1
|
Olt J, Allen CE, Marcotti W. In vivo physiological recording from the lateral line of juvenile zebrafish. J Physiol 2016; 594:5427-38. [PMID: 27161862 PMCID: PMC5043028 DOI: 10.1113/jp271794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/04/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells. We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish. The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills. The same approach could be used for in vivo functional studies in other sensory and non-sensory systems from juvenile and adult zebrafish. ABSTRACT Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post-fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l(-1) was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l(-1) did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS-222, which reduces the size of basolateral membrane K(+) currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More generally, this method would allow functional studies involving live imaging and electrophysiology from juvenile and adult zebrafish.
Collapse
Affiliation(s)
- Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Claire E Allen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
2
|
Channeling your inner ear potassium: K+ channels in vestibular hair cells. Hear Res 2016; 338:40-51. [DOI: 10.1016/j.heares.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
|
3
|
Olt J, Johnson SL, Marcotti W. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Physiol 2014; 592:2041-58. [PMID: 24566541 PMCID: PMC4027864 DOI: 10.1113/jphysiol.2013.265108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching.
Collapse
Affiliation(s)
- Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Haden M, Einarsson R, Yazejian B. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs. Neuroscience 2013; 248:79-87. [PMID: 23747350 DOI: 10.1016/j.neuroscience.2013.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
The senses of hearing and balance in vertebrates are transduced by hair cells in the inner ear. Hair cells from a wide variety of organisms have been described electrophysiologically but this is the first report of the application of these techniques to the genetically tractable zebrafish model system. Auditory and vestibular hair cells isolated from zebrafish lagenae and utricles were patch clamped and both inward and outward currents under voltage clamp, and changes in membrane potential under current clamp were recorded. Cells displayed substantial diversity in their morphology, constellation of channel types, and level of excitability. While all cells showed evidence of the presence of fast-inactivating (A-type) K(+) channels, other K(+) channel types, including delayed rectifier, inward rectifier and large conductance Ca(2+)-activated K(+) (BK) channels were less common. Recorded Ca(2+) currents were identified pharmacologically as L-type. Non-linear regenerative voltage responses were evoked in more than half of the cells studied.
Collapse
Affiliation(s)
- M Haden
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA
| | - R Einarsson
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA
| | - B Yazejian
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA.
| |
Collapse
|
5
|
Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG. HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 2012; 287:37628-46. [PMID: 22948144 DOI: 10.1074/jbc.m112.375832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A unique coupling between HCN1 and stereociliary tip-link protein protocadherin 15 has been described for a teleost vestibular hair-cell model and mammalian organ of Corti (OC) (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238). We now show that Ca(2+)-dependent interaction of the organ of Corti HCN1 and protocadherin 15 CD3 is mediated by amino-terminal sequence specific to HCN1 and is not replicated by analogous specific peptides for HCN2 or HCN4 nor by amino-terminal sequence conserved across HCN isoforms utilized in channel formation. Furthermore, the HCN1-specific peptide binds both phosphatidylinositol (3,4,5)-trisphosphate and phosphatidylinositol (4,5)-bisphosphate but not phosphatidylinositol 4-phosphate. Singly isolated cochlear inner and outer hair cells express HCN1 transcript, and HCN1 and HCN2 protein is immunolocalized to hair-cell stereocilia by both z-stack confocal and pre-embedding EM immunogold microscopy, with stereociliary tip-link and subcuticular plate sites. Quantitative PCR indicates HCN1/HCN2/HCN3/HCN4 = 9:9:1:89 in OC of the wild-type mouse, with HCN4 protein primarily attributable to inner sulcus cells. A mutant form of HCN1 mRNA and protein is expressed in the OC of an HCN1 mutant, corresponding to a full-length sequence with the in-frame deletion of pore-S6 domains, predicted by construct. The mutant transcript of HCN1 is ∼9-fold elevated relative to wild-type levels, possibly representing molecular compensation, with unsubstantial changes in HCN2, HCN3, and HCN4. Immunoprecipitation protocols indicate alternate interactions of full-length proteins; HCN1 can interact with protocadherin 15 CD3 and F-actin-binding filamin A forming a complex that does not include HCN2, or HCN1 can interact with HCN2 forming a complex without protocadherin 15 CD3 but including F-actin-binding fascin-2.
Collapse
Affiliation(s)
- Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
6
|
Levin ME, Holt JR. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear. J Neurophysiol 2012; 108:175-86. [PMID: 22496522 DOI: 10.1152/jn.00098.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as I(K1). I(K1) has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of I(K1), we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from -124 to -54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K(+) equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS (n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1(-/-)) mice, I(K1) was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1(-/-) mice had significantly (P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for I(K1) in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections.
Collapse
Affiliation(s)
- Michaela E Levin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
7
|
HCN channels expressed in the inner ear are necessary for normal balance function. J Neurosci 2012; 31:16814-25. [PMID: 22090507 DOI: 10.1523/jneurosci.3064-11.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HCN1-4 subunits form Na+/K+-permeable ion channels that are activated by hyperpolarization and carry the current known as I(h). I(h) has been characterized in vestibular hair cells of the inner ear, but its molecular correlates and functional contributions have not been elucidated. We examined Hcn mRNA expression and immunolocalization of HCN protein in the mouse utricle, a mechanosensitive organ that contributes to the sense of balance. We found that HCN1 is the most highly expressed subunit, localized to the basolateral membranes of type I and type II hair cells. We characterized I(h) using the whole-cell, voltage-clamp technique and found the current expressed in 84% of the cells with a mean maximum conductance of 4.4 nS. I(h) was inhibited by ZD7288, cilobradine, and by adenoviral expression of a dominant-negative form of HCN2. To determine which HCN subunits carried I(h), we examined hair cells from mice deficient in Hcn1, 2, or both. I(h) was completely abolished in hair cells of Hcn1⁻/⁻ mice and Hcn1/2⁻/⁻ mice but was similar to wild-type in Hcn2⁻/⁻ mice. To examine the functional contributions of I(h), we recorded hair cell membrane responses to small hyperpolarizing current steps and found that activation of I(h) evoked a 5-10 mV sag depolarization and a subsequent 15-20 mV rebound upon termination. The sag and rebound were nearly abolished in Hcn1-deficient hair cells. We also found that Hcn1-deficient mice had deficits in vestibular-evoked potentials and balance assays. We conclude that HCN1 contributes to vestibular hair cell function and the sense of balance.
Collapse
|
8
|
Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci 2011; 31:1614-23. [PMID: 21289170 DOI: 10.1523/jneurosci.3369-10.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many auditory, vestibular, and lateral-line afferent neurons display spontaneous action potentials. This spontaneous spiking is thought to result from hair-cell glutamate release in the absence of stimuli. Spontaneous release at hair-cell resting potentials presumably results from Ca(V)1.3 L-type calcium channel activity. Here, using intact zebrafish larvae, we recorded robust spontaneous spiking from lateral-line afferent neurons in the absence of external stimuli. Consistent with the above assumptions, spiking was absent in mutants that lacked either Vesicular glutamate transporter 3 (Vglut3) or Ca(V)1.3. We then tested the hypothesis that spontaneous spiking resulted from sustained Ca(V)1.3 activity due to depolarizing currents that are active at rest. Mechanotransduction currents (I(MET)) provide a depolarizing influence to the resting potential. However, following block of I(MET), spontaneous spiking persisted and was characterized by longer interspike intervals and increased periods of inactivity. These results suggest that an additional depolarizing influence maintains the resting potential within the activation range of Ca(V)1.3. To test whether the hyperpolarization-activated cation current, I(h) participates in setting the resting potential, we applied I(h) antagonists. Both ZD7288 and DK-AH 269 reduced spontaneous activity. Finally, concomitant block of I(MET) and I(h) essentially abolished spontaneous activity, ostensibly by hyperpolarization outside of the activation range for Ca(V)1.3. Together, our data support a mechanism for spontaneous spiking that results from Ca(2+)-dependent neurotransmitter release at hair-cell resting potentials that are maintained within the activation range of Ca(V)1.3 channels through active I(MET) and I(h).
Collapse
|
9
|
Smith ME, Schuck JB, Gilley RR, Rogers BD. Structural and functional effects of acoustic exposure in goldfish: evidence for tonotopy in the teleost saccule. BMC Neurosci 2011; 12:19. [PMID: 21324138 PMCID: PMC3050771 DOI: 10.1186/1471-2202-12-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/15/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian and avian auditory hair cells display tonotopic mapping of frequency along the length of the cochlea and basilar papilla. It is not known whether the auditory hair cells of fishes possess a similar tonotopic organization in the saccule, which is thought to be the primary auditory receptor in teleosts. To investigate this question, we determined the location of hair cell damage in the saccules of goldfish (Carassius auratus) following exposure to specific frequencies. Subjects were divided into six groups of six fish each (five treatment groups plus control). The treatment groups were each exposed to one of five tones: 100, 400, 800, 2000, and 4000 Hz at 176 dB re 1 μPa root mean squared (RMS) for 48 hours. The saccules of each fish were dissected and labeled with phalloidin in order to visualize hair cell bundles. The hair cell bundles were counted at 19 specific locations in each saccule to determine the extent and location of hair cell damage. In addition to quantification of anatomical injury, hearing tests (using auditory evoked potentials) were performed on each fish immediately following sound exposure. Threshold shifts were calculated by subtracting control thresholds from post-sound exposure thresholds. RESULTS All sound-exposed fish exhibited significant hair cell and hearing loss following sound exposure. The location of hair cell loss varied along the length of the saccule in a graded manner with the frequency of sound exposure, with lower and higher frequencies damaging the more caudal and rostral regions of the saccule, respectively. Similarly, fish exposed to lower frequency tones exhibited greater threshold shifts at lower frequencies, while high-frequency tone exposure led to hearing loss at higher frequencies. In general, both hair cell and hearing loss declined as a function of increasing frequency of exposure tone, and there was a significant linear relationship between hair cell loss and hearing loss. CONCLUSIONS The pattern of hair cell loss as a function of exposure tone frequency and saccular rostral-caudal location is similar to the pattern of hearing loss as a function of exposure tone frequency and hearing threshold frequency. This data suggest that the frequency analysis ability of goldfish is at least partially driven by peripheral tonotopy in the saccule.
Collapse
Affiliation(s)
- Michael E Smith
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA
| | - Julie B Schuck
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA
| | - Ronald R Gilley
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA
| | - Brian D Rogers
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky 42101, USA
| |
Collapse
|
10
|
An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells. Neuroscience 2010; 171:1054-74. [PMID: 20883745 DOI: 10.1016/j.neuroscience.2010.09.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022]
Abstract
Adenylyl cyclase (AC) signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across AC isoforms, and reverse transcription-polymerase chain reaction (RT-PCR), coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca(2+), the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca(2+). Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate AC activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. Although a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which itself couples to Gαi3 and AC5/6, will down-modulate levels of cAMP, thus fine-tuning and gradating the hair-cell response to dopamine D1A. As predicted by the trout saccular hair cell model, evidence has been obtained for the first time that hair cells of mammalian otolithic vestibular end organs (rat/mouse saccule/utricle) express dopamine D1A and D2L receptors, and each receptor co-localizes with AC5/6, with a marked presence of all three proteins in subcuticular regions of type I vestibular hair cells. A putative efferent, presynaptic source of dopamine was identified in tyrosine hydroxylase-positive nerve fibers which passed from underlying connective tissue to the sensory epithelia, ending on type I and type II vestibular hair cells and on afferent calyces.
Collapse
|
11
|
Ramakrishnan NA, Drescher MJ, Barretto RL, Beisel KW, Hatfield JS, Drescher DG. Calcium-dependent binding of HCN1 channel protein to hair cell stereociliary tip link protein protocadherin 15 CD3. J Biol Chem 2008; 284:3227-3238. [PMID: 19008224 DOI: 10.1074/jbc.m806177200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic amino terminus of HCN1, the primary full-length HCN isoform expressed in trout saccular hair cells, was found by yeast two-hybrid protocols to bind the cytoplasmic carboxyl-terminal domain of a protocadherin 15a-like protein. HCN1 was immunolocalized to discrete sites on saccular hair cell stereocilia, consistent with gradated distribution expected for tip link sites of protocadherin 15a. HCN1 message was also detected in cDNA libraries of rat cochlear inner and outer hair cells, and HCN1 protein was immunolocalized to cochlear hair cell stereocilia. As predicted by the trout hair cell model, the amino terminus of rat organ of Corti HCN1 was found by yeast two-hybrid analysis to bind the carboxyl terminus of protocadherin 15 CD3, a tip link protein implicated in mechanosensory transduction. Specific binding between HCN1 and protocadherin 15 CD3 was confirmed with pull-down assays and surface plasmon resonance analysis, both predicting dependence on Ca(2+). In the presence of calcium chelators, binding between HCN1 and protocadherin 15 CD3 was characterized by a K(D) = 2.39 x 10(-7) m. Ca(2+) at 26.5-68.0 microm promoted binding, with K(D) = 5.26 x 10(-8) m (at 61 microm Ca(2+)). Binding by deletion mutants of protocadherin 15 CD3 pointed to amino acids 158-179 (GenBank accession number XP_238200), with homology to the comparable region in trout hair cell protocadherin 15a-like protein, as necessary for binding to HCN1. Amino terminus binding of HCN1 to HCN1, hypothesized to underlie HCN1 channel formation, was also found to be Ca(2+)-dependent, although the binding was skewed toward a lower effective maximum [Ca(2+)] than for the HCN1 interaction with protocadherin 15 CD3. Competition may therefore exist in vivo between the two binding sites for HCN1, with binding of HCN1 to protocadherin 15 CD3 favored between 26.5 and 68 microm Ca(2+). Taken together, the evidence supports a role for HCN1 in mechanosensory transduction of inner ear hair cells.
Collapse
Affiliation(s)
- Neeliyath A Ramakrishnan
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Marian J Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201.
| | - Roberto L Barretto
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Kirk W Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - James S Hatfield
- Electron Microscopy Laboratory, Veterans Affairs Medical Center, Detroit, Michigan 48201
| | - Dennis G Drescher
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201; Departments of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
12
|
Zampini V, Masetto S, Correia MJ. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells. Neuroscience 2008; 155:1250-61. [PMID: 18652879 DOI: 10.1016/j.neuroscience.2008.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/17/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
By using the patch-clamp technique in the cell-attached configuration, we have investigated the single-channel properties of an inward rectifier potassium channel (Kir) expressed by pigeon vestibular type II hair cells in situ. In high-K(+) external solution with 2 mM Mg(2+), Kir inward current showed openings to at least four amplitude levels. The two most frequent open states (L2 and L3) had a mean slope conductance of 13 and 28 pS, respectively. L1 (7 pS) and L4 (36 pS) together accounted for less than 6% of the conductive state. Closed time distributions were fitted well using four exponential functions, of which the slowest time constant (tau(C4)) was clearly voltage-dependent. Open time distributions were fitted well with two or three exponential functions depending on voltage. The mean open probability (P(O)) decreased with hyperpolarization (0.13 at -50 mV and 0.03 at -120 mV). During pulse-voltage protocols, the Kir current-decay process (inactivation) accelerated and increased in extent with hyperpolarization. This phenomenon was associated with a progressive increase of the relative importance of tau(C4). Kir inactivation almost disappeared when Mg(2+) was omitted from the pipette solution. At the same time, P(O) increased at all membrane voltages and the relative importance of L4 increased to a mean value of 47%. The relative importance of tau(C4) decreased for all open states, while L4 only showed a significantly longer open time constant. The present work provides the first detailed quantitative description of the elementary properties of the Kir inward rectifier in pigeon vestibular type II hair cells and specifically describes the Kir gating properties and the molecule's sensitivity to extracellular Mg(2+) for all subconductance levels. The present results are consistent with the Kir2.1 protein sustaining a strong inwardly rectifying K(+) current in native hair cells, characterized by rapid activation time course and slow partial inactivation. The longest closed state (tau(C4)) appears as the main parameter involved in time- and Mg(2+)-dependent decay. Finally, in contrast to Kir2.1 results described so far for mammalian cells, external Mg(2+) had no effect on channel conductance.
Collapse
Affiliation(s)
- V Zampini
- Farmacologiche Cellulari-Molecolari Sez. Fisiologia Generale, Università di Pavia, Pavia, Italy
| | | | | |
Collapse
|
13
|
Polimeni M, Prigioni I, Russo G, Calzi D, Gioglio L. Plasma membrane Ca2+-ATPase isoforms in frog crista ampullaris: identification of PMCA1 and PMCA2 specific splice variants. Hear Res 2007; 228:11-21. [PMID: 17336006 DOI: 10.1016/j.heares.2006.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Ca2+ ions play a pivotal role in inner ear hair cells as they are involved from the mechano-electrical transduction to the transmitter release. Most of the Ca2+ that enters into hair cells via mechano-transduction and voltage-gated channels is extruded by the plasma membrane Ca2+-ATPases (PMCAs) that operate in both apical and basal cellular compartments. Here, we determined the identity and distribution of PMCA isoforms in frog crista ampullaris: we showed that PMCA1, PMCA2 and PMCA3 are expressed, while PMCA4 appears to be negligible. We also identify PMCA1bx, PMCA2av and PMCA2bv as the major splice variants produced from PMCA1 and PMCA2 genes. PMCA2av appears to be the major Ca2+-pump operating at the apical pole of the cell, even if PMCA1b is also expressed in the stereocilia. PMCA1bx is, instead, the principal PMCA of hair cell basolateral compartment, where it is expressed together with PMCA2 (probably PMCA2bv) and PMCA3. Frog crista ampullaris hair cells lack a Na/Ca exchanger, therefore PMCAs are the only mechanism of Ca2+ extrusion. The coexpression of specific isozymes in the different cellular compartments responds to the need of a fine regulation of both basal and dynamic Ca2+ levels at the apical and basal pole of the cell.
Collapse
Affiliation(s)
- Mariarosa Polimeni
- Dipartimento di Medicina Sperimentale - Sezione di Anatomia Umana Normale, Università di Pavia, Via Forlanini 8, I-27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
14
|
Jørgensen F, Kroese ABA. Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (Rana esculenta). ACTA ACUST UNITED AC 2005; 185:271-90. [PMID: 16266369 DOI: 10.1111/j.1365-201x.2005.01495.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the ion channel regulation of the resting membrane potential of hair cells with the aim to determine if the resting membrane potential is poised close to instability and thereby a potential cause of the spontaneous afferent spike activity. METHODS The ionic mechanism and the dynamic properties of the resting membrane potential were examined with the whole-cell patch clamp technique in dissociated saccular hair cells and in a mathematical model including all identified ion channels. RESULTS In hair cells showing I/V curves with a low membrane conductance flanked by large inward and outward rectifying potassium conductances, the inward rectifier (K(IR)), the delayed outward rectifier (K(V)) and the large conductance, calcium-sensitive, voltage-gated potassium channel (BK(Ca)) were all activated at rest. Under current clamp conditions, the outward current through these channels balanced the inward current through mechano-electrical transduction (MET) and Ca2+ channels. In 45% (22/49) of the cells, the membrane potential fluctuated spontaneously between two voltage levels determined by the voltage extent of the low membrane conductance range. These fluctuations were not influenced by blocking the MET channels but could be reversibly stopped by increasing [K+]o or by blocking of K(IR) channels. Blocking the BK(Ca) channels induced regular voltage oscillations. CONCLUSIONS Two intrinsic dynamical instabilities of V(m) are present in hair cells. One of these is observed as spontaneous voltage fluctuations by currents through K(IR), K(V) and h-channels in combination with a steady current through MET channels. The other instability shows as regenerative voltage changes involving Ca2+ and K(V) channels. The BK(Ca) channels prevent the spontaneous voltage fluctuations from activating the regenerative system.
Collapse
Affiliation(s)
- F Jørgensen
- IMB, Physiology & Pharmacology, University of Southern Denmark, Odense, Denmark.
| | | |
Collapse
|
15
|
Géléoc GSG, Risner JR, Holt JR. Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear. J Neurosci 2005; 24:11148-59. [PMID: 15590931 PMCID: PMC2638092 DOI: 10.1523/jneurosci.2662-04.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How and when sensory hair cells acquire the remarkable ability to detect and transmit mechanical information carried by sound and head movements has not been illuminated. Previously, we defined the onset of mechanotransduction in embryonic hair cells of mouse vestibular organs to be at approximately embryonic day 16 (E16). Here we examine the functional maturation of hair cells in intact sensory epithelia excised from the inner ears of embryonic mice. Hair cells were studied at stages between E14 and postnatal day 2 using the whole-cell, tight-seal recording technique. We tracked the developmental acquisition of four voltage-dependent conductances. We found a delayed rectifier potassium conductance that appeared as early as E14 and grew in amplitude over the subsequent prenatal week. Interestingly, we also found a low-voltage-activated potassium conductance present at E18, approximately 1 week earlier than reported previously. An inward rectifier conductance appeared at approximately E15 and doubled in size over the next few days. We also noted transient expression of a voltage-gated sodium conductance that peaked between E16 and E18 and then declined to near zero at birth. We propose that hair cells undergo a stereotyped developmental pattern of ion channel acquisition and that the precise pattern may underlie other developmental processes such as synaptogenesis and functional differentiation into type I and type II hair cells. In addition, we find that the developmental acquisition of basolateral conductances shapes the hair cell receptor potential and therefore comprises an important step in the signal cascade from mechanotransduction to neurotransmission.
Collapse
Affiliation(s)
- Gwenaëlle S G Géléoc
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22932, USA
| | | | | |
Collapse
|
16
|
Wong WH, Hurley KM, Eatock RA. Differences between the negatively activating potassium conductances of Mammalian cochlear and vestibular hair cells. J Assoc Res Otolaryngol 2004; 5:270-84. [PMID: 15492886 PMCID: PMC2504553 DOI: 10.1007/s10162-004-4051-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/25/2004] [Indexed: 11/29/2022] Open
Abstract
Cochlear and type I vestibular hair cells of mammals express negatively activating potassium (K(+)) conductances, called g(K,n) and g(K,L) respectively, which are important in setting the hair cells' resting potentials and input conductances. It has been suggested that the channels underlying both conductances include KCNQ4 subunits from the KCNQ family of K(+) channels. In whole-cell recordings from rat hair cells, we found substantial differences between g(K,n) and g(K,L) in voltage dependence, kinetics, ionic permeability, and stability during whole-cell recording. Relative to g(K,L), g(K,n) had a significantly broader and more negative voltage range of activation and activated with less delay and faster principal time constants over the negative part of the activation range. Deactivation of g(K,n) had an unusual sigmoidal time course, while g(K,L) deactivated with a double-exponential decay. g(K,L), but not g(K,n), had appreciable permeability to Cs(+). Unlike g(K,L), g(K,n)'s properties did not change ("wash out") during the replacement of cytoplasmic solution with pipette solution during ruptured-patch recordings. These differences in the functional expression of g(K,n) and g(K,L) channels suggest that there are substantial differences in their molecular structure as well.
Collapse
Affiliation(s)
- Weng Hoe Wong
- The Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Cho WJ, Drescher MJ, Hatfield JS, Bessert DA, Skoff RP, Drescher DG. Hyperpolarization-activated, cyclic AMP-gated, HCN1-like cation channel: the primary, full-length HCN isoform expressed in a saccular hair-cell layer. Neuroscience 2003; 118:525-34. [PMID: 12699787 DOI: 10.1016/s0306-4522(02)00913-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of transcript for hyperpolarization-activated, cyclic nucleotide-sensitive cation channel (HCN) isoforms underlying hyperpolarization-activated, inward current (I(h)) has been determined for a model hair-cell preparation from the saccule of the rainbow trout, Oncorhynchus mykiss. Based upon identification from homology to known vertebrate HCN cDNA sequence, cloning of PCR products amplified with degenerate primers indicated an expression frequency of 7:2:1 (HCN1:HCN2:HCN4) for the hair-cell sheet compared with 1:1:7 for brain. Full-length sequence has been obtained for the HCN1-like isoform representing the primary HCN transcript expressed in the hair-cell preparation. The channel protein is 938 amino acids in length with 93% amino acid identity for the region extending from the S1-S6 membrane spanning domains through the voltage-pore and cyclic nucleotide-binding domains, compared with HCN1 for rabbit, rat, mouse and human. The N- and C-terminal regions are less homologous, with 39-51% and 43-44% amino acid identities, respectively. Compared with other vertebrate HCN1, the hair-cell HCN1 contains additional consensus phosphorylation sites associated with unique repeats in the carboxy terminus. The HCN1-like transcript has been localized to hair cells of the saccular sensory epithelia by in situ hybridization. Previous electrophysiological studies have identified I(h) as the sole inwardly rectifying ion channel in a specific population of hair cells of the saccule of frogs [J Neurophysiol (1995) 73:1484] and fish [J Physiol (1996) 495:665]. I(h) is an important determinant of the resting membrane potential, and for this population of hair cells, is predicted to maintain the membrane potential within a voltage range allowing the voltage-gated calcium channels to open, permitting "spontaneous" release of transmitter. The molecular properties of the HCN1-like isoform underlying I(h) expressed in the saccular hair cells of the teleost, trout, may consequently impact spontaneous release of transmitter from hair cells of the saccule.
Collapse
Affiliation(s)
- W J Cho
- Department of Otolaryngology, Wayne State University School of Medicine, Lande Medical Research Building, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mao BQ, MacLeish PR, Victor JD. Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophys J 2003; 84:2756-67. [PMID: 12668483 PMCID: PMC1302841 DOI: 10.1016/s0006-3495(03)75080-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The intrinsic dynamics of bipolar cells and rod photoreceptors isolated from tiger salamanders were studied by a patch-clamp technique combined with estimation of effective impulse responses across a range of mean membrane voltages. An increase in external K(+) reduces the gain and speeds the response in bipolar cells near and below resting potential. High external K(+) enhances the inward rectification of membrane potential, an effect mediated by a fast, hyperpolarization-activated, inwardly rectifying potassium current (K(IR)). External Cs(+) suppresses the inward-rectifying effect of external K(+). The reversal potential of the current, estimated by a novel method from a family of impulse responses below resting potential, indicates a channel that is permeable predominantly to K(+). Its permeability to Na(+), estimated from Goldman-Hodgkin-Katz voltage equation, was negligible. Whereas the activation of the delayed-rectifier K(+) current causes bandpass behavior (i.e., undershoots in the impulse responses) in bipolar cells, activation of the K(IR) current does not. In contrast, a slow hyperpolarization-activated current (I(h)) in rod photoreceptors leads to pronounced, slow undershoots near resting potential. Differences in the kinetics and ion selectivity of hyperpolarization-activated currents in bipolar cells (K(IR)) and in rod photoreceptors (I(h)) confer different dynamical behavior onto the two types of neurons.
Collapse
Affiliation(s)
- Bu-Qing Mao
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Peter R. MacLeish
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| | - Jonathan D. Victor
- Department of Neurology and Neuroscience and Department of Ophthalmology-Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
19
|
Ghiaroni V, Fieni F, Tirindelli R, Pietra P, Bigiani A. Ion conductances in supporting cells isolated from the mouse vomeronasal organ. J Neurophysiol 2003; 89:118-27. [PMID: 12522164 DOI: 10.1152/jn.00545.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The vomeronasal organ (VNO) is a chemosensory structure involved in the detection of pheromones in most mammals. The VNO sensory epithelium contains both neurons and supporting cells. Data suggest that vomeronasal neurons represent the pheromonal transduction sites, whereas scarce information is available on the functional properties of supporting cells. To begin to understand their role in VNO physiology, we have characterized with patch-clamp recording techniques the electrophysiological properties of supporting cells isolated from the neuroepithelium of the mouse VNO. Supporting cells were distinguished from neurons by their typical morphology and by the lack of immunoreactivity for Ggamma8 and OMP, two specific markers for vomeronasal neurons. Unlike glial cells in other tissues, VNO supporting cells exhibited a depolarized resting potential (about -29 mV). A Goldman-Hodgkin-Katz analysis for resting ion permeabilities revealed indeed an unique ratio of P(K):P(Na):P(Cl) = 1:0.23:1.4. Supporting cells also possessed voltage-dependent K(+) and Na(+) conductances that differed significantly in their biophysical and pharmacological properties from those expressed by VNO neurons. Thus glial membranes in the VNO can sustain significant fluxes of K(+) and Na(+), as well as Cl(-). This functional property might allow supporting cells to mop-up and redistribute the excess of KCl and NaCl that often occurs in certain pheromone-delivering fluids, like urine, and that could blunt the sensitivity of VNO neurons to pheromones. Therefore vomeronasal supporting cells could affect chemosensory transduction in the VNO by regulating the ionic strength of the pheromone-containing medium.
Collapse
Affiliation(s)
- Valeria Ghiaroni
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Italy
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Ruth Anne Eatock
- The Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
21
|
Hackett L, Davies D, Helyer R, Kennedy H, Kros C, Lawlor P, Rivolta MN, Holley M. E-cadherin and the differentiation of mammalian vestibular hair cells. Exp Cell Res 2002; 278:19-30. [PMID: 12126954 DOI: 10.1006/excr.2002.5574] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
E-cadherin is expressed in vestibular, mechanosensory epithelia during early embryonic development. During late embryonic and neonatal stages it is expressed in supporting cells but down-regulated in differentiating sensory hair cells. We used a conditionally immortal cell line (UB/UE-1) from the neonatal mouse utricle to test the hypothesis that constitutive expression of E-cadherin inhibits the progression of hair cell differentiation. Under differentiating culture conditions, transfected E-cadherin inhibited expression of the cytoskeletal protein myosin VIIa and functional expression of both acetylcholine receptors and potassium channels, which are normally expressed by neonatal hair cells. However, it had no effect on the expression of the transcription factor Brn3c or the cytoskeletal protein fimbrin, which are also expressed by neonatal hair cells. The number of adherens junctions increased significantly under differentiating conditions but there was no detectable change in formation of tight junctions or gap junctions. However, E-cadherin expression led to density-dependent cell death under differentiating conditions. We have shown that E-cadherin is expressed in vestibular supporting cells, which form the basis of the sensory epithelium, but that constitutive expression inhibits the full differentiation of hair cells. Down-regulation of E-cadherin is thus likely to be a key element in the regeneration of hair cells.
Collapse
Affiliation(s)
- Lucy Hackett
- Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Correia MJ, Rennie KJ, Koo P. Return of potassium ion channels in regenerated hair cells: possible pathways and the role of intracellular calcium signaling. Ann N Y Acad Sci 2001; 942:228-40. [PMID: 11710465 DOI: 10.1111/j.1749-6632.2001.tb03749.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent electrophysiological studies in pigeon have demonstrated that potassium channels are completely functional in regenerated type II hair cells at 21 days post-treatment (PT) with ototoxic doses of streptomycin. The currents return in the order they appear during development. The mixture of ionic currents in a regenerated type II hair cell in a particular region of the neuroepithelium is the same as in its ancestor in that region. The return of currents in regenerated type I hair cells is more complicated. The dominant conductance gKI is not present until after 70 days PT. Before 70 days, the ionic currents in type I hair cells resemble those of regenerated type II hair cells, suggesting that the ionic currents in type II hair cells might be precursors of the ionic currents in regenerated type I hair cells. New data show that at one year PT, the kinetics and drug sensitivity of the dominant K+ conductance in type I hair cells are identical to gKI. Supporting cells, believed to be the precursors of regenerated type II hair cells, have effectively no voltage-gated outward potassium channels, suggesting that regenerated type II hair cells must develop these channels de novo. The next step is to understand the mechanisms by which the potassium channel protein is synthesized, migrates through the cytosol, and is inserted into the plasmalemma of regenerating hair cells. These mechanisms are unknown. We propose that intracellular calcium is involved in this process, as well as in the differentiation, proliferation, and gene regulation of precursor cells fated to become hair cells.
Collapse
Affiliation(s)
- M J Correia
- Departments of Otolaryngology, The University of Texas Medical Branch at Galveston, 77555, USA.
| | | | | |
Collapse
|
23
|
Abstract
Taste buds are sensory structures made up by tightly packed, specialized epithelial cells called taste cells. Taste cells are functionally heterogeneous, and a large proportion of them fire action potentials during chemotransduction. In view of the narrow intercellular spaces within the taste bud, it is expected that the ionic composition of the extracellular fluid surrounding taste cells may be altered significantly by activity. This consideration has led to postulate the existence of glialike cells that could control the microenvironment in taste buds. However, the functional identification of such cells has been so far elusive. By using the patch-clamp technique in voltage-clamp conditions, I identified a new type of cells in the taste buds of the mouse vallate papilla. These cells represented about 30% of cells patched in taste buds and were characterized by a large leakage current. Accordingly, I named them "Leaky" cells. The leakage current was carried by K(+), and was blocked by Ba(2+) but not by tetraethylammonium (TEA). Other taste cells, such as those possessing voltage-gated Na(+) currents and thought to be chemosensory in function, did not express any sizeable leakage current. Consistent with the presence of a leakage conductance, Leaky cells had a low input resistance (approximately 0.25 G Omega). In addition, their zero-current ("resting") potential was close to the equilibrium potential for potassium ions. The electrophysiological analysis of the membrane currents remaining after pharmacological block by Ba(2+) revealed that Leaky cells also possessed a Cl(-) conductance. However, in resting conditions the membrane of these cells was about 60 times more permeable to K(+) than to Cl(-). The resting potassium conductance in Leaky cells could be involved in dissipating rapidly the increase in extracellular K(+) during action potential discharge in chemosensory cells. Thus Leaky cells might represent glialike elements in taste buds. These findings support a model in which specific cells control the chemical composition of intercellular fluid in taste buds.
Collapse
Affiliation(s)
- A Bigiani
- Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Università di Modena e Reggio Emilia, 41100 Modena, Italy.
| |
Collapse
|
24
|
Abstract
In contrast to the abundance of information available regarding the anatomy and physiology of afferents within the goldfish saccule, the efferent system of this auditory endorgan has been scarcely studied morphologically. In this study, acetylcholinesterase histochemistry with diaminobenzidine enhancement was used to describe the morphology of efferents. Under light microscopy, labeled fibers appeared in the distal portion of the saccular nerve, penetrated the basement membrane and formed a horizontal mesh-like plexus near the base of hair cells. Many vertical branchlets with terminal swellings protruded upward toward hair cells from the plexus. Under electron microscopy, dense extracellular labeling was present around efferent terminals, which often formed clusters on hair cells. Labeling was also present around unmyelinated fibers of passage within the sensory epithelium and the distal saccular nerve. These fibers contained coarse microtubules and small vesicles, and often ran in a bundle with other similar fibers. Based on their position within the epithelium, histochemistry and ultrastructural characteristics, these fibers were concluded to be efferents. These fibers became myelinated and unlabeled in the proximal saccular nerve. These results suggest that acetylcholinesterase can be a marker of entire distal unmyelinated portions of efferent fibers and demonstrated abundant efferent innervation in the goldfish saccule.
Collapse
Affiliation(s)
- I Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
25
|
Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells. J Neurosci 1999. [PMID: 10531448 DOI: 10.1523/jneurosci.19-21-09445.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide evidence from a newly established, conditionally immortal cell line (UB/UE-1) that vestibular supporting cells from the mammalian inner ear can differentiate postnatally into more than one variant of hair cell. A clonal supporting cell line was established from pure utricular sensory epithelia of H2k(b)tsA58 transgenic mice 2 d after birth. Cell proliferation was dependent on conditional expression of the immortalizing gene, the "T" antigen from the SV40 virus. Proliferating cells expressed cytokeratins, and patch-clamp recordings revealed that they all expressed small membrane currents with little time-dependence. They stopped dividing within 2 d of being transferred to differentiating conditions, and within a week they formed three defined populations expressing membrane currents characteristic of supporting cells and two kinds of neonatal hair cell. The cells expressed several characteristic features of normal hair cells, including the transcription factor Brn3.1, a functional acetylcholine receptor composed of alpha9 subunits, and the cytoskeletal proteins myosin VI, myosin VIIa, and fimbrin. Immunofluorescence labeling and electron microscopy showed that the cells formed complex cytoskeletal arrays on their upper surfaces with structural features resembling those at the apices of normal hair cells. The cell line UB/UE-1 provides a valuable in vitro preparation in which the expression of numerous structural and physiological components can be initiated or upregulated during early stages of mammalian hair cell commitment and differentiation.
Collapse
|
26
|
Lawlor P, Marcotti W, Rivolta MN, Kros CJ, Holley MC. Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells. J Neurosci 1999; 19:9445-58. [PMID: 10531448 PMCID: PMC6782912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1999] [Revised: 08/04/1999] [Accepted: 08/13/1999] [Indexed: 02/14/2023] Open
Abstract
We provide evidence from a newly established, conditionally immortal cell line (UB/UE-1) that vestibular supporting cells from the mammalian inner ear can differentiate postnatally into more than one variant of hair cell. A clonal supporting cell line was established from pure utricular sensory epithelia of H2k(b)tsA58 transgenic mice 2 d after birth. Cell proliferation was dependent on conditional expression of the immortalizing gene, the "T" antigen from the SV40 virus. Proliferating cells expressed cytokeratins, and patch-clamp recordings revealed that they all expressed small membrane currents with little time-dependence. They stopped dividing within 2 d of being transferred to differentiating conditions, and within a week they formed three defined populations expressing membrane currents characteristic of supporting cells and two kinds of neonatal hair cell. The cells expressed several characteristic features of normal hair cells, including the transcription factor Brn3.1, a functional acetylcholine receptor composed of alpha9 subunits, and the cytoskeletal proteins myosin VI, myosin VIIa, and fimbrin. Immunofluorescence labeling and electron microscopy showed that the cells formed complex cytoskeletal arrays on their upper surfaces with structural features resembling those at the apices of normal hair cells. The cell line UB/UE-1 provides a valuable in vitro preparation in which the expression of numerous structural and physiological components can be initiated or upregulated during early stages of mammalian hair cell commitment and differentiation.
Collapse
Affiliation(s)
- P Lawlor
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Holt JR, Johns DC, Wang S, Chen ZY, Dunn RJ, Marban E, Corey DP. Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J Neurophysiol 1999; 81:1881-8. [PMID: 10200223 DOI: 10.1152/jn.1999.81.4.1881] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand the function of specific proteins in sensory hair cells, it is necessary to add or inactivate those proteins in a system where their physiological effects can be studied. Unfortunately, the usefulness of heterologous expression systems for the study of many hair cell proteins is limited by the inherent difficulty of reconstituting the hair cell's exquisite cytoarchitecture. Expression of exogenous proteins within hair cells themselves may provide an alternative approach. Because recombinant viruses were efficient vectors for gene delivery in other systems, we screened three viral vectors for their ability to express exogenous genes in hair cells of organotypic cultures from mouse auditory and vestibular organs. We observed no expression of the genes for beta-galactosidase or green fluorescent protein (GFP) with either herpes simplex virus or adeno-associated virus. On the other hand, we found robust expression of GFP in hair cells exposed to a recombinant, replication-deficient adenovirus that carried the gene for GFP driven by a cytomegalovirus promoter. Titers of 4 x 10(7) pfu/ml were sufficient for expression in 50% of the approximately 1,000 hair cells in the utricular epithelium; < 1% of the nonhair cells in the epithelium were GFP positive. Expression of GFP was evident as early as 12 h postinfection, was maximal at 4 days, and continued for at least 10 days. Over the first 36 h there was no evidence of toxicity. We recorded normal voltage-dependent and transduction currents from infected cells identified by GFP fluorescence. At longer times hair bundle integrity was compromised despite a cell body that appeared healthy. To assess the ability of adenovirus-mediated gene transfer to alter hair cell function we introduced the gene for the ion channel Kir2.1. We used an adenovirus vector encoding Kir2.1 fused to GFP under the control of an ecdysone promoter. Unlike the diffuse distribution within the cell body we observed with GFP, the ion channel-GFP fusion showed a pattern of fluorescence that was restricted to the cell membrane and a few extranuclear punctate regions. Patch-clamp recordings confirmed the expression of an inward rectifier with a conductance of 43 nS, over an order of magnitude larger than the endogenous inward rectifier. The zero-current potential in infected cells was shifted by -17 mV. These results demonstrate an efficient method for gene transfer into both vestibular and auditory hair cells in culture, which can be used to study the effects of gene products on hair cell function.
Collapse
Affiliation(s)
- J R Holt
- Department of Neurobiology, Harvard Medical School and Massachusetts General Hospital, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Marcotti W, Russo G, Prigioni I. Position-dependent expression of inwardly rectifying K+ currents by hair cells of frog semicircular canals. Neuroreport 1999; 10:601-6. [PMID: 10208597 DOI: 10.1097/00001756-199902250-00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identity and the expression of inwardly rectifying ionic currents were studied using the whole-cell variant of the patch-clamp technique in frog semicircular canal hair cells in situ. The currents were examined in club-, cylindrical- and pear-shaped sensory cells located in three discrete regions of the crista. A unique current of I(K1) type was distinguished based on its K+ selectivity, rapid monoexponential activation, dependence of activation on external K+ and blockade by Ba2+ and Cs+. I(K1) was found in virtually all cylindrical hair cells of the central region and in club-shaped cells located in the halves of the peripheral regions closest to the centre of the crista. Pear-shaped cells of the intermediate regions showed no inward rectification. The I(K1) density (pA/pF) varied along the crista depending on cell position, being maximal in cells located in the middle of the central region and decreased towards its ends. In the peripheral regions, the gradient of I(K1) increased towards the centre of the crista. Current clamp experiments showed that sensory cells having larger I(K1) constantly exhibited more negative resting potentials and required more depolarizing current to elicit an active response than cells having small or no I(K1).
Collapse
Affiliation(s)
- W Marcotti
- Institute of General Physiology, University of Pavia, Italy
| | | | | |
Collapse
|
29
|
Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 1998. [PMID: 9736667 DOI: 10.1523/jneurosci.18-18-07487.1998] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type I and type II hair cells of mature amniote vestibular organs have been classified according to their afferent nerve terminals: calyx and bouton, respectively. Mature type I and type II cells also have different complements of voltage-gated channels. Type I cells alone express a delayed rectifier, gK,L, that is activated at resting potential. We report that in mouse utricles this electrophysiological differentiation occurs during the first postnatal week. Whole-cell currents were recorded from hair cells in denervated organotypic cultures and in acutely excised epithelia. From postnatal day 1 (P1) to P3, most hair cells expressed a delayed rectifier that activated positive to resting potential and a fast inward rectifier, gK1. Between P4 and P8, many cells acquired the type I-specific conductance gK,L and/or a slow inward rectifier, gh. By P8, the percentages of cells expressing gK,L and gh were at mature levels. To investigate whether the electrophysiological differentiation correlated with morphological changes, we fixed utricles at different times between P0 and P28. Ultrastructural criteria were developed to classify cells when calyces were not present, as in cultures and neonatal organs. The morphological and electrophysiological differentiation followed different time courses, converging by P28. At P0, when no hair cells expressed gK,L, 33% were classified as type I by ultrastructural criteria. By P28, approximately 60% of hair cells in acute preparations received calyx terminals and expressed gK,L. Data from the denervated cultures showed that neither electrophysiological nor morphological differentiation depended on ongoing innervation.
Collapse
|
30
|
Rüsch A, Lysakowski A, Eatock RA. Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 1998; 18:7487-501. [PMID: 9736667 PMCID: PMC6793223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1998] [Revised: 06/18/1998] [Accepted: 06/25/1998] [Indexed: 02/08/2023] Open
Abstract
The type I and type II hair cells of mature amniote vestibular organs have been classified according to their afferent nerve terminals: calyx and bouton, respectively. Mature type I and type II cells also have different complements of voltage-gated channels. Type I cells alone express a delayed rectifier, gK,L, that is activated at resting potential. We report that in mouse utricles this electrophysiological differentiation occurs during the first postnatal week. Whole-cell currents were recorded from hair cells in denervated organotypic cultures and in acutely excised epithelia. From postnatal day 1 (P1) to P3, most hair cells expressed a delayed rectifier that activated positive to resting potential and a fast inward rectifier, gK1. Between P4 and P8, many cells acquired the type I-specific conductance gK,L and/or a slow inward rectifier, gh. By P8, the percentages of cells expressing gK,L and gh were at mature levels. To investigate whether the electrophysiological differentiation correlated with morphological changes, we fixed utricles at different times between P0 and P28. Ultrastructural criteria were developed to classify cells when calyces were not present, as in cultures and neonatal organs. The morphological and electrophysiological differentiation followed different time courses, converging by P28. At P0, when no hair cells expressed gK,L, 33% were classified as type I by ultrastructural criteria. By P28, approximately 60% of hair cells in acute preparations received calyx terminals and expressed gK,L. Data from the denervated cultures showed that neither electrophysiological nor morphological differentiation depended on ongoing innervation.
Collapse
Affiliation(s)
- A Rüsch
- The Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
31
|
Abstract
Two morphological classes of mechanosensory cells have been described in the vestibular organs of mammals, birds, and reptiles: type I and type II hair cells. Type II hair cells resemble hair cells in other organs in that they receive bouton terminals from primary afferent neurons. In contrast, type I hair cells are enveloped by large cuplike afferent terminals called calyces. Type I and II cells differ in other morphological respects: cell shape, hair bundle properties, and more subtle ultrastructural features. Understanding the functional significance of these strikingly different morphological features has proved to be a challenge. Experiments that correlated the response properties of primary vestibular afferents with the morphologies of their afferent terminals suggested that the synapse between the type I hair cell and calyx ending is lower gain than that between a type II hair cell and a bouton ending. Recently, patch-clamp experiments on isolated hair cells have revealed that type I hair cells from diverse species have a large potassium conductance that is activated at the resting potential. As a consequence, the voltage responses generated by the type I hair cells in response to injected currents are smaller than those generated by type II hair cells. This may contribute to the lower gain of type I inputs to primary afferent neurons. Studies of neonatal mouse utricles show that the type I-specific potassium conductance is not present at birth but emerges during the first postnatal week, a period of morphological differentiation of type I and type II hair cells.
Collapse
Affiliation(s)
- R A Eatock
- Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The distribution of Ca-ATPase in frog crista ampullaris was mapped ultracytochemically by using a one-step lead citrate reaction. Electron-dense precipitates, as an expression of Ca-ATPase activity, were observed on the surface of stereocilia and on the apical membrane surrounding the cuticular plate of hair cells. Sensory cells of the isthmus region showed more reactivity than those of the peripheral regions of the crista. No reaction products were detectable on the basolateral membranes and in cytoplasmatic organelles. Supporting cells of the crista showed a quite variable Ca-ATPase reaction on microvilli and on basolateral membranes. The presence of an evident reactivity on the stereocilia is consistent with the existence of an apical calcium microdomain involved in the mechano-transduction process and supports the current view that calcium ions enter the stereocilia during natural stimulation. On the other hand, the lack of an observable reactivity on the basolateral membrane of hair cells suggests that in semicircular canals other mechanisms of active transport of calcium ions across the plasma membrane, such as Na-Ca exchange, may be involved in homeostasis of the ion.
Collapse
Affiliation(s)
- L Gioglio
- Department of Morphological Sciences, University of Pavia, Italy
| | | | | | | |
Collapse
|
33
|
Sugihara I. Activation and two modes of blockade by strontium of Ca2+-activated K+ channels in goldfish saccular hair cells. J Gen Physiol 1998; 111:363-79. [PMID: 9450948 PMCID: PMC2222763 DOI: 10.1085/jgp.111.2.363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 microM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58-209 mM, 0.69-0.75, 0.45-0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted approximately 10-200 ms and could be fitted with single-exponential curves (time constant, taul-s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, taub). A significant decrease in taub and no large changes in taul-s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36-150 mM and 1-1.8, respectively (n = 3).
Collapse
Affiliation(s)
- I Sugihara
- Department of Physiology, Tokyo Medical and Dental University School of Medicine, Tokyo 113, Japan.
| |
Collapse
|
34
|
Masetto S, Correia MJ. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J Neurophysiol 1997; 78:1913-27. [PMID: 9325360 DOI: 10.1152/jn.1997.78.4.1913] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The whole cell patch-clamp technique in combination with the slice preparation was used to investigate the electrophysiological properties of pigeon semicircular canal sensory and supporting cells. These properties were also characterized in regenerating neuroepithelia of pigeons preinjected with streptomycin to kill the hair cells. Type II hair cells from each of the three semicircular canals showed similar, topographically related patterns of passive and active membrane properties. Hair cells located in the peripheral regions (zone I, near the planum semilunatum) had less negative resting potentials [0-current voltage in current-clamp mode (Vz) = -62.8 +/- 8.7 mV, mean +/- SD; n = 13] and smaller membrane capacitances (Cm = 5.0 +/- 0.9 pF, n = 14) than cells of the intermediate (zone II; Vz = -79.3 +/- 7.5 mV, n = 3; Cm = 5.9 +/- 1.2 pF, n = 4) and central (zone III; Vz = -68.0 +/- 9.6 mV, n = 17; Cm = 7.1 +/- 1.5 pF, n = 18) regions. In peripheral hair cells, ionic currents were dominated by a rapidly activating/inactivating outward K+ current, presumably an A-type K+ current (IKA). Little or no inwardly rectifying current was present in these cells. Conversely, ionic currents of central hair cells were dominated by a slowly activating/inactivating outward K+ current resembling a delayed rectifier K+ current (IKD). Moreover, an inward rectifying current at voltages negative to -80 mV was present in all central cells. This current was composed of two components: a slowly activating, noninactivating component (Ih), described in photoreceptors and saccular hair cells, and a faster-activating, partially inactivating component (IK1) also described in saccular hair cells in some species. Ih and IK1 were sometimes independently expressed by hair cells. Hair cells located in the intermediate region (zone II) had ionic currents more similar to those of central hair cells than peripheral hair cells. Outward currents in intermediate hair cells activated only slightly more quickly than those of the cells of the central region, but much more slowly than those of the peripheral cells. Additionally, intermediate hair cells, like central hair cells, always expressed an inward rectifying current. The regional distribution of outward rectifying potassium conductances resulted in macroscopic currents differing in peak-to-steady state ratio. We quantified this by measuring the peak (Gp) and steady-state (Gs) slope conductance in the linear region of the current-voltage relationship (-40 to 0 mV) for the hair cells located in the different zones. Gp/Gs average values (4.1 +/- 2.1, n = 15) from currents in peripheral hair cells were higher than those from intermediate hair cells (2.3 +/- 0.8, n = 4) and central hair cells(1.9 +/- 0.8, n = 21). The statistically significant differences (P < 0.001) in Gp/Gs ratios could be accounted for by KA channels being preferentially expressed in peripheral hair cells. Hair cell electrophysiological properties in animals pretreated with streptomycin were investigated at approximately 3 wk and approximately 9-10 wk post injection sequence (PIS). At 3 wk PIS, hair cells (all zones combined) had a statistically significantly (P < 0.001) lower Cm (4.6 +/- 1.1 pF, n = 24) and a statistically significantly (P < 0.01) lower Gp(48.4 +/- 20.8 nS, n = 26) than control animals (Cm = 6.2 +/- 1.6 pF, n = 36; Gp = 66 +/- 38.9 nS, n = 40). Regional differences in values of Vz, as well as the distribution of outward and inward rectifying currents, seen in control animals, were still obvious. But, differences in the relative contribution of the expression of the different ionic current components changed. This result could be explained by a relative decrease in IKA compared with IKD during that interval of regeneration, which was particularly evident in peripheral hair cells. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- S Masetto
- Institute of General Physiology, University of Pavia, Pavia, Italy 27100
| | | |
Collapse
|