1
|
Bavis RW, Danielson MD, Dufour G, Hanus J, Pratt AE, Tobin KE. Respiratory plasticity induced by chronic hyperoxia in juvenile and adult rats. Respir Physiol Neurobiol 2025; 333:104386. [PMID: 39732308 PMCID: PMC11829821 DOI: 10.1016/j.resp.2024.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60 % O2 for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air. Hyperoxia-treated juvenile rats appeared to hypoventilate when returned to room air (11-13 % lower ventilation and CO2 convection requirement relative to age-matched controls), but chronic hyperoxia did not alter normoxic ventilation in adult rats. In contrast, pre-treatment with chronic hyperoxia augmented the HVR in both juvenile rats (+41 %) and adult rats (+28-50 %). The hypercapnic ventilatory response (7 % CO2) also tended to be augmented in adult rats after 14 days of hyperoxia, but this effect was not significant after accounting for variation in metabolic rate (i.e, CO2 convection requirement). These findings confirm that chronic hyperoxia elicits age-specific respiratory plasticity in rats. These age-dependent differences are not caused by a lack of plasticity in adult-exposed rats; rather, there are qualitative differences in the plasticity that is expressed after chronic hyperoxia in neonates, juveniles, and adults as well as differences in its persistence.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | - Gemma Dufour
- Southern Maine Community College, South Portland, ME 04106, USA
| | - Julia Hanus
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Ashley E Pratt
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | | |
Collapse
|
2
|
Mitchell GS, Baker TL. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:409-432. [PMID: 35965036 DOI: 10.1016/b978-0-323-91534-2.00016-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Widespread appreciation that neuroplasticity is an essential feature of the neural system controlling breathing has emerged only in recent years. In this chapter, we focus on respiratory motor plasticity, with emphasis on the phrenic motor system. First, we define related but distinct concepts: neuromodulation and neuroplasticity. We then focus on mechanisms underlying two well-studied models of phrenic motor plasticity: (1) phrenic long-term facilitation following brief exposure to acute intermittent hypoxia; and (2) phrenic motor facilitation after prolonged or recurrent bouts of diminished respiratory neural activity. Advances in our understanding of these novel and important forms of plasticity have been rapid and have already inspired translation in multiple respects: (1) development of novel therapeutic strategies to preserve/restore breathing function in humans with severe neurological disorders, such as spinal cord injury and amyotrophic lateral sclerosis; and (2) the discovery that similar plasticity also occurs in nonrespiratory motor systems. Indeed, the realization that similar plasticity occurs in respiratory and nonrespiratory motor neurons inspired clinical trials to restore leg/walking and hand/arm function in people living with chronic, incomplete spinal cord injury. Similar application may be possible to other clinical disorders that compromise respiratory and non-respiratory movements.
Collapse
Affiliation(s)
- Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Manferdelli G, Narang BJ, Poussel M, Osredkar D, Millet GP, Debevec T. Long-Term Effects of Prematurity on Resting Ventilatory Response to Hypercapnia. High Alt Med Biol 2021; 22:420-425. [PMID: 34905392 DOI: 10.1089/ham.2021.0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manferdelli, Giorgio, Benjamin J. Narang, Mathias Poussel, Damjan Osredkar, Grégoire P. Millet, and Tadej Debevec. Long-term effects of prematurity on resting ventilatory response to hypercapnia. High Alt Med Biol. 22:420-425, 2021. Background: This study investigated the resting ventilatory response to hypercapnia in prematurely born adults. Materials and Methods: Seventeen preterm and fourteen full-term adults were exposed to normoxic hypercapnia (two 5-minute periods at 3% and 6% carbon dioxide [CO2] interspersed by 5-minute in normoxia). Pulmonary ventilation ([Formula: see text]) and end-tidal partial pressure of CO2 (Petco2) were measured continuously. Results: No difference in lung function was observed between preterm and full-term adults. Petco2 was lower in preterm than in full-term adults (p < 0.05) during normoxia. During exposure to 3% CO2, both [Formula: see text] and Petco2 increased in a similar way in preterm and full-term adults. However, at the end of the 6% CO2 period, there was a significantly higher [Formula: see text] in preterm compared with full-term adults (30.2 ± 7.5 vs. 23.7 ± 4.5 L/min, p < 0.0001), whereas no difference was observed for Petco2 (46.9 ± 2.1 vs. 50.6 ± 2.1 L/min, p = 0.99). Breath frequency was higher in preterm than in full-term adults (17.9 ± 4.0 vs. 12.8 ± 3.5 b/min, p < 0.01) during 6% CO2 exposure. Conclusions: Although data suggest that prematurity results in resting hypocapnia, the exact underlying mechanisms remain to be elucidated. Moreover, preterm adults seem to have increased chemosensitivity to hypercapnia.
Collapse
Affiliation(s)
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Mathias Poussel
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Department of Pulmonary Function Testing and Exercise Physiology, CHRU de Nancy, Nancy, France
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
6
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Pinette M, Bavis RW. Influence of chronic hyperoxia on the developmental time course of the hypoxic ventilatory response relative to other traits in rats. Respir Physiol Neurobiol 2020; 280:103483. [PMID: 32593590 DOI: 10.1016/j.resp.2020.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR) in which an initial increase in ventilation is followed by a decline back toward baseline levels. The magnitude of the secondary decline diminishes with postnatal age, but this transition occurs earlier in rat pups reared in moderate hyperoxia. This pattern is consistent with heterokairy, a form of developmental plasticity in which environmental factors alter the timing of developmental events. The present study investigated whether this plasticity is specific to the HVR or if hyperoxia instead accelerates overall development. Rat pups reared in 60 % O2 (Hyperoxia) exhibited a less biphasic ventilatory response to 12 % O2 than pups reared in 21 % O2 (Control) at 4 days of age (P4) and transitioned to a sustained HVR by P10-11; Control rats exhibited a biphasic HVR at both ages. However, the average ages at which pups attained other key developmental milestones (i.e., fur development at P5, incisor eruption at P9, and eye opening at P15) were similar between treatment groups. Moreover, growth rates and maturation of the metabolic response to cooling were not accelerated, and may have been delayed slightly, relative to Control rats. For example, the capacity for pups to increase their metabolic rate at low ambient temperatures increased with age, but this thermogenic capacity tended to be reduced in Hyperoxia pups at both P4 and P10-11 (i.e., lower CO2 production rates below the lower critical temperature). Collectively, these data support the conclusion that hyperoxia specifically advances the age at which rat pups exhibit a sustained HVR, altering the relative timing of developmental events rather than compressing the entire period of development.
Collapse
Affiliation(s)
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME, 04240, USA.
| |
Collapse
|
8
|
Abstract
Air-breathing animals do not experience hyperoxia (inspired O2 > 21%) in nature, but preterm and full-term infants often experience hyperoxia/hyperoxemia in clinical settings. This article focuses on the effects of normobaric hyperoxia during the perinatal period on breathing in humans and other mammals, with an emphasis on the neural control of breathing during hyperoxia, after return to normoxia, and in response to subsequent hypoxic and hypercapnic challenges. Acute hyperoxia typically evokes an immediate ventilatory depression that is often, but not always, followed by hyperpnea. The hypoxic ventilatory response (HVR) is enhanced by brief periods of hyperoxia in adult mammals, but the limited data available suggest that this may not be the case for newborns. Chronic exposure to mild-to-moderate levels of hyperoxia (e.g., 30-60% O2 for several days to a few weeks) elicits several changes in breathing in nonhuman animals, some of which are unique to perinatal exposures (i.e., developmental plasticity). Examples of this developmental plasticity include hypoventilation after return to normoxia and long-lasting attenuation of the HVR. Although both peripheral and CNS mechanisms are implicated in hyperoxia-induced plasticity, it is particularly clear that perinatal hyperoxia affects carotid body development. Some of these effects may be transient (e.g., decreased O2 sensitivity of carotid body glomus cells) while others may be permanent (e.g., carotid body hypoplasia, loss of chemoafferent neurons). Whether the hyperoxic exposures routinely experienced by human infants in clinical settings are sufficient to alter respiratory control development remains an open question and requires further research. © 2020 American Physiological Society. Compr Physiol 10:597-636, 2020.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
9
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
10
|
Dylag AM, Raffay TM. Rodent models of respiratory control and respiratory system development-Clinical significance. Respir Physiol Neurobiol 2019; 268:103249. [PMID: 31315068 DOI: 10.1016/j.resp.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 06/29/2019] [Indexed: 01/13/2023]
Abstract
The newborn infant's respiratory system must rapidly adapt to extra-uterine life. Neonatal rat and mouse models have been used to investigate early development of respiratory control and reactivity in both health and disease. This review highlights several rodent models of control of breathing and respiratory system development (including pulmonary function), discusses their translational strengths and limitations, and underscores the importance of creating clinically relevant models applicable to the human infant.
Collapse
Affiliation(s)
- Andrew M Dylag
- Division of Neonatology, Golisano Children's Hospital, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
11
|
Mouradian GC, Alvarez-Argote S, Gorzek R, Thuku G, Michkalkiewicz T, Wong-Riley MTT, Konduri GG, Hodges MR. Acute and chronic changes in the control of breathing in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 316:L506-L518. [PMID: 30652496 PMCID: PMC6459293 DOI: 10.1152/ajplung.00086.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Infants born very prematurely (<28 wk gestation) have immature lungs and often require supplemental oxygen. However, long-term hyperoxia exposure can arrest lung development, leading to bronchopulmonary dysplasia (BPD), which increases acute and long-term respiratory morbidity and mortality. The neural mechanisms controlling breathing are highly plastic during development. Whether the ventilatory control system adapts to pulmonary disease associated with hyperoxia exposure in infancy remains unclear. Here, we assessed potential age-dependent adaptations in the control of breathing in an established rat model of BPD associated with hyperoxia. Hyperoxia exposure ( FI O 2 ; 0.9 from 0 to 10 days of life) led to a BPD-like lung phenotype, including sustained reductions in alveolar surface area and counts, and modest increases in airway resistance. Hyperoxia exposure also led to chronic increases in room air and acute hypoxic minute ventilation (V̇e) and age-dependent changes in breath-to-breath variability. Hyperoxia-exposed rats had normal oxygen saturation ( S p O 2 ) in room air but greater reductions in S p O 2 during acute hypoxia (12% O2) that were likely due to lung injury. Moreover, acute ventilatory sensitivity was reduced at P12 to P14. Perinatal hyperoxia led to greater glial fibrillary acidic protein expression and an increase in neuron counts within six of eight or one of eight key brainstem regions, respectively, controlling breathing, suggesting astrocytic expansion. In conclusion, perinatal hyperoxia in rats induced a BPD-like phenotype and age-dependent adaptations in V̇e that may be mediated through changes to the neural architecture of the ventilatory control system. Our results suggest chronically altered ventilatory control in BPD.
Collapse
Affiliation(s)
- Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | - Ryan Gorzek
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Gabriel Thuku
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Teresa Michkalkiewicz
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
- Children's Research Institute, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Girija Ganesh Konduri
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
- Children's Research Institute, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
12
|
Bavis RW, Millström AH, Kim SM, MacDonald CA, O'Toole CA, Asklof K, McDonough AB. Combined effects of intermittent hyperoxia and intermittent hypercapnic hypoxia on respiratory control in neonatal rats. Respir Physiol Neurobiol 2018; 260:70-81. [PMID: 30439529 DOI: 10.1016/j.resp.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 01/28/2023]
Abstract
Chronic exposure to intermittent hyperoxia causes abnormal carotid body development and attenuates the hypoxic ventilatory response (HVR) in neonatal rats. We hypothesized that concurrent exposure to intermittent hypercapnic hypoxia would influence this plasticity. Newborn rats were exposed to alternating bouts of hypercapnic hypoxia (10% O2/6% CO2) and hyperoxia (30-40% O2) (5 cycles h-1, 24 h d-1) through 13-14 days of age; the experiment was run twice, once in a background of 21% O2 and once in a background of 30% O2 (i.e., "relative hyperoxia"). Hyperoxia had only small effects on carotid body development when combined with intermittent hypercapnic hypoxia: the carotid chemoafferent response to hypoxia was reduced, but this did not affect the HVR. In contrast, sustained exposure to 30% O2 reduced carotid chemoafferent activity and carotid body size which resulted in a blunted HVR. When given alone, chronic intermittent hypercapnic hypoxia increased carotid body size and reduced the hypercapnic ventilatory response but did not affect the HVR. Overall, it appears that intermittent hypercapnic hypoxia counteracted the effects of hyperoxia on the carotid body and prevented developmental plasticity of the HVR.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240 USA.
| | | | - Song M Kim
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | | | | | - Kendra Asklof
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Amy B McDonough
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| |
Collapse
|
13
|
Gonzalez NC, Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr Physiol 2018; 8:1537-1573. [PMID: 30215861 DOI: 10.1002/cphy.c170051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this article is to compare and contrast the known characteristics of the systemic O2 transport of humans, rats, and mice at rest and during exercise in normoxia and hypoxia. This analysis should help understand when rodent O2 transport findings can-and cannot-be applied to human responses to similar conditions. The O2 -transport system was analyzed as composed of four linked conductances: ventilation, alveolo-capillary diffusion, circulatory convection, and tissue capillary-cell diffusion. While the mechanisms of O2 transport are similar in the three species, the quantitative differences are naturally large. There are abundant data on total O2 consumption and on ventilatory and pulmonary diffusive conductances under resting conditions in the three species; however, there is much less available information on pulmonary gas exchange, circulatory O2 convection, and tissue O2 diffusion in mice. The scarcity of data largely derives from the difficulty of obtaining blood samples in these small animals and highlights the need for additional research in this area. In spite of the large quantitative differences in absolute and mass-specific O2 flux, available evidence indicates that resting alveolar and arterial and venous blood PO2 values under normoxia are similar in the three species. Additionally, at least in rats, alveolar and arterial blood PO2 under hypoxia and exercise remain closer to the resting values than those observed in humans. This is achieved by a greater ventilatory response, coupled with a closer value of arterial to alveolar PO2 , suggesting a greater efficacy of gas exchange in the rats. © 2018 American Physiological Society. Compr Physiol 8:1537-1573, 2018.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University School of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Armoni Domany K, Hossain MM, Nava-Guerra L, Khoo MC, McConnell K, Carroll JL, Xu Y, DiFrancesco M, Amin RS. Cardioventilatory Control in Preterm-born Children and the Risk of Obstructive Sleep Apnea. Am J Respir Crit Care Med 2018; 197:1596-1603. [PMID: 29323933 PMCID: PMC6006399 DOI: 10.1164/rccm.201708-1700oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
RATIONALE The contribution of ventilatory control to the pathogenesis of obstructive sleep apnea (OSA) in preterm-born children is unknown. OBJECTIVES To characterize phenotypes of ventilatory control that are associated with the presence of OSA in preterm-born children during early childhood. METHODS Preterm- and term-born children without comorbid conditions were enrolled. They were categorized into an OSA group and a non-OSA group on the basis of polysomnography. MEASUREMENTS AND MAIN RESULTS Loop gain, controller gain, and plant gain, reflecting ventilatory instability, chemoreceptor sensitivity, and blood gas response to a change in ventilation, respectively, were estimated from spontaneous sighs identified during polysomnography. Cardiorespiratory coupling, a measure of brainstem maturation, was estimated by measuring the interval between inspiration and the preceding electrocardiogram R-wave. Cluster analysis was performed to develop phenotypes based on controller gain, plant gain, cardiorespiratory coupling, and gestational age. The study included 92 children, 63 of whom were born preterm (41% OSA) and 29 of whom were born at term (48% OSA). Three phenotypes of ventilatory control were derived with risks for OSA being 8%, 47%, and 77% in clusters 1, 2, and 3, respectively. There was a stepwise decrease in controller gain and an increase in plant gain from clusters 1 to 3. Children in cluster 1 had significantly higher cardiorespiratory coupling and gestational age than clusters 2 and 3. No difference in loop gain was found between clusters. CONCLUSIONS The risk for OSA could be stratified according to controller gain, plant gain, cardiorespiratory coupling, and gestational age. These findings could guide personalized care for children at risk for OSA.
Collapse
Affiliation(s)
- Keren Armoni Domany
- Division of Pulmonary Medicine
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Leonardo Nava-Guerra
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California; and
| | - Michael C. Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California; and
| | | | - John L. Carroll
- Division of Pediatric Pulmonary and Sleep Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yuanfang Xu
- Division of Biostatistics and Epidemiology, and
| | - Mark DiFrancesco
- Pediatric Neuroimaging Research Consortium, Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
15
|
Bates ML, Welch BT, Randall JT, Petersen-Jones HG, Limberg JK. Carotid body size measured by computed tomographic angiography in individuals born prematurely. Respir Physiol Neurobiol 2018; 258:47-52. [PMID: 29803761 DOI: 10.1016/j.resp.2018.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. METHODS A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( < 38 weeks) or receiving perinatal oxygen therapy by physician completion or billing codes (n = 16 premature and n = 7 receiving oxygen). Widest axial measurements of the carotid body images captured during the CTA were performed. RESULTS Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = .07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). CONCLUSIONS Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Brian T Welch
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jess T Randall
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jacqueline K Limberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Ortiz LE, McGrath-Morrow SA, Sterni LM, Collaco JM. Sleep disordered breathing in bronchopulmonary dysplasia. Pediatr Pulmonol 2017; 52:1583-1591. [PMID: 29064170 PMCID: PMC5693767 DOI: 10.1002/ppul.23769] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND There are limited data on the effect of bronchopulmonary dysplasia (BPD) on sleep disordered breathing (SDB). We hypothesized that both the severity of prematurity and BPD would increase the likelihood of SDB in early childhood. Our secondary aim was to evaluate the association of demographic factors on the development of SDB. METHODS This is a retrospective study of patient factors and overnight polysomnogram (PSG) data of children enrolled in our BPD registry between 2008 and 2015. Association between PSG results and studied variables was assessed using multiple linear regression analysis. RESULTS One-hundred-forty children underwent at least one sleep study on room air. The mean respiratory disturbance index (RDI) was elevated at 9.9 events/hr (SD: 10.1). The mean obstructive apnea-hypopnea index (OAHI) was 6.5 (9.1) events/hr and the mean central event rate of 3.0 (3.7) events/hr. RDI had decreased by 22% or 1.5 events/hour (95%CI: 0.6, 1.9) with each year of age (P = 0.005). Subjects with more severe respiratory disease had 38% more central events (P = 0.02). Infants exposed to secondhand smoke had 2.4% lower (P = 0.04) oxygen saturation nadirs and a pattern for more desaturation events. Non-white subjects were found to have 33% higher OAHI (P = 0.05), while white subjects had a 61% higher rate of central events (P < 0.001). CONCLUSIONS RDI was elevated in a selected BPD population compared to norms for non-preterm children. BPD severity, smoke exposure, and race may augment the severity of SDB. RDI improved with age but was still elevated by age 4, suggesting that this population is at risk for the sequelae of SDB.
Collapse
Affiliation(s)
- Luis E Ortiz
- Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | |
Collapse
|
17
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
18
|
Respiratory neuroplasticity – Overview, significance and future directions. Exp Neurol 2017; 287:144-152. [DOI: 10.1016/j.expneurol.2016.05.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
|
19
|
Ventilatory and chemoreceptor responses to hypercapnia in neonatal rats chronically exposed to moderate hyperoxia. Respir Physiol Neurobiol 2016; 237:22-34. [PMID: 28034711 DOI: 10.1016/j.resp.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 11/23/2022]
Abstract
Rats reared in hyperoxia hypoventilate in normoxia and exhibit progressive blunting of the hypoxic ventilatory response, changes which are at least partially attributed to abnormal carotid body development. Since the carotid body also responds to changes in arterial CO2/pH, we tested the hypothesis that developmental hyperoxia would attenuate the hypercapnic ventilatory response (HCVR) of neonatal rats by blunting peripheral and/or central chemoreceptor responses to hypercapnic challenges. Rats were reared in 21% O2 (Control) or 60% O2 (Hyperoxia) until studied at 4, 6-7, or 13-14days of age. Hyperoxia rats had significantly reduced single-unit carotid chemoafferent responses to 15% CO2 at all ages; CO2 sensitivity recovered within 7days after return to room air. Hypercapnic responses of CO2-sensitive neurons of the caudal nucleus tractus solitarius (cNTS) were unaffected by chronic hyperoxia, but there was evidence for a small decrease in neuronal excitability. There was also evidence for augmented excitatory synaptic input to cNTS neurons within brainstem slices. Steady-state ventilatory responses to 4% and 8% CO2 were unaffected by developmental hyperoxia in all three age groups, but ventilation increased more slowly during the normocapnia-to-hypercapnia transition in 4-day-old Hyperoxia rats. We conclude that developmental hyperoxia impairs carotid body chemosensitivity to hypercapnia, and this may compromise protective ventilatory reflexes during dynamic respiratory challenges in newborn rats. Impaired carotid body function has less of an impact on the HCVR in older rats, potentially reflecting compensatory plasticity within the CNS.
Collapse
|
20
|
Wasserman K, Kisaka T, Luehrs RE, Bates ML, Kumar VHS, Lopez-Barneo J, Zuo L, Zhou T, Ni L, Brain J, Banzett R, Chamoun N. Commentaries on Viewpoint: Why do some patients stop breathing after taking narcotics? Ventilatory chemosensitivity as a predictor of opioid-induced respiratory depression. J Appl Physiol (1985) 2016; 119:423-5. [PMID: 26276975 DOI: 10.1152/japplphysiol.00434.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Karlman Wasserman
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Tomohiko Kisaka
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Rachel E Luehrs
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Melissa L Bates
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Vasanth H S Kumar
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Jose Lopez-Barneo
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Li Zuo
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Tingyang Zhou
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Lei Ni
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Joseph Brain
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Robert Banzett
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| | - Nassib Chamoun
- Division of Respiratory and Critical Care Physiology and Medicine Los Angeles Biomedical Research Institute Harbor-UCLA Medical Center David Geffen School of Medicine University of California at Los AngelesLaboratory of Developmental and Integrative Physiology University of IowaDepartment of Pediatrics The Women & Children's Hospital of Buffalo University at BuffaloProfessor of Physiology Instituto de Biomedicina de Sevilla (IBiS) Hospital Universitario Virgen del Rocio/CSIC/Universidad de SevillaAssistant ProfessorSchool of Health and Rehabilitation Sciences The Ohio State University College of MedicineHarvard University
| |
Collapse
|
21
|
Logan S, Tobin KE, Fallon SC, Deng KS, McDonough AB, Bavis RW. Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats. Respir Physiol Neurobiol 2015; 220:69-80. [PMID: 26444750 DOI: 10.1016/j.resp.2015.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
Chronic exposure to sustained hyperoxia alters the development of the respiratory control system, but the respiratory effects of chronic intermittent hyperoxia have rarely been investigated. We exposed newborn rats to short, repeated bouts of 30% O2 or 60% O2 (5 bouts h(-1)) for 4-15 days and then assessed their hypoxic ventilatory response (HVR; 10 min at 12% O2) by plethysmography. The HVR tended to be enhanced by intermittent hyperoxia at P4 (early phase of the HVR), but it was significantly reduced at P14-15 (primarily late phase of the HVR) compared to age-matched controls; the HVR recovered when individuals were returned to room air and re-studied as adults. To investigate the role of carotid body function in this plasticity, single-unit carotid chemoafferent activity was recorded in vitro. Intermittent hyperoxia tended to decrease spontaneous action potential frequency under normoxic conditions but, contrary to expectations, hypoxic responses were only reduced at P4 (not at P14) and only in rats exposed to higher O2 levels (i.e., intermittent 60% O2). Rats exposed to intermittent hyperoxia had smaller carotid bodies, and this morphological change may contribute to the blunted HVR. In contrast to rats exposed to intermittent hyperoxia beginning at birth, two weeks of intermittent 60% O2 had no effect on the HVR or carotid body size of rats exposed beginning at P28; therefore, intermittent hyperoxia-induced respiratory plasticity appears to be unique to development. Although both intermittent and sustained hyperoxia alter carotid body development and the HVR of rats, the specific effects and time course of this plasticity differs.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | | | - Sarah C Fallon
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Kevin S Deng
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Amy B McDonough
- Department of Biology, Bates College, Lewiston, ME 04240 USA
| | - Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240 USA.
| |
Collapse
|
22
|
Prieto-Lloret J, Ramirez M, Olea E, Moral-Sanz J, Cogolludo A, Castañeda J, Yubero S, Agapito T, Gomez-Niño A, Rocher A, Rigual R, Obeso A, Perez-Vizcaino F, González C. Hypoxic pulmonary vasoconstriction, carotid body function and erythropoietin production in adult rats perinatally exposed to hyperoxia. J Physiol 2015; 593:2459-77. [PMID: 25833164 DOI: 10.1113/jp270274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is maintained. Loss of pulmonary hypoxic vasoconstriction is not linked to alterations in oxygen-sensitive K(+) currents in pulmonary artery smooth muscle cells. Loss of hypoxic vasoconstriction is associated with early postnatal oxidative damage and corrected by an antioxidant diet. Perinatal hyperoxia damages carotid body chemoreceptor cell function and the antioxidant diet does not reverse it. The hypoxia-elicited increase in erythropoietin plasma levels is not affected by perinatal hyperoxia. The potential clinical significance of the findings in clinical situations such as pneumonia, chronic obstructive pulmonary disease or general anaesthesia is considered. ABSTRACT Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55-60% O2 for the last 5-6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2 -sensitivity of K(+) currents in the PASMC of hyperoxic animals is normal, indicating that their inhibition is not sufficient to trigger HPV. Perinatal hyperoxia also abrogated responses elicited by hypoxia on catecholamine and cAMP metabolism in the CB. An increase in EPO plasma levels elicited by hypoxia was identical in hyperoxic and control animals, implying a normal functioning of EPO-producing cells. The loss of HPV observed in adult rats and caused by perinatal hyperoxia, comparable to oxygen therapy in premature infants, might represent a previously unrecognized complication of such a medical intervention capable of aggravating medical conditions such as regional pneumonias, atelectases or general anaesthesia in adult life.
Collapse
Affiliation(s)
- Jesus Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Maria Ramirez
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Elena Olea
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Javier Moral-Sanz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Facultad de Medicina, CIBER de Enfermedades Respiratorias/Instituto de Salud CIII, Valladolid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Facultad de Medicina, CIBER de Enfermedades Respiratorias/Instituto de Salud CIII, Valladolid, Spain
| | - Javier Castañeda
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Sara Yubero
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Teresa Agapito
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Angela Gomez-Niño
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Asuncion Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Ricardo Rigual
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Facultad de Medicina, CIBER de Enfermedades Respiratorias/Instituto de Salud CIII, Valladolid, Spain
| | - Constancio González
- Departamento de Bioquímica y Biología Molecular y Fisiología/Instituto de Biología y Genética Molecular, Universidad de Valladolid/Consejo Superior de Investigaciones Científicas
| |
Collapse
|
23
|
Bavis RW, van Heerden ES, Brackett DG, Harmeling LH, Johnson SM, Blegen HJ, Logan S, Nguyen GN, Fallon SC. Postnatal development of eupneic ventilation and metabolism in rats chronically exposed to moderate hyperoxia. Respir Physiol Neurobiol 2014; 198:1-12. [PMID: 24703970 DOI: 10.1016/j.resp.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Newborn rats chronically exposed to moderate hyperoxia (60% O2) exhibit abnormal respiratory control, including decreased eupneic ventilation. To further characterize this plasticity and explore its proximate mechanisms, rats were exposed to either 21% O2 (Control) or 60% O2 (Hyperoxia) from birth until studied at 3-14 days of age (P3-P14). Normoxic ventilation was reduced in Hyperoxia rats when studied at P3, P4, and P6-7 and this was reflected in diminished arterial O2 saturations; eupneic ventilation spontaneously recovered by P13-14 despite continuous hyperoxia, or within 24h when Hyperoxia rats were returned to room air. Normoxic metabolism was also reduced in Hyperoxia rats but could be increased by raising inspired O2 levels (to 60% O2) or by uncoupling oxidative phosphorylation within the mitochondrion (2,4-dinitrophenol). In contrast, moderate increases in inspired O2 had no effect on sustained ventilation which indicates that hypoventilation can be dissociated from hypometabolism. The ventilatory response to abrupt O2 inhalation was diminished in Hyperoxia rats at P4 and P6-7, consistent with smaller contributions of peripheral chemoreceptors to eupneic ventilation at these ages. Finally, the spontaneous respiratory rhythm generated in isolated brainstem-spinal cord preparations was significantly slower and more variable in P3-4 Hyperoxia rats than in age-matched Controls. We conclude that developmental hyperoxia impairs both peripheral and central components of eupneic ventilatory drive. Although developmental hyperoxia diminishes metabolism as well, this appears to be a regulated hypometabolism and contributes little to the observed changes in ventilation.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | | | | - Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | - Sarah Logan
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Giang N Nguyen
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | - Sarah C Fallon
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| |
Collapse
|
24
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
25
|
Mayer CA, Di Fiore JM, Martin RJ, Macfarlane PM. Vulnerability of neonatal respiratory neural control to sustained hypoxia during a uniquely sensitive window of development. J Appl Physiol (1985) 2013; 116:514-21. [PMID: 24371020 DOI: 10.1152/japplphysiol.00976.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The first postnatal weeks represent a period of development in the rat during which the respiratory neural control system may be vulnerable to aberrant environmental stressors. In the present study, we investigated whether sustained hypoxia (SH; 11% O2) exposure starting at different postnatal ages differentially modifies the acute hypoxic (HVR) and hypercapnic ventilatory response (HCVR). Three different groups of rat pups were exposed to 5 days of SH, starting at either postnatal age 1 (SH1-5), 11 (SH11-15), or 21 (SH21-25) days. Whole body plethysmography was used to assess the HVR and HCVR the day after SH exposure ended. The primary results indicated that 1) the HVR and HCVR of SH11-15 rats were absent or attenuated (respectively) compared with age-matched rats raised in normoxia; 2) there was a profoundly high (∼84% of pups) incidence of unexplained mortality in the SH11-15 rats; and 3) these phenomena were unique to the SH11-15 group with no comparable effect of the SH exposure on the HVR, HCVR, or mortality in the younger (SH1-5) or older (SH21-25) rats. These results share several commonalities with the risk factors thought to underlie the etiology of sudden infant death syndrome, including 1) a vulnerable neonate; 2) a critical period of development; and 3) an environmental stressor.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
26
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Bates ML, Pillers DAM, Palta M, Farrell ET, Eldridge MW. Ventilatory control in infants, children, and adults with bronchopulmonary dysplasia. Respir Physiol Neurobiol 2013; 189:329-37. [PMID: 23886637 DOI: 10.1016/j.resp.2013.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/17/2022]
Abstract
Bronchopulmonary dysplasia (BPD), or chronic lung disease of prematurity, occurs in ~30% of preterm infants (15,000 per year) and is associated with a clinical history of mechanical ventilation and/or high inspired oxygen at birth. Here, we describe changes in ventilatory control that exist in patients with BPD, including alterations in chemoreceptor function, respiratory muscle function, and suprapontine control. Because dysfunction in ventilatory control frequently revealed when O2 supply and CO2 elimination are challenged, we provide this information in the context of four important metabolic stressors: stresses: exercise, sleep, hypoxia, and lung disease, with a primary focus on studies of human infants, children, and adults. As a secondary goal, we also identify three key areas of future research and describe the benefits and challenges of longitudinal human studies using well-defined patient cohorts.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Pediatrics, Division of Critical Care, University of Wisconsin, Madison, WI, USA; John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
28
|
Kim I, Yang D, Carroll JL, Donnelly DF. Perinatal hyperoxia exposure impairs hypoxia-induced depolarization in rat carotid body glomus cells. Respir Physiol Neurobiol 2013; 188:9-14. [PMID: 23669494 DOI: 10.1016/j.resp.2013.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Chronic post-natal hyperoxia reduces the hypoxic ventilatory response by reducing the carotid body sensitivity to acute hypoxia as demonstrated by a reduced afferent nerve response, reduced calcium response of carotid body glomus cells and reduced catecholamine secretion in response to acute hypoxia. The present study examined whether hyperoxia alters the electrophysiological characteristics of glomus cells. Rats were treated with hyperoxia for 1 week starting at P1 or P7 and for 2 weeks starting at P1 followed by harvesting and dissociation of their carotid bodies for whole cell, perforated-patch recording. As compared to glomus cells from normoxia animals, hyperoxia treated cells showed a significant reduction in the magnitude of depolarization in response to hypoxia and anoxia, despite little change in the depolarizing response to 20 mM K(+). Resting cell membrane potential in glomus cells from rats exposed to hyperoxia from P1 to P15 and studied at P15 was slightly depolarized compared to other treatment groups and normoxia-treated cells, but conductance normalized to cell size was not different among groups. We conclude that postnatal hyperoxia impairs carotid chemoreceptor hypoxia transduction at a step between hypoxia sensing and membrane depolarization. This occurs without a major change in baseline electrophysiological characteristics, suggesting altered signaling or alterations in the relative abundance of different leak channel isoforms.
Collapse
Affiliation(s)
- Insook Kim
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, USA.
| | | | | | | |
Collapse
|
29
|
MacLean JE, Tan S, Fitzgerald DA, Waters KA. Assessing ventilatory control in infants at high risk of sleep disordered breathing: a study of infants with cleft lip and/or palate. Pediatr Pulmonol 2013; 48:265-73. [PMID: 22528960 DOI: 10.1002/ppul.22568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/01/2012] [Indexed: 11/10/2022]
Abstract
Neonatal exposure to intermittent hypoxia results in altered ventilatory response to subsequent hypoxia in animal models. The effect of similar exposure in human infants is unknown. Our objective was to determine the impact of sleep disordered breathing (SDB) in early infancy on ventilatory response in infants. We recruited consecutive infants with cleft lip and/or palate (CL/P) to undergo ventilatory response testing using exposure to a hypoxic (15% O(2) ) gas mixture during sleep. This population is at high risk of SDB because of smaller airway caliber and abnormal palatal muscle attachments predisposing them to airway obstruction of ranging severity from birth. Ventilatory responses were compared between infants with a low apnea-hypopnea index (AHI; AHI < 15 events/hr) and a high AHI (AHI ≥ 15 events/hr). Testing was successfully completed in 22 of 23 infants who underwent testing at 4.4 ± 4.8 months. Infants with high AHI had lower weight z-scores, higher number of oxygen desaturation events during sleep, but similar oxygen saturation (S(p) O(2) ) nadir compared to infants with low AHI. The pattern of ventilatory response to hypoxia differed between the two groups; infants with high AHI had an earlier ventilatory decline and a blunted maximal ventilatory response to hypoxia. Infants with a high AHI use a different strategy to augment ventilation in response to hypoxia; while infants with a low AHI initially increased respiratory rate, tidal volume was the first parameter to increase in infants with high AHI. These results demonstrate that SDB in infancy is associated with altered ventilatory response to hypoxia.
Collapse
Affiliation(s)
- Joanna E MacLean
- Division of Respiratory Medicine, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
30
|
Bavis RW, Fallon SC, Dmitrieff EF. Chronic hyperoxia and the development of the carotid body. Respir Physiol Neurobiol 2013; 185:94-104. [PMID: 22640932 PMCID: PMC3448014 DOI: 10.1016/j.resp.2012.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 01/27/2023]
Abstract
Preterm infants often experience hyperoxia while receiving supplemental oxygen. Prolonged exposure to hyperoxia during development is associated with pathologies such as bronchopulmonary dysplasia and retinopathy of prematurity. Over the last 25 years, however, experiments with animal models have revealed that moderate exposures to hyperoxia (e.g., 30-60% O(2) for days to weeks) can also have profound effects on the developing respiratory control system that may lead to hypoventilation and diminished responses to acute hypoxia. This plasticity, which is generally inducible only during critical periods of development, has a complex time course that includes both transient and permanent respiratory deficits. Although the molecular mechanisms of hyperoxia-induced plasticity are only beginning to be elucidated, it is clear that many of the respiratory effects are linked to abnormal morphological and functional development of the carotid body, the principal site of arterial O(2) chemoreception for respiratory control. Specifically, developmental hyperoxia reduces carotid body size, decreases the number of chemoafferent neurons, and (at least transiently) diminishes the O(2) sensitivity of individual carotid body glomus cells. Recent evidence suggests that hyperoxia may also directly or indirectly impact development of the central neural control of breathing. Collectively, these findings emphasize the vulnerability of the developing respiratory control system to environmental perturbations.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | |
Collapse
|
31
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
32
|
Chavez-Valdez R, Mason A, Nunes AR, Northington FJ, Tankersley C, Ahlawat R, Johnson SM, Gauda EB. Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii. J Appl Physiol (1985) 2012; 112:1762-72. [PMID: 22422797 DOI: 10.1152/japplphysiol.01609.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synaptic activity can modify expression of neurotrophins, which influence the development of neuronal circuits. In the newborn rat, early hyperoxia silences the synaptic activity and input from the carotid body, impairing the development and function of chemoreceptors. The purpose of this study was to determine whether early hyperoxic exposure, sufficient to induce hypoplasia of the carotid body and decrease the number of chemoafferents, would also modify neurotrophin expression within the nucleus tractus solitarii (nTS). Rat pups were exposed to hyperoxia (fraction of inspired oxygen 0.60) or normoxia until 7 or 14 days of postnatal development (PND). In the carotid body, hyperoxia decreased brain-derived neurotrophic factor (BDNF) protein expression by 93% (P = 0.04) after a 7-day exposure, followed by a decrease in retrogradely labeled chemoafferents by 55% (P = 0.004) within the petrosal ganglion at 14 days. Return to normoxia for 1 wk after a 14-day hyperoxic exposure did not reverse this effect. In the nTS, hyperoxia for 7 days: 1) decreased BDNF gene expression by 67% and protein expression by 18%; 2) attenuated upregulation of BDNF mRNA levels in response to acute hypoxia; and 3) upregulated p75 neurotrophic receptor, truncated tropomyosin kinase B (inactive receptor), and cleaved caspase-3. These effects were not observed in the locus coeruleus (LC). Hyperoxia for 14 days also decreased tyrosine hydroxylase levels by 18% (P = 0.04) in nTS but not in the LC. In conclusion, hyperoxic exposure during early PND reduces neurotrophin levels in the carotid body and the nTS and shifts the balance of neurotrophic support from prosurvival to proapoptotic in the nTS, the primary brain stem site for central integration of sensory and autonomic inputs.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Dmitrieff EF, Piro SE, Broge TA, Dunmire KB, Bavis RW. Carotid body growth during chronic postnatal hyperoxia. Respir Physiol Neurobiol 2011; 180:193-203. [PMID: 22138179 DOI: 10.1016/j.resp.2011.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2022]
Abstract
Rats reared in hyperoxia have smaller carotid bodies as adults. To study the time course and mechanisms underlying these changes, rats were reared in 60% O(2) from birth and their carotid bodies were harvested at various postnatal ages (P0-P7, P14). The carotid bodies of hyperoxia-reared rats were smaller than those of age-matched controls beginning at P4. In contrast, 7d of 60% O(2) had no effect on carotid body size in rats exposed to hyperoxia as adults. Bromodeoxyuridine (BrdU) and TdT-mediated dUTP nick end labeling (TUNEL) were used to assess cell proliferation and DNA fragmentation at P2, P4, and P6. Hyperoxia reduced the proportion of glomus cells undergoing cell division at P4; although a similar trend was evident at P2, hyperoxia no longer affected cell proliferation by P6. The proportion of TUNEL-positive glomus cells was modestly increased by hyperoxia. We did not detect changes in mRNA expression for proapoptotic (Bax) or antiapoptotic (Bcl-X(L)) genes or transcription factors that regulate cell cycle checkpoints (p53 or p21), although mRNA levels for cyclin B1 and cyclin B2 were reduced. Collectively, these data indicate that hyperoxia primarily attenuates postnatal growth of the carotid body by inhibiting glomus cell proliferation during the first few days of exposure.
Collapse
|
34
|
Holley HS, Behan M, Wenninger JM. Age and sex differences in the ventilatory response to hypoxia and hypercapnia in awake neonatal, pre-pubertal and young adult rats. Respir Physiol Neurobiol 2011; 180:79-87. [PMID: 22067556 DOI: 10.1016/j.resp.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/16/2022]
Abstract
There is evidence for a "sensitive period" in respiratory development in rats around postnatal age (P) 12-13d. Little is known about sex differences during that time. The purpose of this study was to assess the effect of sex on breathing development, specifically around the "sensitive period". We used whole-body plethysmography to study breathing in normoxic, hypoxic and hypercapnic gases in non-anesthetized male and female neonatal rats from P10 to P15, juvenile (P30) and young adult (P90) rats. Compared to other neonatal ages, P12-13 male rats had significantly lower ventilation during normoxia, hypoxia, and hypercapnia. Compared to age-matched females, P12-13 male rats had lower ventilation in normoxia and hypoxia and a lower O(2) saturation during hypoxia. Circulating estradiol was greater in P12-13 male vs. female rats. Estradiol and ventilatory responses to hypoxia and hypercapnia were negatively correlated in neonatal male, but not female rats. Our results suggest that P10-15 includes a critical developmental period in male but not female rats.
Collapse
Affiliation(s)
- Heidi S Holley
- University of Wisconsin - Madison School of Veterinary Medicine, Department of Comparative Biosciences, 2015 Linden Drive, Madison, WI 53706, United States
| | | | | |
Collapse
|
35
|
Lumbroso D, Lemoine A, Gonzales M, Villalpando G, Seaborn T, Joseph V. Life-long consequences of postnatal normoxia exposure in rats raised at high altitude. J Appl Physiol (1985) 2011; 112:33-41. [PMID: 21998271 DOI: 10.1152/japplphysiol.01043.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that exposure of high-altitude (HA) rats to a period of postnatal normoxia has long-term consequences on the ventilatory and hematological acclimatization in adults. Male and female HA rats (3,600 m, Po(2) ≃ 100 Torr; La Paz, Bolivia) were exposed to normal room air [HA control (HACont)] or enriched oxygen (32% O(2); Po(2) ≃ 160 Torr) from 1 day before to 15 days after birth [HA postnatal normoxia (HApNorm)]. Hematocrit and hemoglobin values were assessed at 2, 12, and 32 wk of age. Cardiac and lung morphology were assessed at 12 wk by measuring right ventricular hypertrophy (pulmonary hypertension index) and lung air space-to-tissue ratio (indicative of alveolarization). Respiratory parameters under baseline conditions and in response to 32% O(2) for 10 min (relieving the ambient hypoxic stimulus) were measured by whole body plethysmography at 12 wk. Finally, we performed a survival analysis up to 600 days of age. Compared with HACont, HApNorm rats had reduced hematocrit and hemoglobin levels at all ages (both sexes); reduced right ventricular hypertrophy (both sexes); lower air space-to-tissue ratio in the lungs (males only); reduced CO(2) production rate, but higher oxygen uptake (males only); and similar respiratory frequency, tidal volume, and minute ventilation. When breathing 32% O(2), HApNorm male rats had a stronger decrease of minute ventilation than HACont. HApNorm rats had a marked tendency toward longer survival throughout the study. We conclude that exposure to ambient hypoxia during postnatal development in HA rats has deleterious consequences on acclimatization to hypoxia as adults.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
37
|
Bavis RW, Dmitrieff EF, Young KM, Piro SE. Hypoxic ventilatory response of adult rats and mice after developmental hyperoxia. Respir Physiol Neurobiol 2011; 177:342-6. [PMID: 21601659 DOI: 10.1016/j.resp.2011.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
Abstract
Chronic postnatal hyperoxia attenuates the hypoxic ventilatory response (HVR) of rats. To determine whether the ability to detect deficits in the HVR depends on the degree of hypoxia, we assessed the HVR at several levels of hypoxia in adult rats reared in 60% O(2) for the first two postnatal weeks. Hyperoxia-treated rats exhibited smaller increases in ventilation than control rats at 12% O(2) (30±8 vs. 53±4% baseline, mean±SEM; P=0.02) but not at 10% O(2) (83±11 vs. 96±14% baseline; P=0.47). Interestingly, 10% O(2) was used as the test gas in the only study to assess HVR in mice exposed to developmental hyperoxia, and that study reported normal HVR (Dauger et al., Chest 123 (2003), 530-538). Therefore, we assessed the HVR at 12.5% O(2) in adult mice reared in 60% O(2) for the first two postnatal weeks. Hyperoxia-treated mice exhibited smaller increases in ventilation (28±7 vs. 58±8% baseline; P<0.01) and smaller carotid bodies than control mice. We conclude that hyperoxia impairs the HVR in both rats and mice, but this effect is most evident at moderate levels of hypoxia.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Apnea of prematurity (AOP) is a significant clinical problem manifested by an unstable respiratory rhythm reflecting the immaturity of respiratory control systems. This review will address the pathogenesis of and treatment strategies for AOP. Although the neuronal mechanisms leading to apnea are still not well understood, recent decades have provided better insight into the generation of the respiratory rhythm and its modulation in the neonate. Ventilatory responses to hypoxia and hypercarbia are impaired and inhibitory reflexes are exaggerated in the neonate. These unique vulnerabilities predispose the neonate to the development of apnea. Treatment strategies attempt to stabilize the respiratory rhythm. Caffeine remains the primary pharmacological treatment modality and is presumed to work through blockade of adenosine receptors A(1) and A(2). Recent evidences suggest that A(2A) receptors may have a greater role than previously thought. AOP typically resolves with maturation suggesting increased myelination of the brainstem.
Collapse
Affiliation(s)
- O P Mathew
- Section of Neonatology, Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912-3740, USA.
| |
Collapse
|
39
|
Bavis RW, Kim I, Pradhan N, Nawreen N, Dmitrieff EF, Carroll JL, Donnelly DF. Recovery of carotid body O2 sensitivity following chronic postnatal hyperoxia in rats. Respir Physiol Neurobiol 2011; 177:47-55. [PMID: 21420511 DOI: 10.1016/j.resp.2011.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/08/2011] [Accepted: 03/10/2011] [Indexed: 11/30/2022]
Abstract
Chronic postnatal hyperoxia blunts the hypoxic ventilatory response (HVR) in rats, an effect that persists for months after return to normoxia. To determine whether decreased carotid body O(2) sensitivity contributes to this lasting impairment, single-unit chemoafferent nerve and glomus cell calcium responses to hypoxia were recorded from rats reared in 60% O(2) through 7d of age (P7) and then returned to normoxia. Single-unit nerve responses were attenuated by P4 and remained low through P7. After return to normoxia, hypoxic responses were partially recovered within 3d and fully recovered within 7-8d (i.e., at P14-15). Glomus cell calcium responses recovered with a similar time course. Hyperoxia altered carotid body mRNA expression for O(2)-sensitive K(+) channels TASK-1, TASK-3, and BK(Ca), but only TASK-1 mRNA paralleled changes in chemosensitivity (i.e., downregulation by P7, partial recovery by P14). Collectively, these data do not support a role for reduced O(2) sensitivity of individual chemoreceptor cells in long-lasting reduction of the HVR after developmental hyperoxia.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
McGinley BM, Carroll JL. Chronic Lung Disease of Childhood: Control of Breathing During Wake and Sleep. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2011; 24:39-43. [PMID: 35927858 DOI: 10.1089/ped.2011.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Control of breathing in infants during wake and sleep is immature at birth and undergoes rapid maturation over the first year of life. Infants with chronic lung disease (CLD) have multiple control of breathing impairments leaving them particularly vulnerable to hypoxic and asphyxic events. These impairments in the control of breathing are thought to contribute significantly to increased morbidity and the increased incidence of sudden infant death in infants with CLD. This review provides an overview of factors integral to the control of breathing during wake and sleep and factors that influence the development of control of breathing with a focus on the impact of CLD.
Collapse
Affiliation(s)
- Brian M McGinley
- Pediatric Pulmonary Medicine, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, Maryland
| | - John L Carroll
- Pediatric Pulmonary Medicine, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
41
|
Chronic hyperoxia alters the expression of neurotrophic factors in the carotid body of neonatal rats. Respir Physiol Neurobiol 2010; 175:220-7. [PMID: 21094282 DOI: 10.1016/j.resp.2010.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/12/2022]
Abstract
Chronic exposure to hyperoxia alters the postnatal development and innervation of the rat carotid body. We hypothesized that this plasticity is related to changes in the expression of neurotrophic factors or related proteins. Rats were reared in 60% O(2) from 24 to 36h prior to birth until studied at 3d of age (P3). Protein levels for brain-derived neurotrophic factor (BDNF) were significantly reduced (-70%) in the P3 carotid body, while protein levels for its receptor, tyrosine kinase B, and for glial cell line-derived neurotrophic factor (GDNF) were unchanged. Transcript levels in the carotid body were downregulated for the GDNF receptor Ret (-34%) and the neuropeptide Vgf (-67%), upregulated for Cbln1 (+205%), and unchanged for Fgf2; protein levels were not quantified for these genes. Immunohistochemical analysis revealed that Vgf and Cbln1 proteins are expressed within the carotid body glomus cells. These data suggest that BDNF, and perhaps other neurotrophic factors, contribute to abnormal carotid body function following perinatal hyperoxia.
Collapse
|
42
|
Bavis RW, Young KM, Barry KJ, Boller MR, Kim E, Klein PM, Ovrutsky AR, Rampersad DA. Chronic hyperoxia alters the early and late phases of the hypoxic ventilatory response in neonatal rats. J Appl Physiol (1985) 2010; 109:796-803. [PMID: 20576840 DOI: 10.1152/japplphysiol.00510.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hyperoxia during the first 1-4 postnatal weeks attenuates the hypoxic ventilatory response (HVR) subsequently measured in adult rats. Rather than focusing on this long-lasting plasticity, the present study considered the influence of hyperoxia on respiratory control during the neonatal period. Sprague-Dawley rats were born and raised in 60% O2 until studied at postnatal ages (P) of 4, 6-7, or 13-14 days. Ventilation and metabolism were measured in normoxia (21% O2) and acute hypoxia (12% O2) using head-body plethysmography and respirometry, respectively. Compared with age-matched rats raised in room air, the major findings were 1) diminished pulmonary ventilation and metabolic O2 consumption in normoxia at P4 and P6-7; 2) decreased breathing stability during normoxia; 3) attenuation of the early phase of the HVR at P6-7 and P13-14; and 4) a sustained increase in ventilation during hypoxia (vs. the normal biphasic HVR) at all ages studied. Attenuation of the early HVR likely reflects progressive impairment of peripheral arterial chemoreceptors while expression of a sustained HVR in neonates before P7 suggests that hyperoxia also induces plasticity within the central nervous system. Together, these results suggest a complex interaction between inhibitory and excitatory effects of hyperoxia on the developing respiratory control system.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Kinkead R, Gulemetova R. Neonatal maternal separation and neuroendocrine programming of the respiratory control system in rats. Biol Psychol 2010; 84:26-38. [DOI: 10.1016/j.biopsycho.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
45
|
Gassmann M, Soliz J. Erythropoietin modulates the neural control of hypoxic ventilation. Cell Mol Life Sci 2009; 66:3575-82. [PMID: 19756385 PMCID: PMC11115915 DOI: 10.1007/s00018-009-0142-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
Numerous factors involved in general homeostasis are able to modulate ventilation. Classically, this comprises several kind of molecules, including neurotransmitters and steroids that are necessary for fine tuning ventilation under different conditions such as sleep, exercise, and acclimatization to high altitude. Recently, however, we have found that erythropoietin (Epo), the main regulator of red blood cell production, influences both central (brainstem) and peripheral (carotid bodies) respiratory centers when the organism is exposed to hypoxic conditions. Here, we summarize the effect of Epo on the respiratory control in mammals and highlight the potential implication of Epo in the ventilatory acclimatization to high altitude, as well as in the several respiratory sickness and syndromes occurring at low and high altitude.
Collapse
Affiliation(s)
- Max Gassmann
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Jorge Soliz
- Vetsuisse Faculty, Institute of Veterinary Physiology, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
Gassmann M, Tissot van Patot M, Soliz J. The Neuronal Control of Hypoxic Ventilation. Ann N Y Acad Sci 2009; 1177:151-61. [DOI: 10.1111/j.1749-6632.2009.05028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Donnelly DF, Bavis RW, Kim I, Dbouk HA, Carroll JL. Time course of alterations in pre- and post-synaptic chemoreceptor function during developmental hyperoxia. Respir Physiol Neurobiol 2009; 168:189-97. [PMID: 19465165 DOI: 10.1016/j.resp.2009.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/29/2009] [Accepted: 05/17/2009] [Indexed: 11/28/2022]
Abstract
Postnatal hyperoxia exposure reduces the carotid body response to acute hypoxia and produces a long-lasting impairment of the ventilatory response to hypoxia. The present work investigated the time course of pre- and post-synaptic alterations following exposure to hyperoxia (Fl(O2) = 0.6) for 1, 3, 5, 8 and 14 days (d) starting at postnatal day 7 (P7) as compared to age-matched controls. Hyperoxia exposure for 1d enhanced the nerve response and glomus cell calcium response to acute hypoxia, but exposure for 3-5d caused a significant reduction in both. Hypoxia-induced catecholamine release and nerve conduction velocity were significantly decreased by 5d hyperoxia. We conclude that hyperoxia exerts pre-synaptic (glomus cell calcium and secretory responses) and post-synaptic (afferent nerve excitability) actions to initially enhance and then reduce the chemoreceptor response to acute hypoxia. The parallel changes in glomus cell calcium response and nerve response suggest causality between the two and that environmental hyperoxia can affect the coupling between acute hypoxia and glomus cell calcium regulation.
Collapse
Affiliation(s)
- David F Donnelly
- Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
48
|
Time-dependence of hyperoxia-induced impairment in peripheral chemoreceptor activity and glomus cell calcium response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:299-306. [PMID: 19536493 DOI: 10.1007/978-90-481-2259-2_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In mammals, transient exposure to hyperoxia for a period of weeks during perinatal life leads to impairment of the ventilatory response to acute hypoxia, which may persist long beyond the duration of the hyperoxia exposure. The impairment of the ventilatory response to hypoxia is due to hyperoxia-induced reduction of carotid chemoreceptor sensitivity to hypoxia. We previously demonstrated that hyperoxia exposure in rats, from birth to two weeks of age, profoundly reduced carotid chemoreceptor single axonal responses to acute hypoxia challenge. However, the time course and mechanisms of this impairment are not known. Therefore, we investigated the effect of hyperoxia (FiO(2) = 0.6) on neonatal rats after 1, 3, 5, 8, and 14 days of exposure, starting at postnatal day 7. Carotid chemoreceptor single unit activities, nerve conduction time and glomus cell calcium responses to acute hypoxia were recorded in vitro. After 1 day in hyperoxia, single unit spiking rate in response to acute hypoxia was increased compared to controls. After 5 days in hyperoxia, the spiking response to acute hypoxia was significantly reduced compared to controls, nerve conduction time was lengthened and the glomus cell calcium response to acute hypoxia was reduced compared to controls. We conclude that perinatal exposure to hyperoxia, in rats, impairs the glomus cell calcium response (pre-synaptic) and the afferent nerve excitability (post-synaptic). The time course indicates that hyperoxia exerts these effects within days.
Collapse
|
49
|
Ferner K, Mortola JP. Ventilatory response to hypoxia in chicken hatchlings: a developmental window of sensitivity to embryonic hypoxia. Respir Physiol Neurobiol 2008; 165:49-53. [PMID: 18977462 DOI: 10.1016/j.resp.2008.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
We had reported previously [Szdzuy, K., Mortola, J.P., 2007b. Ventilatory chemosensitivity of the 1-day-old chicken hatchling after embryonic hypoxia. Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 293, R1640-R1649] that hypoxia during incubation blunted ventilatory chemosensitivity in the hatchling. Because the carotid bodies become functional in the last portion of incubation, we asked whether these last days were the critical period for the effects of hypoxia on the development of ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) (Controls) or in 15% O(2) for the whole 3-week incubation (HxTot) or for only the 1st (Hx1), 2nd (Hx2) or 3rd week of incubation (Hx3). Hatching time had a delay of half a day in HxTot, and was normal in the other groups. Body weight was similar in all hatchlings. Oxygen consumption ( [Formula: see text] ) and pulmonary ventilation (V e) were measured at about 20 h post-hatching. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in V e) and hyperventilation (increase in [Formula: see text] ) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The responses to hypoxia were similarly decreased in HxTot and in Hx3 compared to controls, and were normal in the other experimental groups; those to hypercapnia were blunted only in HxTot. The results are in agreement with the idea that prenatal hypoxia blunts V e chemosensitivity by interfering with the normal development of the carotid bodies.
Collapse
Affiliation(s)
- Kirsten Ferner
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6 Canada.
| | | |
Collapse
|
50
|
Bavis RW, Simons JC. Developmental hyperoxia attenuates the hypoxic ventilatory response in Japanese quail (Coturnix japonica). Respir Physiol Neurobiol 2008; 164:411-8. [PMID: 18824143 DOI: 10.1016/j.resp.2008.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 09/02/2008] [Indexed: 11/29/2022]
Abstract
Early life experiences can influence development of the respiratory control system. We hypothesized that chronic hyperoxia (60% O(2)) during development would attenuate the hypoxic ventilatory response (HVR) of Japanese quail (Coturnix japonica), similar to the effects of developmental hyperoxia in mammals. Quail were exposed to hyperoxia during prenatal development, during postnatal development, or during both prenatal and postnatal development (for approximately 2 or 4 weeks). HVR (11% O(2)) was subsequently assessed in adults (>6 weeks old) via barometric plethysmography and compared to quail raised in normoxia (i.e., control). The HVR of quail exposed to hyperoxia both prenatally and postnatally was reduced 50-60% compared to control quail whereas postnatally exposed quail exhibited normal HVR. The effects of prenatal hyperoxia on HVR were equivocal and depended on how HVR was expressed. We conclude that developmental exposure to 60% O(2) attenuates the HVR in quail and that the critical period for this plasticity encompasses the late prenatal and early postnatal periods.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | |
Collapse
|