1
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
2
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
3
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, Javitch JA, Balsam PD, Kellendonk C. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro 2017; 4:ENEURO.0227-17.2017. [PMID: 29071300 PMCID: PMC5654238 DOI: 10.1523/eneuro.0227-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.
Collapse
Affiliation(s)
- Abigail M. Clark
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Felix Leroy
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Kelly M. Martyniuk
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wendy Feng
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Erika McManus
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Matthew R. Bailey
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Peter D. Balsam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychology, Barnard College Columbia University, New York, NY 10027
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
5
|
Bhattacharya BS, Bond TP, O'Hare L, Turner D, Durrant SJ. Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics. Front Comput Neurosci 2016; 10:115. [PMID: 27899890 PMCID: PMC5110554 DOI: 10.3389/fncom.2016.00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Experimental studies on the Lateral Geniculate Nucleus (LGN) of mammals and rodents show that the inhibitory interneurons (IN) receive around 47.1% of their afferents from the retinal spiking neurons, and constitute around 20–25% of the LGN cell population. However, there is a definite gap in knowledge about the role and impact of IN on thalamocortical dynamics in both experimental and model-based research. We use a neural mass computational model of the LGN with three neural populations viz. IN, thalamocortical relay (TCR), thalamic reticular nucleus (TRN), to study the causality of IN on LGN oscillations and state-transitions. The synaptic information transmission in the model is implemented with kinetic modeling, facilitating the linking of low-level cellular attributes with high-level population dynamics. The model is parameterized and tuned to simulate alpha (8–13 Hz) rhythm that is dominant in both Local Field Potential (LFP) of LGN and electroencephalogram (EEG) of visual cortex in an awake resting state with eyes closed. The results show that: First, the response of the TRN is suppressed in the presence of IN in the circuit; disconnecting the IN from the circuit effects a dramatic change in the model output, displaying high amplitude synchronous oscillations within the alpha band in both TCR and TRN. These observations conform to experimental reports implicating the IN as the primary inhibitory modulator of LGN dynamics in a cognitive state, and that reduced cognition is achieved by suppressing the TRN response. Second, the model validates steady state visually evoked potential response in humans corresponding to periodic input stimuli; however, when the IN is disconnected from the circuit, the output power spectra do not reflect the input frequency. This agrees with experimental reports underpinning the role of IN in efficient retino-geniculate information transmission. Third, a smooth transition from alpha to theta band is observed by progressive decrease of neurotransmitter concentrations in the synaptic clefts; however, the transition is abrupt with removal of the IN circuitry in the model. The results imply a role of IN toward maintaining homeostasis in the LGN by suppressing any instability that may arise due to anomalous synaptic attributes.
Collapse
Affiliation(s)
| | - Thomas P Bond
- School of Engineering, University of Lincoln Lincoln, UK
| | - Louise O'Hare
- School of Psychology, University of Lincoln Lincoln, UK
| | - Daniel Turner
- School of Engineering, University of Lincoln Lincoln, UK
| | | |
Collapse
|
6
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
7
|
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 2014; 8:33. [PMID: 24782714 PMCID: PMC3986539 DOI: 10.3389/fncir.2014.00033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.
Collapse
Affiliation(s)
- Kelsey L Clark
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| | - Behrad Noudoost
- Department of Cell Biology and Neuroscience, Montana State University Bozeman, MT, USA
| |
Collapse
|
8
|
Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014; 20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The overall function of sleep is hypothesized to provide "recovery" after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non-rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance ("recovery process"). In turn, periodic excursions into an activated brain state-REM sleep-appear to be ideally placed to perform "selection" of brain networks, which have benefited from the process of "recovery," based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Collapse
Affiliation(s)
| | - Alessio Delogu
- Department of Neuroscience, Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
9
|
Arsenault JT, Nelissen K, Jarraya B, Vanduffel W. Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron 2013; 77:1174-86. [PMID: 23522051 DOI: 10.1016/j.neuron.2013.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Stimulus-reward coupling without attention can induce highly specific perceptual learning effects, suggesting that reward triggers selective plasticity within visual cortex. Additionally, dopamine-releasing events-temporally surrounding stimulus-reward associations-selectively enhance memory. These forms of plasticity may be evoked by selective modulation of stimulus representations during dopamine-inducing events. However, it remains to be shown whether dopaminergic signals can selectively modulate visual cortical activity. We measured fMRI activity in monkey visual cortex during reward-only trials apart from intermixed cue-reward trials. Reward without visual stimulation selectively decreased fMRI activity within the cue representations that had been paired with reward during other trials. Behavioral tests indicated that these same uncued reward trials strengthened cue-reward associations. Furthermore, such spatially-specific activity modulations depended on prediction error, as shown by manipulations of reward magnitude, cue-reward probability, cue-reward familiarity, and dopamine signaling. This cue-selective negative reward signal offers a mechanism for selectively gating sensory cortical plasticity.
Collapse
Affiliation(s)
- John T Arsenault
- Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Botha H, Carr J. Attention and visual dysfunction in Parkinson's disease. Parkinsonism Relat Disord 2012; 18:742-7. [PMID: 22503538 DOI: 10.1016/j.parkreldis.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Visual processing extends from the retinal level to the ventral temporal lobe, and is modified by top-down and bottom-up processing. Complex visual hallucinations (VH) are commonly a feature of disorders which affect temporal lobe structures, frequently in association with impairment of ascending monoaminergic pathways. When Parkinson's disease (PD) is associated with VH, pathological changes characteristically affect the temporal lobes, a finding which is recapitulated by imaging findings. However, a major association of VH is with cognitive decline, and this is typically linked to deficits in attention and working memory, both of which are modulated by dopamine. Similarly, dopamine plays a crucial role in the function of prefrontal cortex, in addition to controlling access to consciousness via gating mechanisms that are dependent on the basal ganglia.
Collapse
Affiliation(s)
- Hugo Botha
- Division of Neurology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, PO Box 19063, Tygerberg 7505, Cape Town, South Africa
| | | |
Collapse
|
11
|
Murray E, Bruno R, Brown J. Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes. Hum Psychopharmacol 2012; 27:226-34. [PMID: 22389087 DOI: 10.1002/hup.2218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function.
Collapse
|
12
|
Vukadinovic Z, Rosenzweig I. Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction? Neurosci Biobehav Rev 2011; 36:960-8. [PMID: 22138503 DOI: 10.1016/j.neubiorev.2011.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Psychosis in schizophrenia is associated with source-monitoring deficits whereby self-initiated behaviors become attributed to outside sources. One of the proposed functions of the thalamus is to adjust sensory responsiveness in accordance with the behavioral contextual cues. The thalamus is markedly affected in schizophrenia, and thalamic dysfunction may here result in reduced ability to adjust sensory responsiveness to ongoing behavior. One of the ways in which the thalamus accomplishes the adjustment of sensory processing is by a neurophysiological shift to post-inhibitory burst firing mode prior to and during certain exploratory actions. Reduced amount of thalamic burst firing may result from increased neuronal excitability secondary to a reported potassium channel dysfunction in schizophrenia. Pharmacological agents that reduce the excitability of thalamic cells and thereby promote burst firing by and large tend to have antipsychotic effects.
Collapse
Affiliation(s)
- Zoran Vukadinovic
- Montefiore Medical Center, Albert Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 111 E 210th Street, Bronx, NY 10467, USA.
| | | |
Collapse
|
13
|
The sleep relay--the role of the thalamus in central and decentral sleep regulation. Pflugers Arch 2011; 463:53-71. [PMID: 21912835 DOI: 10.1007/s00424-011-1014-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Surprisingly, the concept of sleep, its necessity and function, the mechanisms of action, and its elicitors are far from being completely understood. A key to sleep function is to determine how and when sleep is induced. The aim of this review is to merge the classical concepts of central sleep regulation by the brainstem and hypothalamus with the recent findings on decentral sleep regulation in local neuronal assemblies and sleep regulatory substances that create a scenario in which sleep is both local and use dependent. The interface between these concepts is provided by thalamic cellular and network mechanisms that support rhythmogenesis of sleep-related activity. The brainstem and the hypothalamus centrally set the pace for sleep-related activity throughout the brain. Decentral regulation of the sleep-wake cycle was shown in the cortex, and the homeostat of non-rapid-eye-movement sleep is made up by molecular networks of sleep regulatory substances, allowing individual neurons or small neuronal assemblies to enter sleep-like states. Thalamic neurons provide state-dependent gating of sensory information via their ability to produce different patterns of electrogenic activity during wakefulness and sleep. Many mechanisms of sleep homeostasis or sleep-like states of neuronal assemblies, e.g. by the action of adenosine, can also be found in thalamic neurons, and we summarize cellular and network mechanisms of the thalamus that may elicit non-REM sleep. It is argued that both central and decentral regulators ultimately target the thalamus to induce global sleep-related oscillatory activity. We propose that future studies should integrate ideas of central, decentral, and thalamic sleep generation.
Collapse
|
14
|
Govindaiah G, Wang Y, Cox CL. Dopamine enhances the excitability of somatosensory thalamocortical neurons. Neuroscience 2010; 170:981-91. [PMID: 20801197 DOI: 10.1016/j.neuroscience.2010.08.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The thalamus conveys sensory information from peripheral and subcortical regions to the neocortex in a dynamic manner that can be influenced by several neuromodulators. Alterations in dopamine (DA) receptor function in thalami of Schizophrenic patients have recently been reported. In addition, schizophrenia is associated with sensory gating abnormalities and sleep-wake disturbances, thus we examined the role of DA on neuronal excitability in somatosensory thalamus. The ventrobasal (VB) thalamus receives dopaminergic innervation and expresses DA receptors; however, the action of DA on VB neurons is unknown. In the present study, we performed whole cell current- and voltage-clamp recordings in rat brain slices to investigate the role of DA on excitability of VB neurons. We found that DA increased action potential discharge and elicited membrane depolarization via activation of different receptor subtypes. Activation of D2-like receptors (D(2R)) leads to enhanced action potential discharge, whereas the membrane depolarization was mediated by D1-like receptors (D(1R)). The D(2R-mediated) increase in spike discharge was mimicked and occluded by α-dendrotoxin (α-DTX), indicating the involvement of a slowly inactivating K(+) channels. The D1R-mediated membrane depolarization was occluded by barium, suggesting the involvement of a G protein-coupled K(+) channel or an inwardly rectifying K(+) channel. Our results indicate that DA produces dual modulatory effects acting on subtypes of DA receptors in thalamocortical relay neurons, and likely plays a significant role in the modulation of sensory information.
Collapse
Affiliation(s)
- G Govindaiah
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
15
|
Cardoso EF, Fregni F, Maia FM, Melo LM, Sato JR, Cruz AC, Bianchi ET, Fernandes DB, Monteiro MLR, Barbosa ER, Amaro E. Abnormal visual activation in Parkinson's disease patients. Mov Disord 2010; 25:1590-6. [DOI: 10.1002/mds.23101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Hyperstimulation of striatal D2 receptors with sleep deprivation: Implications for cognitive impairment. Neuroimage 2009; 45:1232-40. [PMID: 19349237 DOI: 10.1016/j.neuroimage.2009.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 11/24/2022] Open
Abstract
Sleep deprivation interferes with cognitive performance but the mechanisms are poorly understood. We recently reported that one night of sleep deprivation increased dopamine in striatum (measured with [(11)C]raclopride, a PET radiotracer that competes with endogenous dopamine for binding to D2 receptors) and that these increases were associated with impaired performance in a visual attention task. To better understand this association here we evaluate the relationship between changes in striatal dopamine (measured as changes in D2 receptor availability using PET and [(11)C]raclopride) and changes in brain activation to a visual attention task (measured with BOLD and fMRI) when performed during sleep deprivation versus during rested wakefulness. We find that sleep induced changes in striatal dopamine were associated with changes in cortical brain regions modulated by dopamine (attenuated deactivation of anterior cingulate gyrus and insula) but also in regions that are not recognized targets of dopaminergic modulation (attenuated activation of inferior occipital cortex and cerebellum). Moreover, the increases in striatal dopamine as well as its associated regional activation and deactivation patterns correlated negatively with performance accuracy. These findings therefore suggest that hyperstimulation of D2 receptors in striatum may contribute to the impairment in visual attention during sleep deprivation. Thus, while dopamine increases in prefrontal regions (including stimulation of D1 receptors) may facilitate attention our findings suggest that hyperstimulation of D2 receptors in striatum may impair it. Alternatively, these associations may reflect a compensatory striatal dopamine response (to maintain arousal) that is superimposed on a larger response to sleep deprivation.
Collapse
|
17
|
Belekhova MG, Kenigfest NB, Gapanovich SO, Rio JP, Peperant J. Neurochemical organization of reptilian thalamus. Comparative analysis of amniote optical centers. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006060019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Takahashi H, Higuchi M, Suhara T. The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry 2006; 59:919-28. [PMID: 16682269 DOI: 10.1016/j.biopsych.2006.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 01/23/2023]
Abstract
Despite numerous studies on extrastriatal regions involved in schizophrenia, studies on the functional implications of dopamine (DA) D2 receptors in the extrastriatal regions, including the cortex and thalamus, are limited. We review postmortem and in vivo human imaging studies as well as animal studies, focusing on the function of extrastriatal DA D2 receptors and their role in the pathophysiology of schizophrenia. Based on recent findings, cortical DA D2 receptors may interact with the gamma-aminobutyric acid system to modulate DA transmission, and thalamic DA D2 receptors are likely to participate in sensory gating function into the prefrontal cortex. We have found decreased DA D2 receptors in the anterior cingulate cortex and thalamic subregions of patients with schizophrenia. These observations may suggest that alterations of extrastriatal DA D2 receptors are involved in dysregulation of DA transmission and sensory signals from the thalamus to the cortex. Excessive excitatory signals from the thalamus might flow into the cortical neurotransmission system, aggravating dysregulation of DA transmission in both the striatal and extrastriatal regions in schizophrenia. These notions suggest the need for future investigations of extrastriatal DA D2 receptor function to gain important clues regarding the pathogenesis and of possible treatments for schizophrenia.
Collapse
Affiliation(s)
- Hidehiko Takahashi
- Molecular Imaging Center, Department of Molecular Neuroimaging, National Institute of Radiological Sciences, Chiba, Japan
| | | | | |
Collapse
|
19
|
Sánchez-González MA, García-Cabezas MA, Rico B, Cavada C. The primate thalamus is a key target for brain dopamine. J Neurosci 2006; 25:6076-83. [PMID: 15987937 PMCID: PMC6725054 DOI: 10.1523/jneurosci.0968-05.2005] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this "thalamic dopaminergic system" should further our understanding of higher brain functions and conditions such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-González
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Govindaiah G, Cox CL. Depression of retinogeniculate synaptic transmission by presynaptic D2-like dopamine receptors in rat lateral geniculate nucleus. Eur J Neurosci 2006; 23:423-34. [PMID: 16420449 DOI: 10.1111/j.1460-9568.2005.04575.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extraretinal projections onto neurons in the dorsal lateral geniculate nucleus (dLGN) play an important role in modifying sensory information as it is relayed from the visual thalamus to neocortex. The dLGN receives dopaminergic innervation from the ventral tegmental area; however, the role of dopamine in synaptic transmission in dLGN has not been explored. In the present study, whole cell recordings were obtained to examine the actions of dopamine on glutamatergic synaptic transmission. Dopamine (2-100 microm) strongly suppressed excitatory synaptic transmission in dLGN relay neurons that was evoked by optic tract stimulation and mediated by both N-methyl-d-aspartate and non-N-methyl-d-aspartate glutamate receptors. In contrast, dopamine did not alter inhibitory synaptic transmission arising from either dLGN interneurons or thalamic reticular nucleus neurons. The suppressive action of dopamine on excitatory synaptic transmission was mimicked by the D(2)-like dopamine receptor agonist bromocriptine (2-25 microm) but not by the D(1)-like receptor agonist SKF38393 (10-25 microm). In addition, the dopamine-mediated suppression was antagonized by the D(2)-like receptor antagonist sulpiride (10-20 microm) but not by the D(1)-like receptor antagonist SCH23390 (5-25 microm). The dopamine-mediated decrease in evoked excitatory postsynaptic current amplitude was accompanied by an increase in the magnitude of paired-pulse depression. Furthermore, dopamine also reduced the frequency but not the amplitude of miniature excitatory postsynaptic currents. Taken together, these data suggest that dopamine may act presynaptically to regulate the release of glutamate at the retinogeniculate synapse and modify transmission of visual information in the dLGN.
Collapse
Affiliation(s)
- G Govindaiah
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
21
|
González-Hernández JA, Pita-Alcorta C, Cedeño IR. From genes to brain oscillations: Is the visual pathway the epigenetic clue to schizophrenia? Med Hypotheses 2006; 66:300-8. [PMID: 16199129 DOI: 10.1016/j.mehy.2005.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 07/25/2005] [Indexed: 11/26/2022]
Abstract
Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.
Collapse
Affiliation(s)
- J A González-Hernández
- Department of Clinical Neurophysiology and Department of Psychiatry, Hermanos Ameijeiras Hospital, Havana 3, 10300, Cuba.
| | | | | |
Collapse
|
22
|
Govindaiah G, Cox CL. Excitatory actions of synaptically released catecholamines in the rat lateral geniculate nucleus. Neuroscience 2005; 137:671-83. [PMID: 16289833 DOI: 10.1016/j.neuroscience.2005.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/18/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
The gating properties of thalamic relay neurons are influenced by the actions of a variety of neuromodulators in concert with the intrinsic properties of these relay neurons. In this study, we have investigated the consequences of synaptically released catecholamines on the excitability of neurons in the rat dorsal lateral geniculate nucleus. Tetanic stimulation of the optic tract, in which catecholamine fibers also course near or through, produced a strong depolarization that consisted of a fast and slow component. The fast excitatory postsynaptic potential was attenuated by ionotropic glutamate receptor antagonists and further unmasked the slow excitatory postsynaptic potential. The amplitude of the slow excitatory postsynaptic potential was dependent on the frequency and intensity of the tetanic stimulation. The alpha1-adrenergic receptor antagonist, prazosin, and the D1-like dopamine receptor antagonist, SCH23390, attenuated the slow excitatory postsynaptic potential; however, the slow excitatory postsynaptic potential was unaltered by metabotropic glutamate, cholinergic, alpha2-adrenergic, and beta-adrenergic receptor antagonists. On the other hand, tetanic stimulation of the optic radiations (corticothalamic axons) evoked a slow excitatory postsynaptic potential that was completely attenuated by metabotropic glutamate receptor antagonists. Our results suggest that tetanic stimulation of catecholamine fibers within the optic tract produces synaptic release of norepinephrine and dopamine that in turn activates both alpha(1)-adrenergic and D1-like dopamine receptors leading to a robust membrane depolarization. By altering the excitability of relay neurons, ascending activating systems may modulate the efficacy of information transfer through the thalamus.
Collapse
Affiliation(s)
- G Govindaiah
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, 61801, USA
| | | |
Collapse
|
23
|
He L, Li X, Hua T, Bao P, Ma R, Zhou Y. Chronic morphine exposure affects the visual response properties of V1 neurons in cat. Brain Res 2005; 1060:81-8. [PMID: 16212946 DOI: 10.1016/j.brainres.2005.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 11/28/2022]
Abstract
Chronic opiate exposure leads to maladaptive changes in brain function. In view of the localization of opiate receptors in mammalian visual system, chronic opiate exposure is likely to affect the visual responses properties of V1 neurons. Using in vivo single-unit recording, we here showed that chronic morphine treatment resulted in the functional abnormality of primary visual cortical cells. When compared with saline-treated (as control) cats, cortical neurons in morphine-treated cats exhibited higher spontaneous activity, lower signal-to-noise ratios and weaker orientation and direction selectivity. However, re-exposure with morphine could significantly improve the function of V1 neurons in morphine-treated cats. These findings demonstrated that chronic morphine treatment could significantly degrade the response properties of V1 neurons and may lead to a function dependence on morphine in visual cortical cells.
Collapse
Affiliation(s)
- Lihua He
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Govindaiah G, Cox CL. Excitatory actions of dopamine via D1-like receptors in the rat lateral geniculate nucleus. J Neurophysiol 2005; 94:3708-18. [PMID: 16107529 DOI: 10.1152/jn.00583.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitability of relay neurons in the dorsal geniculate nucleus (dLGN) can be altered by a variety of neuromodulators. The dLGN receives substantial dopaminergic input from the brain stem, and this innervation may play a crucial role in the gating of visual information from the retina to visual neocortex. In this study, we investigated the action of dopamine on identified dLGN neurons using whole cell recording techniques. Dopamine (2-200 microM) produced a membrane depolarization in >95% of relay neurons tested but did not alter excitability of dLGN interneurons. The D1-like dopamine receptor agonist SKF38393 (2-50 microM) produced a similar depolarization in dLGN relay neurons. However, the D2-like receptor agonists, bromocriptine (25-50 microM) and PPHT (1-50 microM), did not alter the membrane potential of relay neurons. SCH23390 (5-10 microM), a D1-like receptor antagonist, attenuated the depolarizing actions of both dopamine and SKF38393. Furthermore, the excitatory actions of dopamine and SKF38393 were attenuated by ZD7288, a specific antagonist for the hyperpolarization activated mixed cation current, I(h). Our data suggest that dopamine, acting via D1-like receptors, activates I(h) leading to a membrane depolarization. Through the modulation of dLGN neuronal excitability, ascending and descending activating systems may not only control the state of the thalamus such as the transition from slow-wave sleep to waking but also regulate the efficacy of information transfer during waking states.
Collapse
Affiliation(s)
- G Govindaiah
- Deptartment of Molecular and Integrative Physiology, University of Illinois, Urbana, 61801, USA
| | | |
Collapse
|
25
|
Munsch T, Yanagawa Y, Obata K, Pape HC. Dopaminergic control of local interneuron activity in the thalamus. Eur J Neurosci 2005; 21:290-4. [PMID: 15654868 DOI: 10.1111/j.1460-9568.2004.03842.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN), the major thalamic station of the visual pathway, contains a fairly large number of dopaminergic terminals, and dopamine was found to reduce spontaneous and visually evoked activity in the dLGN in vivo. The cellular basis of this influence remained unknown. Here we have used whole cell patch-clamp techniques to analyse the effects of dopamine (DA) on GABAergic transmission in dLGN slices of juvenile postnatal day (P) 12-P24 Long-Evans rats or juvenile (P12-P22) GAD67-GFP (Deltaneo) mice. Spontaneous inhibitory postsynaptic currents (sIPSCs) were increased in frequency by the D(2)-like agonist quinpirole (QUIN) in rat (n = 6), as well as in mouse (n = 5) thalamic slices. This effect was blocked in the presence of the D(2)-like antagonist sulpiride (SULP, n = 5) and was absent in the ventrobasal complex (VB) of rat (n = 7) and mouse (n = 4) thalamus, which is devoid of GABAergic interneurons. Direct recordings from labelled GABAergic neurons in the dLGN of GAD67-GFP mice revealed a QUIN-mediated membrane depolarization (n = 12), which was attenuated by SULP (n = 6). These data demonstrate that DA through activation of D(2)-like receptors in GABAergic interneurons induces an increase in inhibitory interactions most likely at F2 dendrodendritic terminals, thereby providing a cellular correlate of the observation made in vivo that DA predominantly acts through inhibition of relay cell activity in the dLGN.
Collapse
Affiliation(s)
- Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
26
|
Kéri S, Gulyás B. Four facets of a single brain: behaviour, cerebral blood flow/metabolism, neuronal activity and neurotransmitter dynamics. Neuroreport 2003; 14:1097-106. [PMID: 12821790 DOI: 10.1097/00001756-200306110-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Is functional neuroimaging a royal way to understand brain function or is it a new phrenology without an exact understanding what we measure? After two decades of imaging revolution, more and more authors ask this question. Brain functions are multidimensional, which can be approached from the point of (1) behavioural measures, (2) brain activation as reflected by blood flow and metabolic changes, (3) electrical activity of cells and cell-populations, and (4) neurotransmitter dynamics (release, receptor binding and reuptake). Using imaging techniques, we must take into consideration that even during the simplest task all of these processes operate in a closely interacting manner. Therefore, before drawing final conclusions about brain functions on the basis of a single aspect of these mechanisms, we must clarify the exact relationship among them. In this paper, we address this issue in order to draw attention to a number of uncertainties and controversies in the relationship of the four facets of brain functions.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|