1
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Schaper SJ, Hofmann T, Wölk E, Weibert E, Rose M, Stengel A. Pancreatic Polypeptide but Not Other Members of the Neuropeptide Y Family Shows a Moderate Association With Perceived Anxiety in Obese Men. Front Hum Neurosci 2020; 14:578578. [PMID: 33192409 PMCID: PMC7604387 DOI: 10.3389/fnhum.2020.578578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide Y (NPY), peptide tyrosine tyrosine (PYY), and pancreatic polypeptide (PP) are important mediators in the bidirectional communication along the gut-brain-axis. Best known for their role in the regulation of appetite and food intake they are considered to play a crucial role in the development of obesity. Additionally, mounting evidence indicates a regulatory function in anxiety, mood and stress resilience with potential sex differences. In the present study, we examined the associations of NPY, PYY, and PP plasma levels with anxiety, depressiveness and perceived stress in obese patients. We analyzed 144 inpatients (90 female, 54 male, BMI mean: 49.4 kg/m2) in a naturalistic treatment setting for obesity and its somatic and mental comorbidities. Fasting blood samples were taken, and patients completed psychometric self-assessment questionnaires (GAD-7, PHQ-9, PSQ-20) within the first week after admission and before discharge. Plasma concentrations of the peptides were measured by ELISA. Women showed significant higher anxiety (GAD-7: 8.13 ± 5.67 vs. 5.93 ± 5.42, p = 0.04) and stress scores (PSQ-20: 52.62 ± 23.5 vs. 41.23 ± 22.53, p = 0.01) than men. In the longitudinal analysis women with a clinically relevant improvement of anxiety (≥ 5 points on GAD-7, p < 0.001) also showed significant improvements in depression (PHQ-9: 38%, p = 0.002) and PSQ-20 scores (23%, p = 0.005) while anxiety-improved male patients only improved in the subscale tension of the PSQ-20 (34%, p = 0.02). In men we observed a positive correlation of PP with anxiety scores (GAD-7: r = 0.41, p = 0.007) and with age (r = 0.49, p = 0.001) on admission while NPY negatively correlated with age (r = -0.38, p = 0.01). In contrast, there were no significant associations (p > 0.05) in female subjects in the cross-sectional as well as in the longitudinal analysis. In conclusion, women suffering from morbid obesity showed greater psychological comorbidity and considerable interactions among them. Despite that we solely observed associations of PP with anxiety and age with NPY and PP in men, suggesting a possible influence of sex hormones on the NPY system. However, improvement of anxiety scores did not lead to significant changes in NPY.
Collapse
Affiliation(s)
- Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elena Weibert
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, United States
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Gourine AV, Machhada A, Trapp S, Spyer KM. Cardiac vagal preganglionic neurones: An update. Auton Neurosci 2016; 199:24-8. [DOI: 10.1016/j.autneu.2016.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/17/2016] [Indexed: 01/06/2023]
|
4
|
Khandekar N, Berning BA, Sainsbury A, Lin S. The role of pancreatic polypeptide in the regulation of energy homeostasis. Mol Cell Endocrinol 2015; 418 Pt 1:33-41. [PMID: 26123585 DOI: 10.1016/j.mce.2015.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Imbalances in normal regulation of food intake can cause obesity and related disorders. Inadequate therapies for such disorders necessitate better understanding of mechanisms that regulate energy homeostasis. Pancreatic polypeptide (PP), a robust anorexigenic hormone, effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, leading to vagal stimulation that mediates complex actions via the neuropeptide Y4 receptor in arcuate nucleus of the hypothalamus, subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. Novel studies indicate affinity of PP for the relatively underexplored neuropeptide y6 receptor, mediating actions via the suprachiasmatic nucleus and pathways involving vasoactive intestinal polypeptide and insulin like growth factor 1. This review highlights detailed mechanisms by which PP mediates its actions on energy balance through various areas in the brain.
Collapse
Affiliation(s)
- Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Britt A Berning
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Shu Lin
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
6
|
Salem V, Bloom SR. Approaches to the pharmacological treatment of obesity. Expert Rev Clin Pharmacol 2014; 3:73-88. [DOI: 10.1586/ecp.09.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Yulyaningsih E, Loh K, Lin S, Lau J, Zhang L, Shi Y, Berning BA, Enriquez R, Driessler F, Macia L, Khor EC, Qi Y, Baldock P, Sainsbury A, Herzog H. Pancreatic polypeptide controls energy homeostasis via Npy6r signaling in the suprachiasmatic nucleus in mice. Cell Metab 2014; 19:58-72. [PMID: 24411939 DOI: 10.1016/j.cmet.2013.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Kim Loh
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Jackie Lau
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yanchuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Britt A Berning
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ronaldo Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yue Qi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Paul Baldock
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; School of Medical Sciences, Wallace Wurth Building, University of NSW, Botany Street, Sydney 2052, Australia; The Boden Institute of Obesity, Nutrition, Exercise, and Eating Disorders, Sydney Medical School, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; UNSW Medicine, ASGM Building, University of NSW, Botany Street, Sydney 2052, Australia.
| |
Collapse
|
8
|
Autonomic Nervous System In Vitro: Studying Tonically Active Neurons Controlling Vagal Outflow in Rodent Brainstem Slices. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
10
|
Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides 2010; 44:261-8. [PMID: 20116098 DOI: 10.1016/j.npep.2010.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/23/2022]
Abstract
Gut-derived peptides are known to regulate food intake by activating specific receptors in the brain, but the target nuclei and neurons influenced are largely unknown. Here we show that peripherally administered pancreatic polypeptide (PP) stimulates neurons in key nuclei of the hypothalamus critical for appetite and satiety regulation. In the lateral hypothalamic area (LHA), also known as the feeding center, neurons expressing the orexigenic neuropeptide orexin co-localize with the early neuronal activation marker c-Fos upon i.p. injection of PP into mice. In the ventromedial hypothalamus (VMH), also known as the satiety center, neurons activated by PP, as indicated by induction of c-Fos immunoreactivity, express the anorexigenic brain-derived neurotrophic factor (BDNF). Activation of neurons in the LHA and VMH in response to PP occurs via a Y4 receptor-dependent process as it is not seen in Y4 receptor knockout mice. We further demonstrate that in response to i.p. PP, orexin mRNA expression in the LHA is down-regulated, with Y4 receptors being critical for this effect as it is not seen in Y4 receptor knockout mice, whereas BDNF mRNA expression is up-regulated in the VMH in response to i.p. PP in the fasted, but not in the non-fasted state. Taken together these data suggest that PP can regulate food intake by suppressing orexigenic pathways by down-regulation of orexin and simultaneously increasing anorexigenic pathways by up-regulating BDNF.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australi
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin S, Shi YC, Yulyaningsih E, Aljanova A, Zhang L, Macia L, Nguyen AD, Lin EJD, During MJ, Herzog H, Sainsbury A. Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide-induced reduction in food intake in mice. PLoS One 2009; 4:e8488. [PMID: 20041129 PMCID: PMC2796177 DOI: 10.1371/journal.pone.0008488] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/27/2009] [Indexed: 11/25/2022] Open
Abstract
Background Pancreatic polypeptide (PP) is a potent anti-obesity agent known to inhibit food intake in the absence of nausea, but the mechanism behind this process is unknown. Methodology/Principal Findings Here we demonstrate that in response to i.p. injection of PP in wild type but not in Y4 receptor knockout mice, immunostaining for the neuronal activation marker c-Fos is induced specifically in neurons of the nucleus tractus solitarius and the area postrema in the brainstem, notably in cells also showing immunostaining for tyrosine hydroxylase. Importantly, strong c-Fos activation is also detected in the arcuate nucleus of the hypothalamus (ARC), particularly in neurons that co-express alpha melanocyte stimulating hormone (α-MSH), the anorexigenic product of the proopiomelanocortin (POMC) gene. Interestingly, other hypothalamic regions such as the paraventricular nucleus, the ventromedial nucleus and the lateral hypothalamic area also show c-Fos induction after PP injection. In addition to c-Fos activation, PP injection up-regulates POMC mRNA expression in the ARC as detected by in situ hybridization. These effects are a direct consequence of local Y4 signaling, since hypothalamus-specific conditional Y4 receptor knockout abolishes PP-induced ARC c-Fos activation and blocks the PP-induced increase in POMC mRNA expression. Additionally, the hypophagic effect of i.p. PP seen in wild type mice is completely absent in melanocortin 4 receptor knockout mice. Conclusions/Significance Taken together, these findings show that PP reduces food intake predominantly via stimulation of the anorexigenic α-MSH signaling pathway, and that this effect is mediated by direct action on local Y4 receptors within the ARC, highlighting a potential novel avenue for the treatment of obesity.
Collapse
Affiliation(s)
- Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - En-Ju Deborah Lin
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Matthew J. During
- Cancer Genetics and Neuroscience Program, Department of Molecular Virology, Immunology and Medical Genetics, and the Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Ishihara PhD A, Moriya PhD M, MacNeil PhD DJ, Fukami PhD T, Kanatani PhD A. Neuropeptide Y receptors as targets of obesity treatment. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.12.1701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Nagell CF, Wettergren A, Ørskov C, Holst JJ. Inhibitory effect of GLP-1 on gastric motility persists after vagal deafferentation in pigs. Scand J Gastroenterol 2006; 41:667-72. [PMID: 16716964 DOI: 10.1080/00365520500408253] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) is an intestinal hormone that is secreted in response to meal ingestion. GLP-1 inhibits gastric emptying and reduces postprandial gastric secretion and may play a physiological regulatory role in controlling appetite and energy intake in humans. The GLP-1 receptors have been identified in several organs including the stomach, brain and pancreas. The GLP-1 mechanism of action on insulin secretion is at least partly mediated via receptors on the pancreatic islet, but the mechanism by which GLP-1 retards gastric emptying is not known and may involve neural interactions, although GLP-1 has no effect on vagally stimulated motor activity of the isolated porcine antrum. MATERIAL AND METHODS Previously, an experimental model was developed with centrally (insulin hypoglycaemia) induced vagally mediated stimulation of antral motility, recorded by force transducers, in anaesthetized pigs. This model has now been developed further to include vagal deafferentation to determine the role of the afferent vagus in mediating the inhibitory effect of GLP-1 on gastric motility. RESULTS Intravenous infusion of GLP-1 resulting in slightly supraphysiological plasma levels inhibited the antral contractile force, with the amplitude falling from 29.9+/-5.7 mm to 14.6+/-3.5 mm (p<0.001). After vagal deafferentation GLP-1 still inhibited antral motility (from 36.6+/-6.4 mm to 25+/-4.4 mm (p<0.019). The decrease in amplitude was the same before and after deafferentation. CONCLUSIONS GLP-1 significantly inhibited centrally induced antral motility and the inhibitory effect of GLP-1 on gastric motility persisted after vagal deafferentation, supporting the hypothesis that the inhibitory effect results from direct interaction of GLP with receptors in the CNS, which in turn reduce vagal efferent output.
Collapse
Affiliation(s)
- Carl Frederik Nagell
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
14
|
Browning KN, Coleman FH, Travagli RA. Effects of pancreatic polypeptide on pancreas-projecting rat dorsal motor nucleus of the vagus neurons. Am J Physiol Gastrointest Liver Physiol 2005; 289:G209-19. [PMID: 15817809 DOI: 10.1152/ajpgi.00560.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the pre- and postsynaptic effects of pancreatic polypeptide (PP) on identified pancreas-projecting neurons of the rat dorsal motor nucleus of the vagus in thin brain stem slices. Perfusion with PP induced a TTX- and apamin-sensitive, concentration-dependent outward (22% of neurons) or inward current (21% of neurons) that was accompanied by a decrease in input resistance; PP was also found to affect the amplitude of the action potential afterhyperpolarization. The remaining 57% of neurons were unaffected. PP induced a concentration-dependent inhibition in amplitude of excitatory (n = 22 of 30 neurons) and inhibitory (n = 13 of 17 neurons) postsynaptic currents evoked by electrical stimulation of the adjacent nucleus of the solitary tract, with an estimated EC(50) of 30 nM for both. The inhibition was accompanied by an alteration in the paired pulse ratio, suggesting a presynaptic site of action. PP also decreased the frequency, but not amplitude, of spontaneous excitatory (n = 6 of 11 neurons) and inhibitory currents (n = 7 of 9 neurons). In five neurons, chemical stimulation of the area postrema (AP) induced a TTX-sensitive inward (n = 3) or biphasic (outward and inward) current (n = 2). Superfusion with PP reversibly reduced the amplitude of these chemically stimulated currents. Regardless of the PP-induced effect, the vast majority of responsive neurons had a multipolar somata morphology with dendrites projecting to areas other than the fourth ventricle or the central canal. These results suggest that pancreas-projecting rat dorsal motor nucleus of the vagus neurons are heterogeneous with respect to their response to PP, which may underlie functional differences in the vagal modulation of pancreatic functions.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Dept. of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
15
|
Zhang W, Hu Y, Newman EA, Mulholland MW. Serum-free culture of rat postnatal neurons derived from the dorsal motor nucleus of the vagus. J Neurosci Methods 2005; 150:1-7. [PMID: 16076495 DOI: 10.1016/j.jneumeth.2005.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/24/2005] [Accepted: 03/01/2005] [Indexed: 11/16/2022]
Abstract
Previous studies on dorsal motor nucleus of the vagus (DMNV) neurons have mainly used in vivo animal models and in vitro brainstem slices. Primary culture of postnatal DMNV neurons in defined serum free medium has not been reported. We report a method for culture of postnatal rat DMNV neurons using serum free medium. Cultured DMNV neurons contain both Hu positive precursor cells and mature cells staining positively for microtubule associated protein 2 (MAP2) and choline acetyltransferase. Exposure of cultured DMNV neurons to glutamate (10(-7) to 10(-3)M) induced an increase in intracellular calcium concentration ([Ca(2+)](i)) in a dose-dependent manner, indicating the functional presence of glutamate receptors. Voltage-dependent calcium currents were present in cultured DMNV neurons. Active cell proliferation was demonstrated by BrdU incorporation. Upon removal of beta FGF, the percentage of MAP2 positive mature neurons was significantly increased from 36+/-3 to 73+/-3%. Our study demonstrates that postnatal rat DMNV neurons cultured in serum free medium retain morphological and physiological characteristics of DMNV neurons in situ.
Collapse
Affiliation(s)
- Weizhen Zhang
- Michigan Gastrointestinal Peptide Center, Department of Surgery, University of Michigan, 2101 Taubman, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
16
|
Sainsbury A, Baldock PA, Schwarzer C, Ueno N, Enriquez RF, Couzens M, Inui A, Herzog H, Gardiner EM. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 2003; 23:5225-33. [PMID: 12861009 PMCID: PMC165708 DOI: 10.1128/mcb.23.15.5225-5233.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuropeptide Y regulates numerous physiological processes via at least five different Y receptors, but the specific roles of each receptor are still unclear. We previously demonstrated that Y2 receptor knockout results in a lean phenotype, increased cancellous bone volume, and an increase in plasma pancreatic polypeptide (PP), a ligand for Y4 receptors. PP-overexpressing mice are also known to have a lean phenotype. Deletion of the Y4 receptor also produced a lean phenotype and increased plasma PP levels. We therefore hypothesized that part of the Y2 phenotype results from increased PP action on Y4 receptors and tested this in PP transgenic Y4(-/-) and Y2(-/-) Y4(-/-) double knockout mice. Bone mass was not altered in Y4 knockout mice. Surprisingly, despite significant hyperphagia, Y2(-/-) Y4(-/-) mice retained a markedly lean phenotype, with reduced body weight, white adipose tissue mass, leptinemia, and insulinemia. Furthermore, bone volume was also increased threefold in Y2(-/-) Y4(-/-) mice, and this was associated with enhanced osteoblastic activity. These changes were more pronounced than those observed in Y2(-/-) mice, suggesting synergy between Y2 and Y4 receptor pathways. The lack of bone changes in PP transgenic mice suggests that PP alone is not responsible for the bone mass increases but might play a major role in the lean phenotype. However, a synergistic interaction between Y2 and Y4 pathways seems to regulate bone volume and adiposity and could have important implications for possible interventions in obesity and for anabolic treatment of osteoporotic bone loss.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hermann GE, Tovar CA, Rogers RC. LPS-induced suppression of gastric motility relieved by TNFR:Fc construct in dorsal vagal complex. Am J Physiol Gastrointest Liver Physiol 2002; 283:G634-9. [PMID: 12181177 DOI: 10.1152/ajpgi.00412.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies suggested that the cytokine tumor necrosis factor-alpha (TNF-alpha) may act within the neural circuitry of the medullary dorsal vagal complex (DVC) to affect changes in gastric function, such as gastric stasis, loss of appetite, nausea, and vomiting. The definitive demonstration that endogenously generated TNF-alpha is capable of affecting gastric function via the DVC circuitry has been impeded by the lack of an antagonist for TNF-alpha. The present studies used localized central nervous system applications of the TNF-adsorbant construct (TNFR:Fc; TNF-receptor linked to the Fc portion of the human immunoglobulin IgG1) to attempt to neutralize the suppressive effects of endogenously produced TNF-alpha. Gastric motility of thiobutabarbital-anesthetized rats was monitored after systemic administration of lipopolysaccharide (LPS) to induce TNF-alpha production. Continuous perfusion of the floor of the fourth ventricle with TNFR:Fc reversed the potent gastroinhibition induced by LPS, i.e., central thyrotropin-releasing hormone-induced increases in motility were not inhibited. This disinhibition of gastric stasis was not seen after intravenous administration of similar doses of TNFR:Fc nor ventricular application of the Fc fragment of human immunoglobulin. These results validate our previous studies that suggest that circulating TNF-alpha may act directly within the DVC to affect gastric function in a variety of pathophysiological states.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
18
|
Sainsbury A, Schwarzer C, Couzens M, Jenkins A, Oakes SR, Ormandy CJ, Herzog H. Y4 receptor knockout rescues fertility in ob/ob mice. Genes Dev 2002; 16:1077-88. [PMID: 12000791 PMCID: PMC186243 DOI: 10.1101/gad.979102] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) has been implicated in the regulation of energy balance and reproduction, and chronically elevated NPY levels in the hypothalamus are associated with obesity and reduced reproductive function. However, it is not known which one of the five cloned Y receptors mediates these effects. Here we show that crossing the Y4 receptor knockout mouse (Y4(-/-)) onto the ob/ob background restores the reduced plasma testosterone levels of ob/ob mice as well as the reduced testis and seminal vesicle size and morphology to control values. Fertility in the sterile ob/ob mice was greatly improved by Y4 receptor deletion, with 100% of male and 50% of female Y4(-/-),ob/ob double knockout mice producing live offspring. Development of the mammary ducts and lobuloalveoli was significantly enhanced in pregnant Y4(-/-) and Y4(-/-),ob/ob females. Consistent with the improved fertility and enhanced mammary gland development, gonadotropin releasing hormone (GnRH) expression was significantly increased in Y4(-/-) and Y4(-/-),ob/ob animals. Y4(-/-) mice displayed lower body weight and reduced white adipose tissue mass accompanied by increased plasma levels of pancreatic polypeptide (PP). However, Y4 deficiency had no beneficial effects to reduce body weight or excessive adiposity of ob/ob mice. These data suggest that central Y4 receptor signaling specifically inhibits reproductive function under conditions of elevated central NPY-ergic tonus.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neurobiology Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Deng X, Wood PG, Sved AF, Whitcomb DC. The area postrema lesions alter the inhibitory effects of peripherally infused pancreatic polypeptide on pancreatic secretion. Brain Res 2001; 902:18-29. [PMID: 11376591 DOI: 10.1016/s0006-8993(01)02273-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circulating PP binds to specific receptors in the DVC through the AP, but the mechanism through which these brain receptors affect pancreatic secretion is not clear. We hypothesize that the removal of the AP (APX) will alter the effects of PP on pancreatic secretion. APX or sham procedures were performed in anesthetized male Wistar rats. After a 1-month recovery, one group of rats were infused with either PP (30 or 100 pmol/kg per h) or vehicle under basal or 2-DG-stimulated (75 mg/kg, i.v. bolus) conditions for studying pancreatic exocrine secretion. A second parallel group was sacrificed for examination of PP receptor binding in the brain stem. A third group received an intraperitoneal injection of PP at the dose of 4.15x10(4) pmol/kg (200 microg/kg) and c-fos expression in the brain stem was examined. APX eliminated PP binding sites in the DVC as assessed by autoradiography. PP infusion caused a dose-dependent decrease in basal protein secretion. APX partially reversed PP inhibition of basal protein secretion when infused at 30 pmol/kg per h, and at 100 pmol/kg per h stimulated pancreatic fluid secretion and reversed the inhibition of protein secretion. During 2-DG stimulation the effects of PP and 2-DG on pancreatic fluid and protein secretion were parallel. PP dose-dependently inhibited 2-DG-stimulated secretion in sham rats. APX reduced the pancreatic fluid (54%) and protein (46%) secretory response to 2-DG. However, PP at 30 pmol/kg per h remained a potent inhibitor of 2-DG-stimulated pancreatic secretion in APX rats. This effect was blunted with PP at 100 pmol/kg per h in APX rats, possibly related to the stimulatory effect of high-dose PP in APX rats without 2-DG. Furthermore, i.p. PP induced significantly greater c-fos activation of NTS neurons in APX rats than sham rats, despite the apparent absence of PP binding sites in the DVC. We conclude that in awake rats, PP inhibits basal secretion, in part, through the AP. Furthermore, and unlike PYY, PP inhibits 2-DG-stimulated pancreatic secretion, and it does so through an AP-independent mechanism. The possibility that the mechanism may involve the DVC cannot be excluded since i.p. injection of PP activates c-fos expression in DVC neurons. Thus, PP and PYY may regulate different components of the pancreatic secretory control system through unique pathways.
Collapse
Affiliation(s)
- X Deng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Room 571, Scaife Hall, 3550 Terrace Street, , Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
20
|
Hermann GE, Emch GS, Tovar CA, Rogers RC. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am J Physiol Regul Integr Comp Physiol 2001; 280:R289-99. [PMID: 11124163 DOI: 10.1152/ajpregu.2001.280.1.r289] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study used activation of the c-Fos oncogene protein within neurons in the dorsal vagal complex (DVC) as a marker of neuronal excitation in response to systemic endotoxin challenge [i.e. , lipopolysaccharide (LPS)]. Specifically, we investigated whether vagal connections with the brain stem are necessary for LPS cytokine- induced activation of DVC neurons. Systemic exposure to LPS elicited a significant activation of c-Fos in neurons in the nucleus of the solitary tract (NST) and area postrema of all thiobutabarbital-anesthetized rats examined, regardless of the integrity of their vagal nerves. That is, rats with both vagi cervically transected were still able to respond with c-Fos activation of neurons in the DVC. Unilateral cervical vagotomy produced a consistent but small reduction in c-Fos activation in the ipsilateral NST of all animals within this experimental group. Given that afferent input to the NST is exclusively excitatory, it is not surprising that unilateral elimination of all vagal afferents would diminish NST responsiveness (on the vagotomized side). These data lead us to conclude that the NST itself is a primary central nervous system detector of cytokines.
Collapse
Affiliation(s)
- G E Hermann
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Peptides involved in the endocrine and enteric nervous systems as well as in the central nervous system exert concerted action on gastrointestinal motility. Mechanical and chemical stimuli which induce peptide release from the epithelial endocrine cells are the earliest step in the initiation of peristaltic activities. Gut peptides exert hormonal effects, but peptide-containing stimulatory (Ach/substance P/tachykinin) and inhibitory (VIP/PACAP/NO) neurons are also involved in the induction of ascending contraction and descending relaxation, respectively. The dorsal vagal complex (DVC), located in the medulla of the brainstem, constitutes the basic neural circuitry of vago-vagal reflex control of gastrointestinal motility. Several gut peptides act on the DVC to modify vagal cholinergic reflexes directly (PYY and PP) or indirectly via afferent fibers in the periphery (CCK and GLP-1). The DVC is also a primary site of action of many neuropeptides (such as TRH and NPY) in mediating gastrointestinal motor activities. The identification over the last few years of a number of neuropeptide systems has greatly changed the field of feeding and body weight regulation. By exploring the brain and gut systems that employ recently identified peptidergic molecules, it will be possible to elaborate on the central and peripheral pathways involved in the regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- M Fujimiya
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | |
Collapse
|
22
|
Emch GS, Hermann GE, Rogers RC. TNF-alpha activates solitary nucleus neurons responsive to gastric distension. Am J Physiol Gastrointest Liver Physiol 2000; 279:G582-6. [PMID: 10960358 DOI: 10.1152/ajpgi.2000.279.3.g582] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is liberated as part of the immune response to antigenic challenge, carcinogenesis, and radiation therapy. Previous studies have implicated elevated circulating levels of this cytokine in the gastric hypomotility associated with these disease states. Our earlier studies suggest that a site of action of TNF-alpha may be within the medullary dorsal vagal complex. In this study, we describe the role of TNF-alpha as a neuromodulator affecting neurons in the nucleus of the solitary tract that are involved in vago-vagal reflex control of gastric motility. The results presented herein suggest that TNF-alpha may induce a persistent gastric stasis by functioning as a hormone that modulates intrinsic vago-vagal reflex pathways during illness.
Collapse
Affiliation(s)
- G S Emch
- Department of Neuroscience, College of Medicine, Ohio Sate University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|