1
|
Engisch KL, Wang X, Rich MM. Homeostatic Plasticity of the Mammalian Neuromuscular Junction. ADVANCES IN NEUROBIOLOGY 2022; 28:111-130. [PMID: 36066823 DOI: 10.1007/978-3-031-07167-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mammalian neuromuscular junction (NMJ) is an ideal preparation to study synaptic plasticity. Its simplicity- one input, one postsynaptic target- allows experimental manipulations and mechanistic analyses that are impossible at more complex synapses. Homeostatic synaptic plasticity attempts to maintain normal function in the face of perturbations in activity. At the NMJ, 3 aspects of activity are sensed to trigger 3 distinct mechanisms that contribute to homeostatic plasticity: Block of presynaptic action potentials triggers increased quantal size secondary to increased release of acetylcholine from vesicles. Simultaneous block of pre- and postsynaptic action potentials triggers an increase in the probability of vesicle release. Block of acetylcholine binding to acetylcholine receptors during spontaneous fusion of single vesicles triggers an increase in the number of releasable vesicles as well as increased motoneuron excitability. Understanding how the NMJ responds to perturbations of synaptic activity informs our understanding of its response to diverse neuromuscular diseases.
Collapse
Affiliation(s)
- Kathrin L Engisch
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA.
| |
Collapse
|
2
|
Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses. J Neurosci 2019; 38:3240-3251. [PMID: 29593071 DOI: 10.1523/jneurosci.3207-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
When an action potential invades a presynaptic terminal it evokes large, brief Ca2+ signals that trigger vesicle fusion within milliseconds that is followed by a small residual Ca2+ (Cares) signal. At many synapses Cares produces synaptic facilitation that lasts up to hundreds of milliseconds and, although less common, Cares can also evoke asynchronous release (AR) that persists for tens of milliseconds. The properties of facilitation and AR are very different, which suggests that they are mediated by distinct mechanisms. However, recently it has been shown that the slow calcium sensor synaptotagmin 7 (Syt7) mediates facilitation at many synapses where AR does not occur, and conversely Syt7 can mediate AR without mediating facilitation. Here we study cerebellar granule cell synapses onto stellate cells and Purkinje cells in mice of both sexes to assess the role of Syt7 in these phenomena at the same synapse. This is of particular interest at granule cell synapses where AR is much more calcium dependent and shorter-lived than facilitation. We find that Syt7 can mediate these two processes despite their divergent properties. In Syt7 knock-out animals, facilitation and AR are smaller and shorter lived than in wild-type animals, even though the initial probability of release and Cares signals are unchanged. Although there are short-lived Syt7-independent mechanisms that mediate facilitation and AR in Syt7 KO animals, we find that at granule cell synapses AR and facilitation are both mediated primarily by Syt7.SIGNIFICANCE STATEMENT At synapses made by cerebellar granule cells, presynaptic activity elevates calcium for tens of milliseconds, which in turn evokes both asynchronous release (AR) and synaptic facilitation. AR is more calcium sensitive and shorter-lived than facilitation at these synapses, suggesting that they are mediated by different mechanisms. However, we find that the slow calcium sensor synaptotagmin 7 mediates both of these phenomena. Small, rapidly decaying components of AR and facilitation are present in Syt7 KO animals, indicating that additional mechanisms can contribute to both AR and facilitation at these synapses.
Collapse
|
3
|
Altuntas EE, Turgut NH, Durmuş K, Doǧan ÖT, Akyol M. Strontium chloride hexahydrate as a candidate molecule for long-term treatment of allergic rhinitis. Indian J Med Res 2018; 146:121-125. [PMID: 29168468 PMCID: PMC5719596 DOI: 10.4103/ijmr.ijmr_894_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background & objectives: Neurogenic inflammation plays a role in the pathophysiology of allergic rhinitis (AR). Strontium salts are highly effective in reducing the sensory irritation. This study was aimed to investigate the efficacy of strontium chloride (SC) on AR symptoms based on the duration of SC use before the symptoms begin. Methods: Wistar albino rats (n=18) were randomly divided into three groups: Group 1, received 1μg mometasone furoate (MF); Group 2, three per cent SC; and Group 3 received five per cent SC (2 μl/site). Drugs were administered to the each nasal cavity for three weeks every morning. On the days 7, 14 and 21, histamine dihydrochloride (HD) 5 μmol (2 μl/site) was administered and the frequencies of nasal rubbing and sneezing were counted for 15 min. Results: After 7, 14 and 21 day medication period, the groups were compared in terms of the frequency of sneezing and nasal rubbing following HD. There was a significant difference among the groups in terms of the frequency of sneezing on the day 7 (P< 0.05). Intragroup comparisons for the nasal rubbing showed significance (P< 0.05). In Group 3, there was a decrease in the number of nasal rubbings on the day 14 and 21; however, the difference was not significant. Interpretation & conclusions: Our results showed that three and five per cent SC were less effective than MF for sneezing during the first week, but the efficiency was equal to that of MF after the first 14 days. Long-term use of SC was as effective as MF on nasal rubbing. SC can be as effective as MF on both sneezing and nasal rubbing on regular use over three weeks.
Collapse
Affiliation(s)
- Emine Elif Altuntas
- Department of Otolaryngology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Nergiz Hacer Turgut
- Department of Pharmacology, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Kasım Durmuş
- Department of Otolaryngology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ömer Tamer Doǧan
- Department of Chest Diseases, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Melih Akyol
- Department of Dermatology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
4
|
Bradford AB, Machamer JB, Russo TM, McNutt PM. 3,4-diaminopyridine reverses paralysis in botulinum neurotoxin-intoxicated diaphragms through two functionally distinct mechanisms. Toxicol Appl Pharmacol 2018; 341:77-86. [PMID: 29366638 DOI: 10.1016/j.taap.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/11/2023]
Abstract
Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.
Collapse
Affiliation(s)
- Aaron B Bradford
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - James B Machamer
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - Trisha M Russo
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA
| | - Patrick M McNutt
- Department of Neuroscience, United States Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Gunpowder, MD 21010, USA.
| |
Collapse
|
5
|
Searl TJ, Silinsky EM. The mechanism for prejunctional enhancement of neuromuscular transmission by ethanol in the mouse. J Pharmacol Exp Ther 2010; 335:465-71. [PMID: 20709936 DOI: 10.1124/jpet.110.171355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol has been shown to have both presynaptic and postsynaptic effects on synaptic transmission. However, the mechanisms by which ethanol affects evoked neurotransmitter release have not been studied at the mouse neuromuscular junction, a synapse at which binomial analysis of neurotransmitter release and measurements of prejunctional ionic currents can be made. Ethanol (400 mM) increased neurotransmitter release independently of both the cAMP and phorbol ester/Munc13 signaling pathways. Binomial analysis of neurotransmitter release revealed that ethanol increases the average probability of secretion without an effect on the immediately available store of the neurotransmitter. Application of ethanol also resulted in an inhibition of potassium currents in the motor nerve endings. These results suggest that the potentiating effects of ethanol on neurotransmitter release at the skeletal neuromuscular junction are mediated by an inhibition of the delayed rectifier potassium current, thus increasing both calcium entry into the nerve ending and the probability of neurotransmitter release. Identifying the mechanism through which ethanol enhances neurotransmitter release at the neuromuscular junction may be useful in determining the processes underlying the enhancement of neurotransmitter release at other synapses.
Collapse
Affiliation(s)
- T J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | |
Collapse
|
6
|
Wang X, Pinter MJ, Rich MM. Ca2+ dependence of the binomial parameters p and n at the mouse neuromuscular junction. J Neurophysiol 2009; 103:659-66. [PMID: 19939953 DOI: 10.1152/jn.00708.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+) dependence of synaptic quantal release is generally thought to be restricted to probability of vesicular release. However, some studies have suggested that the number of release sites (n) at the neuromuscular junction (NMJ) is also Ca(2+) dependent. In this study, we recorded endplate currents over a wide range of extracellular Ca(2+) concentrations and found the expected Ca(2+) dependency of release. A graphical technique was used to estimate p (probability of release) and n using standard binomial assumptions. The results suggested n was Ca(2+) dependent. The data were simulated using compound binomial statistics with variable n (Ca(2+) dependent) or fixed n (Ca(2+) independent). With fixed n, successful simulation of increasing Ca(2+) required that p increase abruptly at some sites from very low to high values. Successful simulation with variable n required the introduction of previously silent release sites (p = 0) with high values of p. Thus the success of both simulations required abrupt, large increases of p at a subset of release sites with initially low or zero p. Estimates of the time course of release obtained by deconvolving evoked endplate currents with average miniature endplate currents decreased slightly as Ca(2+) increased, thus arguing against sequential release of multiple quanta at higher Ca(2+) levels. Our results suggest that the apparent Ca(2+) dependence of n at the NMJ can be explained by an underlying Ca(2+) dependence of a spatially variable p such that p increases abruptly at a subset of sites as Ca(2+) is increased.
Collapse
Affiliation(s)
- Xueyong Wang
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
7
|
Searl TJ, Silinsky EM. Mechanisms of neuromodulation as dissected using Sr2+ at motor nerve endings. J Neurophysiol 2008; 99:2779-88. [PMID: 18385484 DOI: 10.1152/jn.90258.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of binomial analysis as a tool for determining the sites of action of neuromodulators may be complicated by the nonuniformity of release probability. One of the potential sources for nonuniformity of release probability is the presence of multiple forms of synaptotagmins, the Ca2+ sensors responsible for triggering vesicular exocytosis. In this study we have used Sr2+, an ion whose actions may be restricted to a subpopulation of synaptotagmins, in an attempt to obtain meaningful estimates of the binomial parameters p (the probability of evoked acetylcholine [Ach] release) and n (the immediate available store of ACh quanta, whereby m = np). In contrast to results in Ca2+ solutions, binomial analysis of Sr2+-dependent release reveals a dramatically reduced dependence of n on extracellular Sr2+ concentrations. In Sr2+ solutions, blockade of potassium channels with 3,4-diaminopyridine increased m by an exclusive increase in p, whereas treatment with phorbol ester increased m solely by effects on n. The cyclic adenosine monophosphate (cAMP) analogue CPT-cAMP increased m by increasing both n and p. The effect of CPT-cAMP on p but not on n was blocked by protein kinase A (PKA) inhibitors, whereas the effect on n was mimicked by 8-CPT-2'-O-Me-cAMP, a selective agonist for exchange protein directly activated by cAMP, otherwise known as the cAMP-sensitive guanine nucleotide-exchange protein. The results demonstrate both the utility of the binomial distribution in Sr2+ solutions and the dual effects of cyclic AMP on both PKA-dependent and PKA-independent processes at the amphibian neuromuscular junction.
Collapse
Affiliation(s)
- Timothy J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
8
|
Bykhovskaia M. Making quantal analysis more convenient, fast, and accurate: user-friendly software QUANTAN. J Neurosci Methods 2007; 168:500-13. [PMID: 18045692 DOI: 10.1016/j.jneumeth.2007.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/16/2022]
Abstract
Quantal analysis of synaptic transmission is an important tool for understanding the mechanisms of synaptic plasticity and synaptic regulation. Although several custom-made and commercial algorithms have been created for the analysis of spontaneous synaptic activity, software for the analysis of action potential evoked release remains very limited. The present paper describes a user-friendly software package QUANTAN which has been created to analyze electrical recordings of postsynaptic responses. The program package is written using Borland C++ under Windows platform. QUANTAN employs and compares several algorithms to extract the average quantal content of synaptic responses, including direct quantal counts, the analysis of synaptic amplitudes, and the analysis of integrated current traces. The integration of several methods in one user-friendly program package makes quantal analysis of action potential evoked release more reliable and accurate. To evaluate the variability in quantal content, QUANTAN performs deconvolution of the distributions of amplitudes or areas of synaptic responses employing a ridge regression method. Other capabilities of QUANTAN include the analysis of the time-course and stationarity of quantal release. In summary, QUANTAN uses digital records of synaptic responses as an input and computes the distribution of quantal content and synaptic parameters. QUANTAN is freely available to other scholars over the internet.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA 18015, United States.
| |
Collapse
|
9
|
Bukharaeva EA, Samigullin D, Nikolsky EE, Magazanik LG. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J Neurochem 2006; 100:939-49. [PMID: 17212698 DOI: 10.1111/j.1471-4159.2006.04282.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of calcium and strontium on the quantal content of nerve-evoked endplate currents and on the kinetic parameters of quantal release (minimal synaptic delay, value of main mode of synaptic delay histogram, and variability of synaptic delay) were studied at the mouse neuromuscular synapse. At low calcium ion concentrations (0.2-0.6 mmol/L), evoked signals with long synaptic delays (several times longer than the value of main mode) were observed. Their number decreased substantially when [Ca(2+)](o) was increased (i.e. the release of transmitter became more synchronous). By contrast, the early phase of secretion, characterized by minimal synaptic delay and accounting for the main peak of the synaptic delay histogram, did not change significantly with increasing [Ca(2+)](o). Hence, extracellular calcium affected mainly the late, 'asynchronous', portion of phasic release. The average quantal content grew exponentially from 0.09 +/- 0.01 to 1.04 +/- 0.07 with the increase in [Ca(2+)](o) without reaching saturation. Similar results were obtained when calcium was replaced by strontium, but the asynchronous portion of phasic release was more pronounced and higher strontium concentrations (to 1.2-1.4 mmol/L) were required to abolish responses with long delays. Treatment of preparations with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) (25 micromol/L), but not with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM) (25 micromol/L), abolished the responses with long delays. The dependence of quantal content and synchrony of quantal release on calcium and strontium concentrations have quite different slopes, suggesting that they are governed by different mechanisms.
Collapse
Affiliation(s)
- Ellya A Bukharaeva
- Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | | | | | | |
Collapse
|
10
|
Wang P, Chicka MC, Bhalla A, Richards DA, Chapman ER. Synaptotagmin VII is targeted to secretory organelles in PC12 cells, where it functions as a high-affinity calcium sensor. Mol Cell Biol 2005; 25:8693-702. [PMID: 16166648 PMCID: PMC1265757 DOI: 10.1128/mcb.25.19.8693-8702.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synaptotagmin (syt) I is thought to act as a Ca2+ sensor that regulates neuronal exocytosis. Fifteen additional isoforms of syt have been identified, but their functions are less well understood. Here, we used PC12 cells to test the idea that different isoforms of syt impart cells with distinct metal (i.e., Ca2+, Ba2+, and Sr2+) requirements for secretion. These cells express syt's I and IX (syt IX sometimes referred to as syt V), which have low apparent metal affinities, at much higher levels than syt VII, which we show has a relatively high apparent affinity for metals. We found that syt I and VII partially colocalize on large dense core vesicles and that upregulation of syt VII produces a concomitant increase in the divalent cation sensitivity of catecholamine release from PC12 cells. Furthermore, RNA interference-mediated knockdown of endogenous syt VII reduced the metal sensitivity of release. These data support the hypothesis that the complement of syt's expressed by a cell, in conjunction with their metal affinity, determines the divalent cation sensitivity of exocytosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Physiology, University of Wisconsin, 1300 University Ave., SMI 129, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell 2005; 16:4755-64. [PMID: 16093350 PMCID: PMC1237081 DOI: 10.1091/mbc.e05-04-0277] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations. We found that different isoforms of syt couple distinct ranges of Ca2+, Ba2+, and Sr2+ to membrane fusion; syt VII was approximately 400-fold more sensitive to Ca2+ than was syt I. Omission of phosphatidylserine (PS) from both populations of liposomes completely abrogated the ability of all three isoforms of syt to stimulate fusion. Mutations that selectively inhibit syt.target-SNARE (t-SNARE) interactions reduced syt stimulation of fusion. Using Sr2+ and Ba2+, we found that binding of syt to PS and t-SNAREs can be dissociated from activation of fusion, uncovering posteffector-binding functions for syt. Our data demonstrate that different syt isoforms are specialized to sense different ranges of divalent cations and that PS is an essential effector of Ca2+.syt action.
Collapse
Affiliation(s)
- Akhil Bhalla
- Department of Physiology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
12
|
Searl TJ, Silinsky EM. Phorbol esters and adenosine affect the readily releasable neurotransmitter pool by different mechanisms at amphibian motor nerve endings. J Physiol 2003; 553:445-56. [PMID: 12972626 PMCID: PMC2343571 DOI: 10.1113/jphysiol.2003.051300] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phorbol esters and adenosine have been proposed to interact at common sites downstream of calcium entry at amphibian motor nerve endings. We thus studied the actions and interactions of phorbol esters and adenosine using electrophysiological recording techniques in conjunction with both binomial statistical analysis and high-frequency stimulation at the amphibian neuromuscular junction. To begin this study, we confirmed previous observations that synchronous evoked acetylcholine (ACh) release (reflected as endplate potentials, EPPs) is well described by a simple binomial distribution. We then used binomial analysis to study the effects of the phorbol ester phorbol dibutyrate (PDBu, 100 nM) and adenosine (50 microM) on the binomial parameters n (the number of calcium charged ACh quanta available for release) and p (the average probability of release), where the mean level of evoked ACh release (m) = np. We found that PDBu increased m by increasing the parameter n whilst adenosine reduced m by reducing n; neither agent affected the parameter p. PDBu had no effect on either the potency or efficacy of the inhibition produced by adenosine. Subtle differences between these two agents were revealed by the patterns of EPPs evoked by high-frequency trains of stimuli. Phorbol esters increased ACh release during the early phase of stimulation but not during the subsequent plateau phase. The inhibitory effect of adenosine was maximal at the beginning of the train and was still present with reduced efficacy during the plateau phase. When taken together with previous findings, these present results suggest that phorbol esters increase the immediately available store of synaptic vesicles by increasing the number of primed vesicles whilst adenosine acts at a later stage of the secretory process to decrease the number of calcium-charged primed vesicles.
Collapse
Affiliation(s)
- T J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
13
|
Silinsky EM, Searl TJ. Phorbol esters and neurotransmitter release: more than just protein kinase C? Br J Pharmacol 2003; 138:1191-201. [PMID: 12711617 PMCID: PMC1573789 DOI: 10.1038/sj.bjp.0705213] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the effects of phorbol esters and the role of phorbol ester receptors in the secretion of neurotransmitter substances. We begin with a brief background on the historical use of phorbol esters as tools to decipher the role of the enzyme protein kinase C in signal transduction cascades. Next, we illustrate the structural differences between active and inactive phorbol esters and the mechanism by which the binding of phorbol to its recognition sites (C1 domains) on a particular protein acts to translocate that protein to the membrane. We then discuss the evidence that the most important nerve terminal receptor for phorbol esters (and their endogenous counterpart diacylglycerol) is likely to be Munc13. Indeed, Munc13 and its invertebrate homologues are the main players in priming the secretory apparatus for its critical function in the exocytosis process.
Collapse
Affiliation(s)
- Eugene M Silinsky
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, U.S.A.
| | | |
Collapse
|
14
|
Brailoiu E, Miyamoto MD, Dun NJ. Calmodulin increases transmitter release by mobilizing quanta at the frog motor nerve terminal. Br J Pharmacol 2002; 137:719-27. [PMID: 12381686 PMCID: PMC1573543 DOI: 10.1038/sj.bjp.0704923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 08/06/2002] [Accepted: 08/12/2002] [Indexed: 11/08/2022] Open
Abstract
The role of calmodulin (CaM) in transmitter release was investigated using liposomes to deliver CaM and monoclonal antibodies against CaM (antiCaM) directly into the frog motor nerve terminal. Miniature endplate potentials (MEPPs) were recorded in a high K+ solution, and effects on transmitter release were monitored using estimates of the quantal release parameters m (number of quanta released), n (number of functional transmitter release sites), p (mean probability of release), and var(s) p (spatial variance in p). Administration of CaM, but not heat-inactivated CaM, encapsulated in liposomes (1000 units ml(-1)) produced an increase in m (25%) that was due to an increase in n. MEPP amplitude was not altered by CaM. Administration of antiCaM, but not heat-inactivated antiCaM, in liposomes (50 microl ml(-1)) produced a progressive decrease in m (40%) that was associated with decreases in n and p. MEPP amplitude was decreased (15%) after a 25 min lag time, suggesting a separation in time between the decreases in quantal release and quantal size. Bath application of the membrane-permeable CaM antagonist W7 (28 microM) produced a gradual decrease in m (25%) that was associated with a decrease in n. W7 also produced a decrease in MEPP amplitude that paralleled the decrease in m. The decreases in MEPP size and m produced by W7 were both reversed by addition of CaM. Our results suggest that CaM increases transmitter release by mobilizing synaptic vesicles at the frog motor nerve terminal.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, TN 37614-1708, U.S.A
| | - Michael D Miyamoto
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, TN 37614-1708, U.S.A
| | - Nae J Dun
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, TN 37614-1708, U.S.A
| |
Collapse
|