrinkage was proportional to ICir,swell when ICir,swell was varied by graded swelling or Gd3+ concentration and was voltage dependent, reflecting the voltage dependence of ICir,swell. Integrating the blocked ion flux and calculating the resulting change in osmolarity suggested that ICir,swell was sufficient to explain the majority of the volume change at -80 mV. In addition, swelling activated an outwardly rectifying Cl- current, ICl,swell. This current was absent after Cl- replacement, reversed at ECl, and was blocked by 1 mM 9-anthracene carboxylic acid. Block of ICl,swell provoked a 28% increase in swelling in hypotonic media. Thus, both cation and anion swelling-activated currents modulated the volume of ventricular myocytes. Besides its effects on cell volume, ICir,swell is expected to cause diastolic depolarization. Activation of ICir, swell also is likely to affect contraction and other physiological processes in myocytes.
Collapse
Affiliation(s)
- H F Clemo
- Department of Internal Medicine (Cardiology), Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
38
|
Okada Y. Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C755-89. [PMID: 9316396 DOI: 10.1152/ajpcell.1997.273.3.c755] [Citation(s) in RCA: 514] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The maintenance of a constant volume in the face of extracellular and intracellular osmotic perturbation is essential for the normal function and survival of animal cells. Osmotically swollen cells restore their volume, exhibiting a regulatory volume decrease by releasing intracellular K+, Cl-, organic solutes, and obligated water. In many cell types, the volume regulatory effluxes of Cl- and some organic osmolytes are known to be induced by swelling-induced activation of anion channels that are characterized by their moderate outward rectification, cytosolic ATP dependency, and intermediate unitary conductance (10-100 pS). Recently, simultaneous measurements of cell size by light microscopy and whole cell Cl- current have shown that the Cl- current density is proportionally increased with an increase in the outer surface area, which is mainly achieved through unfolding of membrane invaginations by volume expansion. Thus this anion channel can somehow sense volume expansion and can be called the volume expansion-sensing outwardly rectifying (VSOR) anion channel. Its molecular identity and activation mechanism are yet to be elucidated. Three cloned proteins, ClC-2, P-glycoprotein, and pIcln, have been proposed as candidates for the VSOR anion channel. The unitary conductance, voltage dependency, anion selectivity, pH dependency, and pharmacology of the VSOR anion channel are distinct from the ClC-2 Cl- channel, which is also known to be sensitive to volume changes. Recent patch-clamp studies in combination with molecular biological techniques have shown that P-glycoprotein is not itself the channel protein but is a regulator of its volume sensitivity. Although there is still debate about another candidate protein, pIcln, the most recent study has suggested that this is likely to be a regulator of some other distinct Cl- channel. Identification of the VSOR anion channel protein per se, its volume-sensing mechanism, and its accessory/regulatory proteins at the molecular level is currently a subject of utmost physiological importance.
Collapse
Affiliation(s)
- Y Okada
- Department of Cellular and Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
39
|
Wang Z, Mitsuiye T, Rees SA, Noma A. Regulatory volume decrease of cardiac myocytes induced by beta-adrenergic activation of the Cl- channel in guinea pig. J Gen Physiol 1997; 110:73-82. [PMID: 9234172 PMCID: PMC2229356 DOI: 10.1085/jgp.110.1.73] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/1996] [Accepted: 04/30/1997] [Indexed: 02/04/2023] Open
Abstract
A new method was developed to automatically measure the thickness of a single ventricular myocyte of guinea-pig heart. A fine marker was attached on the cell's upper surface and changes in its vertical position were measured by focusing it under the microscope. When the osmolarity of the bath solution was varied, the cell thickness reached a new steady level without any obvious regulatory volume change within the period of observation up to 15 min. The cell thickness was 7.8 +/- 0.2 microns (n = 94) in the control Tyrode solution and was varied to 130.4 +/- 3.1% (n = 10), 119.1 +/- 1.1% (n = 50), 87.2 +/- 1.9% (n = 9), and 75.6 +/- 3.2% (n = 5) of control at 50, 70, 130, and 200% osmolarity, respectively. The application of a Cl- channel blocker, 500 microM anthracene-9-carboxylic acid (9AC) did not modify these osmotic volume changes. We discovered that the application of isoprenaline induced a regulatory volume decrease (RVD) in cells inflated by hypotonic solutions. This isoprenaline-induced RVD was inhibited by antagonizing beta-adrenergic stimulation with acetylcholine. The isoprenaline-induced RVD was mimicked by the external application of 8-bromoadenosine 3':5'-cyclic monophosphate. The RVD was inhibited by blocking the cAMP-dependent Cl- channel (ICl, rAMP) with 9AC but was insensitive to 4,4'-diisothiocyanostilbene-2,2'-dissulphonate (DIDS). Taken together these data suggest an involvement of ICl, cAMP activation in the RVD. Whole cell voltage clamp experiments revealed activation of ICl, cAMP by isoprenaline under the comparable conditions. The cardiac cell volume may be regulated by the autonomic nervous activity.
Collapse
Affiliation(s)
- Z Wang
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
40
|
Du XY, Sorota S. Modulation of dog atrial swelling-induced chloride current by cAMP: protein kinase A-dependent and -independent pathways. J Physiol 1997; 500 ( Pt 1):111-22. [PMID: 9097937 PMCID: PMC1159363 DOI: 10.1113/jphysiol.1997.sp022003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The modulation of dog atrial swelling-induced chloride current (I(Cl,swelling)) by cAMP-elevating agents was studied. Forskolin (10 microM) or isoprenaline (1 microM) exerted multiple effects. Although the pattern between cells was variable, there was, in general, a stimulatory action and a more slowly developing inhibitory effect. 2. In any given cell, the response to forskolin or isoprenaline was qualitatively similar suggesting that all of the responses were dependent on stimulation of adenylyl cyclase. The effects of forskolin or isoprenaline on I(Cl,swelling) were inhibited by intracellular dialysis with a P-site inhibitor of adenylyl cyclase, 2'-deoxyadenosine 3'-monophosphate (300 microM). 3. Intracellular dialysis with a peptide inhibitor of protein kinase A (PKI(6-22); 100 microM) blocked the inhibitory response to forskolin or isoprenaline and all cells responded with a monophasic stimulation of I(Cl,swelling). 4. After intracellular dialysis of cells with PKI(6-22) (100 microM) and cAMP (100 microM), current amplitude was not further stimulated by forskolin. 5. After intracellular dialysis with PKI(6-22) and adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), forskolin stimulated I(Cl,swelling) and the effect of forskolin subsided after it was washed out. 6. In conclusion, there are dual pathways by which cAMP can modulate dog atrial cell I(Cl,swelling). Inhibition results from protein kinase A (PKA)-dependent phosphorylation. In addition, a stimulatory pathway exists that is independent of phosphorylation by PKA or other cellular kinases. Although alternative explanations are possible, the stimulatory effect of cAMP may represent a direct modulation of I(Cl,swelling).
Collapse
Affiliation(s)
- X Y Du
- Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
41
|
Abstract
1. An increase in cell volume activates, in most mammalian cells, a Cl- current, ICl,vol. This current is involved in a variety of cellular functions, such as the maintenance of a constant cell volume, pH regulation, and control of membrane potential. It might also play a role in the regulation of cell proliferation and in the processes that control transition from proliferation to differentiation. This review focuses on various aspects of this current, including its biophysical characterisation and its functional role for various cell processes. 2. Volume-activated Cl- channels show all outward rectification. Iodide is more permeable than chloride. In some cell types, ICl,vol inactivates at positive potentials. Single channel conductance can be divided mainly into two groups: small (< 5 pS) and medium conductance channels (around 50 pS). 3. The pharmacology and modulation of these channels are reviewed in detail, and suggest the existence of an heterogeneous family of multiple volume-activated Cl- channels. 4. Molecular candidates for this channel (i.e. ClC-2, a member of the ClC-family of voltage-dependent Cl- channels, the mdr-1 encoded P-glycoprotein, the nucleotide-sensitive pICln protein and phospholemman) will be discussed.
Collapse
Affiliation(s)
- B Nilius
- KU Leuven, Laboratorium voor Fysiologie, Belgium.
| | | | | | | |
Collapse
|