1
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2024:108744. [PMID: 39521442 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
2
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Fogarty MJ. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front Cell Neurosci 2024; 18:1409974. [PMID: 38933178 PMCID: PMC11199410 DOI: 10.3389/fncel.2024.1409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 μm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 μm) was traced in 3D to determine dendritic arbourisation. Results We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Okazaki M, Matsumoto M, Koganezawa T. Hydrogen sulfide production in the medullary respiratory center modulates the neural circuit for respiratory pattern and rhythm generations. Sci Rep 2023; 13:20046. [PMID: 38049443 PMCID: PMC10696040 DOI: 10.1038/s41598-023-47280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine β-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Minako Okazaki
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tadachika Koganezawa
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
5
|
A Leptin-Mediated Neural Mechanism Linking Breathing to Metabolism. Cell Rep 2020; 33:108358. [PMID: 33176139 DOI: 10.1016/j.celrep.2020.108358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 01/10/2023] Open
Abstract
Breathing is coupled to metabolism. Leptin, a peptide mainly secreted in proportion to adipose tissue mass, increases energy expenditure with a parallel increase in breathing. We demonstrate that optogenetic activation of LepRb neurons in the nucleus of the solitary tract (NTS) mimics the respiratory stimulation after systemic leptin administration. We show that leptin activates the sodium leak channel (NALCN), thereby depolarizing a subset of glutamatergic (VGluT2) LepRb NTS neurons expressing galanin. Mice with selective deletion of NALCN in LepRb neurons have increased breathing irregularity and central apneas. On a high-fat diet, these mice gain weight with an associated depression of minute ventilation and tidal volume, which are not detected in control littermates. Anatomical mapping reveals LepRb NTS-originating glutamatergic axon terminals in a brainstem inspiratory premotor region (rVRG) and dorsomedial hypothalamus. These findings directly link a defined subset of NTS LepRb cells to the matching of ventilation to energy balance.
Collapse
|
6
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Activation of μ-opioid receptors differentially affects the preBötzinger Complex and neighbouring regions of the respiratory network in the adult rabbit. Respir Physiol Neurobiol 2020; 280:103482. [DOI: 10.1016/j.resp.2020.103482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
|
7
|
Morinaga R, Nakamuta N, Yamamoto Y. Serotonergic projections to the ventral respiratory column from raphe nuclei in rats. Neurosci Res 2019; 143:20-30. [DOI: 10.1016/j.neures.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
8
|
Cook-Snyder DR, Miller JR, Navarrete-Opazo AA, Callison JJ, Peterson RC, Hopp FA, Stuth EAE, Zuperku EJ, Stucke AG. The contribution of endogenous glutamatergic input in the ventral respiratory column to respiratory rhythm. Respir Physiol Neurobiol 2019; 260:37-52. [PMID: 30502519 PMCID: PMC6397772 DOI: 10.1016/j.resp.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the ventral respiratory column; however, the contribution of glutamatergic excitation in the individual subregions to respiratory rhythm generation has not been fully delineated. In an adult, in vivo, decerebrate rabbit model during conditions of mild hyperoxic hypercapnia we blocked glutamatergic excitation using the receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and d(-)-2-amino-5-phosphonopentanoic acid (AP5). Disfacilitation of the preBötzinger Complex caused a decrease in inspiratory and expiratory duration as well as peak phrenic amplitude and ultimately apnea. Disfacilitation of the Bötzinger Complex caused a decrease in inspiratory and expiratory duration; subsequent disfacilitation of the preBötzinger Complex resulted in complete loss of the respiratory pattern but maintained tonic inspiratory activity. We conclude that glutamatergic drive to the preBötzinger Complex is essential for respiratory rhythm generation. Glutamatergic drive to the Bötzinger Complex significantly affects inspiratory and expiratory phase duration. Bötzinger Complex neurons are responsible for maintaining the silent expiratory phase of the phrenic neurogram.
Collapse
Affiliation(s)
| | - Justin R Miller
- Department of Biology, Carthage College, Kenosha, WI, United States
| | | | - Jennifer J Callison
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robin C Peterson
- Department of Neuroscience, Carthage College, Kenosha, WI, United States
| | - Francis A Hopp
- Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Eckehard A E Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Edward J Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Astrid G Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Children's Hospital of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
9
|
Iovino L, Mutolo D, Cinelli E, Contini M, Pantaleo T, Bongianni F. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res 2019; 1704:26-39. [DOI: 10.1016/j.brainres.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
10
|
Brown AG, Thapa M, Hooker JW, Ostrowski TD. Impaired chemoreflex correlates with decreased c-Fos in respiratory brainstem centers of the streptozotocin-induced Alzheimer's disease rat model. Exp Neurol 2018; 311:285-292. [PMID: 30359566 DOI: 10.1016/j.expneurol.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/17/2018] [Accepted: 10/20/2018] [Indexed: 12/29/2022]
Abstract
Besides impairment in cognition and memory, patients with Alzheimer's disease (AD) often exhibit marked dysfunction in respiratory control. Sleep-disordered breathing (SDB) is commonly found in cases of AD, resulting in periods of hypoxia during sleep. Early structural changes in brainstem areas controlling respiratory function may account for SDB in the course of AD. However, to date the underlying mechanisms for these complications are not known. The streptozotocin (STZ)-induced rat model of AD exhibits abnormal responses to hypoxia and increased astrogliosis in a key region for respiratory control. In this study we further defined the pathophysiological respiratory response of STZ-AD rats to 10% O2. In addition, we analyzed hypoxia-induced neuronal activation in respiratory and cardiovascular nuclei of the dorsal and ventral brainstem. Two hours of hypoxia induced a transient increase in tidal volume that was followed by a prolonged increase in respiratory rate. Only respiratory rate was significantly blunted in the STZ-AD model, which continued over the entire duration of the hypoxic episode. Analysis of c-Fos expression as a marker for neuronal activation showed abundant labeling throughout the nTS, nuclei of the ventral respiratory column, and A1/C1 cells of cardiovascular centers in the ventral brainstem. STZ-AD rats showed a significant decrease of c-Fos labeling in the caudal/medial nTS, rostral ventral respiratory group, and Bötzinger complex. c-Fos in other respiratory centers and A1/C1 cells was unaltered when compared to control. The results of this study document a region-specific impact of STZ-induced AD in respiratory brainstem nuclei. This decrease in c-Fos expression correlates with the observed blunting of respiration to hypoxia in the STZ-AD rat model.
Collapse
Affiliation(s)
- Andrea G Brown
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Mahima Thapa
- Department of Biology, Truman State University, Kirksville, MO, USA
| | - John W Hooker
- Department of Biology, Truman State University, Kirksville, MO, USA
| | - Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA.
| |
Collapse
|
11
|
Rajani V, Zhang Y, Jalubula V, Rancic V, SheikhBahaei S, Zwicker JD, Pagliardini S, Dickson CT, Ballanyi K, Kasparov S, Gourine AV, Funk GD. Release of ATP by pre-Bötzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca 2+ -dependent P2Y 1 receptor mechanism. J Physiol 2018; 596:3245-3269. [PMID: 28678385 PMCID: PMC6068109 DOI: 10.1113/jp274727] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS The ventilatory response to reduced oxygen (hypoxia) is biphasic, comprising an initial increase in ventilation followed by a secondary depression. Our findings indicate that, during hypoxia, astrocytes in the pre-Bötzinger complex (preBötC), a critical site of inspiratory rhythm generation, release a gliotransmitter that acts via P2Y1 receptors to stimulate ventilation and reduce the secondary depression. In vitro analyses reveal that ATP excitation of the preBötC involves P2Y1 receptor-mediated release of Ca2+ from intracellular stores. By identifying a role for gliotransmission and the sites, P2 receptor subtype, and signalling mechanisms via which ATP modulates breathing during hypoxia, these data advance our understanding of the mechanisms underlying the hypoxic ventilatory response and highlight the significance of purinergic signalling and gliotransmission in homeostatic control. Clinically, these findings are relevant to conditions in which hypoxia and respiratory depression are implicated, including apnoea of prematurity, sleep disordered breathing and congestive heart failure. ABSTRACT The hypoxic ventilatory response (HVR) is biphasic, consisting of a phase I increase in ventilation followed by a secondary depression (to a steady-state phase II) that can be life-threatening in premature infants who suffer from frequent apnoeas and respiratory depression. ATP released in the ventrolateral medulla oblongata during hypoxia attenuates the secondary depression. We explored a working hypothesis that vesicular release of ATP by astrocytes in the pre-Bötzinger Complex (preBötC) inspiratory rhythm-generating network acts via P2Y1 receptors to mediate this effect. Blockade of vesicular exocytosis in preBötC astrocytes bilaterally (using an adenoviral vector to specifically express tetanus toxin light chain in astrocytes) reduced the HVR in anaesthetized rats, indicating that exocytotic release of a gliotransmitter within the preBötC contributes to the hypoxia-induced increases in ventilation. Unilateral blockade of P2Y1 receptors in the preBötC via local antagonist injection enhanced the secondary respiratory depression, suggesting that a significant component of the phase II increase in ventilation is mediated by ATP acting at P2Y1 receptors. In vitro responses of the preBötC inspiratory network, preBötC inspiratory neurons and cultured preBötC glia to purinergic agents demonstrated that the P2Y1 receptor-mediated increase in fictive inspiratory frequency involves Ca2+ recruitment from intracellular stores leading to increases in intracellular Ca2+ ([Ca2+ ]i ) in inspiratory neurons and glia. These data suggest that ATP is released by preBötC astrocytes during hypoxia and acts via P2Y1 receptors on inspiratory neurons (and/or glia) to evoke Ca2+ release from intracellular stores and an increase in ventilation that counteracts the hypoxic respiratory depression.
Collapse
Affiliation(s)
- Vishaal Rajani
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Present address: Neurosciences & Mental Health, Peter Gilgan Centre for Research and Learning (PGCRL)The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Yong Zhang
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Venkatesh Jalubula
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Vladimir Rancic
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Shahriar SheikhBahaei
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health (NIH)BethesdaMDUSA
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUK
| | - Jennifer D. Zwicker
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Silvia Pagliardini
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Clayton T. Dickson
- Department of Psychology, Neuroscience and Mental Health Institute (NMHI)Faculty of ScienceEdmontonAlbertaCanada
| | - Klaus Ballanyi
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Sergey Kasparov
- Department of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonUK
| | - Gregory D. Funk
- Department of Physiology, Neuroscience and Mental Health Institute (NMHI), Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
12
|
Huda R, Chang Z, Do J, McCrimmon DR, Martina M. Activation of astrocytic PAR1 receptors in the rat nucleus of the solitary tract regulates breathing through modulation of presynaptic TRPV1. J Physiol 2018; 596:497-513. [PMID: 29235097 DOI: 10.1113/jp275127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS In the rat nucleus of the solitary tract (NTS), activation of astrocytic proteinase-activated receptor 1 (PAR1) receptors leads to potentiation of neuronal synaptic activity by two mechanisms, one TRPV1-dependent and one TRPV1-independent. PAR1-dependent activation of presynaptic TRPV1 receptors facilitates glutamate release onto NTS neurons. The TRPV1-dependent mechanism appears to rely on astrocytic release of endovanilloid-like molecules. A subset of NTS neurons excited by PAR1 directly project to the rostral ventral respiratory group. The PAR1 initiated, TRPV1-dependent modulation of synaptic transmission in the NTS contributes to regulation of breathing. ABSTRACT Many of the cellular and molecular mechanisms underlying astrocytic modulation of synaptic function remain poorly understood. Recent studies show that G-protein coupled receptor-mediated astrocyte activation modulates synaptic transmission in the nucleus of the solitary tract (NTS), a brainstem nucleus that regulates crucial physiological processes including cardiorespiratory activity. By using calcium imaging and patch clamp recordings in acute brain slices of wild-type and TRPV1-/- rats, we show that activation of proteinase-activated receptor 1 (PAR1) in NTS astrocytes potentiates presynaptic glutamate release on NTS neurons. This potentiation is mediated by both a TRPV1-dependent and a TRPV1-independent mechanism. The TRPV1-dependent mechanism appears to require release of endovanilloid-like molecules from astrocytes, which leads to subsequent potentiation of presynaptic glutamate release via activation of presynaptic TRPV1 channels. Activation of NTS astrocytic PAR1 receptors elicits cFOS expression in neurons that project to respiratory premotor neurons and inhibits respiratory activity in control, but not in TRPV1-/- rats. Thus, activation of astrocytic PAR1 receptor in the NTS leads to a TRPV1-dependent excitation of NTS neurons causing a potent modulation of respiratory motor output.
Collapse
Affiliation(s)
- Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Zheng Chang
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Jeehaeh Do
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Donald R McCrimmon
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| | - Marco Martina
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave., Chicago, IL, 60611, USA
| |
Collapse
|
13
|
da Silva GSF, Sabino JPJ, Rajani V, Alvares TS, Pagliardini S, Branco LGS, Funk GD. Excitatory Modulation of the preBötzinger Complex Inspiratory Rhythm Generating Network by Endogenous Hydrogen Sulfide. Front Physiol 2017; 8:452. [PMID: 28713283 PMCID: PMC5492353 DOI: 10.3389/fphys.2017.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Hydrogen Sulfide (H2S) is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group) and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation) are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-β-synthase (CBS) in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo) and hypoxic conditions (in vivo). Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1-1.0 mM) to rhythmic brainstem spinal cord (BSSC) and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only) caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min) increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.
Collapse
Affiliation(s)
- Glauber S. F. da Silva
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
- Department of Morphology and Animal Physiology, Sao Paulo State UniversityJaboticabal, Brazil
| | - João P. J. Sabino
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
- Department of Biophysics and Physiology, Federal University of PiauiTeresina, Brazil
| | - Vishaal Rajani
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Tucaauê S. Alvares
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| | - Luiz G. S. Branco
- Department of Physiology, Faculty of Dentistry of Ribeirao Preto, University of Sao PauloRibeirao Preto, Brazil
| | - Gregory D. Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
14
|
Progressive Changes in a Distributed Neural Circuit Underlie Breathing Abnormalities in Mice Lacking MeCP2. J Neurosci 2017; 36:5572-86. [PMID: 27194336 DOI: 10.1523/jneurosci.2330-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Severe breathing abnormalities are common in RTT and are reproduced in mouse models of RTT. Previously, we found that removing MeCP2 from the brainstem and spinal cord in mice caused early lethality and abnormal breathing. To determine whether loss of MeCP2 in functional components of the respiratory network causes specific breathing disorders, we used the Cre/LoxP system to differentially manipulate MeCP2 expression throughout the brainstem respiratory network, specifically within HoxA4-derived tissues, which include breathing control circuitry within the nucleus tractus solitarius and the caudal part of ventral respiratory column but do not include more rostral parts of the breathing control circuitry. To determine whether respiratory phenotypes manifested in animals with MeCP2 removed from specific pons medullary respiratory circuits, we performed whole-body plethysmography and electrophysiological recordings from in vitro brainstem slices from mice lacking MeCP2 in different circuits. Our results indicate that MeCP2 expression in the medullary respiratory network is sufficient for normal respiratory rhythm and preventing apnea. However, MeCP2 expression within components of the breathing circuitry rostral to the HoxA4 domain are neither sufficient to prevent the hyperventilation nor abnormal hypoxic ventilatory response. Surprisingly, we found that MeCP2 expression in the HoxA4 domain alone is critical for survival. Our study reveals that MeCP2 is differentially required in select respiratory components for different aspects of respiratory functions, and collectively for the integrity of this network functions to maintain proper respiration. SIGNIFICANCE STATEMENT Breathing abnormalities are a significant clinical feature in Rett syndrome and are robustly reproduced in the mouse models of this disease. Previous work has established that alterations in the function of MeCP2, the protein encoded by the gene mutated in Rett syndrome, within the hindbrain are critical for control of normal breathing. Here we show that MeCP2 function plays distinct roles in specific brainstem regions in the genesis of various aspects of abnormal breathing. This provides insight into the pathogenesis of these breathing abnormalities in Rett syndrome, which could be used to target treatments to improve these symptoms. Furthermore, it provides further knowledge about the fundamental neural circuits that control breathing.
Collapse
|
15
|
Jones SE, Dutschmann M. Testing the hypothesis of neurodegeneracy in respiratory network function with a priori transected arterially perfused brain stem preparation of rat. J Neurophysiol 2016; 115:2593-607. [PMID: 26888109 DOI: 10.1152/jn.01073.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/12/2016] [Indexed: 11/22/2022] Open
Abstract
Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation.
Collapse
Affiliation(s)
- Sarah E Jones
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain Struct Funct 2015; 221:4353-4368. [DOI: 10.1007/s00429-015-1165-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022]
|
17
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Radocaj T, Mustapic S, Prkic I, Stucke AG, Hopp FA, Stuth EAE, Zuperku EJ. Activation of 5-HT1A receptors in the preBötzinger region has little impact on the respiratory pattern. Respir Physiol Neurobiol 2015; 212-214:9-19. [PMID: 25850079 DOI: 10.1016/j.resp.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/10/2015] [Accepted: 03/19/2015] [Indexed: 11/24/2022]
Abstract
The preBötzinger (preBötC) complex has been suggested as the primary site where systemically administered selective serotonin agonists have been shown to reduce or prevent opioid-induced depression of breathing. However, this hypothesis has not been tested pharmacologically in vivo. This study sought to determine whether 5-HT1A receptors within the preBötC and ventral respiratory column (VRC) mediate the tachypneic response induced by intravenous (IV) (±)-8-Hydroxy-2-diproplyaminotetralin hydrobromide (8-OH-DPAT) in a decerebrated dog model. IV 8-OH-DPAT (19 ± 2 μg/kg) reduced both inspiratory (I) and expiratory (E) durations by ∼ 40%, but had no effect on peak phrenic activity (PPA). Picoejection of 1, 10, and 100 μM 8-OH-DPAT on I and E preBötC neurons produced dose-dependent decreases up to ∼ 40% in peak discharge. Surprisingly, microinjections of 8-OH-DPAT and 5-HT within the VRC from the obex to 9 mm rostral had no effect on timing and PPA. These results suggest that the tachypneic effects of IV 8-OH-DPAT are due to receptors located outside of the areas we studied.
Collapse
Affiliation(s)
- Tomislav Radocaj
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, United States
| | - Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, United States
| | - Ivana Prkic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, United States
| | - Astrid G Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Children's Hospital of Wisconsin, Pediatric Anesthesia, Milwaukee, WI, United States
| | - Francis A Hopp
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, United States
| | - Eckehard A E Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Children's Hospital of Wisconsin, Pediatric Anesthesia, Milwaukee, WI, United States
| | - Edward J Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI 53295, United States.
| |
Collapse
|
19
|
Lalley PM, Pilowsky PM, Forster HV, Zuperku EJ. Rebuttal from Peter M. Lalley, Paul M. Pilowsky, Hubert V. Forster and Edward J. Zuperku. J Physiol 2015; 592:1169. [PMID: 24634014 DOI: 10.1113/jphysiol.2013.268318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Burke PGR, Abbott SBG, Coates MB, Viar KE, Stornetta RL, Guyenet PG. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats. Am J Respir Crit Care Med 2015; 190:1301-10. [PMID: 25325789 DOI: 10.1164/rccm.201407-1262oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The rostral ventrolateral medulla (RVLM) contains central respiratory chemoreceptors (retrotrapezoid nucleus, RTN) and the sympathoexcitatory, hypoxia-responsive C1 neurons. Simultaneous optogenetic stimulation of these neurons produces vigorous cardiorespiratory stimulation, sighing, and arousal from non-REM sleep. OBJECTIVES To identify the effects that result from selectively stimulating C1 cells. METHODS A Cre-dependent vector expressing channelrhodopsin 2 (ChR2) fused with enhanced yellow fluorescent protein or mCherry was injected into the RVLM of tyrosine hydroxylase (TH)-Cre rats. The response of ChR2-transduced neurons to light was examined in anesthetized rats. ChR2-transduced C1 neurons were photoactivated in conscious rats while EEG, neck muscle EMG, blood pressure (BP), and breathing were recorded. MEASUREMENTS AND MAIN RESULTS Most ChR2-expressing neurons (95%) contained C1 neuron markers and innervated the spinal cord. RTN neurons were not transduced. While the rats were under anesthesia, the C1 cells were faithfully activated by each light pulse up to 40 Hz. During quiet resting and non-REM sleep, C1 cell stimulation (20 s, 2-20 Hz) increased BP and respiratory frequency and produced sighs and arousal from non-REM sleep. Arousal was frequency-dependent (85% probability at 20 Hz). Stimulation during REM sleep increased BP, but had no effect on EEG or breathing. C1 cell-mediated breathing stimulation was occluded by hypoxia (12% FIO2), but was unchanged by 6% FiCO2. CONCLUSIONS C1 cell stimulation reproduces most effects of acute hypoxia, specifically cardiorespiratory stimulation, sighs, and arousal. C1 cell activation likely contributes to the sleep disruption and adverse autonomic consequences of sleep apnea. During hypoxia (awake) or REM sleep, C1 cell stimulation increases BP but no longer stimulates breathing.
Collapse
Affiliation(s)
- Peter G R Burke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | |
Collapse
|
21
|
Subramanian HH, Holstege G. Stimulation of the midbrain periaqueductal gray modulates preinspiratory neurons in the ventrolateral medulla in the rat in vivo. J Comp Neurol 2014; 521:3083-98. [PMID: 23630049 PMCID: PMC3761193 DOI: 10.1002/cne.23334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
The midbrain periaqueductal gray (PAG) is involved in many basic survival behaviors that affect respiration. We hypothesized that the PAG promotes these behaviors by changing the firing of preinspiratory (pre-I) neurons in the pre-Bötzinger complex, a cell group thought to be important in generating respiratory rhythm. We tested this hypothesis by recording single unit activity of pre-Bötzinger pre-I neurons during stimulation in different parts of the PAG. Stimulation in the dorsal PAG increased the firing of pre-I neurons, resulting in tachypnea. Stimulation in the medial part of the lateral PAG converted the pre-I neurons into inspiratory phase-spanning cells, resulting in inspiratory apneusis. Stimulation in the lateral part of the lateral PAG generated an early onset of the pre-I neuronal discharge, which continued throughout the inspiratory phase, while at the same time attenuating diaphragm contraction. Stimulation in the ventral part of the lateral PAG induced tachypnea but inhibited pre-I cell firing, whereas stimulation in the ventrolateral PAG inhibited not only pre-I cells but also the diaphragm, leading to apnea. These findings show that PAG stimulation changes the activity of the pre-Bötzinger pre-I neurons. These changes are in line with the different behaviors generated by the PAG, such as the dorsal PAG generating avoidance behavior, the lateral PAG generating fight and flight, and the ventrolateral PAG generating freezing and immobility. J. Comp. Neurol. 521: 3083–3098, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hari H Subramanian
- The University of Queensland Centre for Clinical Research, Herston, Queensland, 4029, Australia
| | | |
Collapse
|
22
|
|
23
|
Burke PGR, Sousa LO, Tallapragada VJ, Goodchild AK. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat. Eur J Neurosci 2013; 38:2260-70. [PMID: 23627348 DOI: 10.1111/ejn.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway plays a critical role in regulating neuronal activity. Yet, how PKA signalling shapes the population activity of neurons that regulate respiratory rhythm and motor patterns in vivo is poorly defined. We determined the respiratory effects of focally inhibiting endogenous PKA activity in defined classes of respiratory neurons in the ventrolateral medulla and spinal cord by microinjection of the membrane-permeable PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) in urethane-anaesthetized adult Sprague Dawley rats. Phrenic nerve activity, end-tidal CO2 and arterial pressure were recorded. Rp-cAMPS in the preBötzinger complex (preBötC) caused powerful, dose-dependent depression of phrenic burst amplitude and inspiratory period. Rp-cAMPS powerfully depressed burst amplitude in the phrenic premotor nucleus, but had no effect at the phrenic motor nucleus, suggesting a lack of persistent PKA activity here. Surprisingly, inhibition of PKA activity in the preBötC increased phrenic burst frequency, whereas in the Bötzinger complex phrenic frequency decreased. Pretreating the preBötC with strychnine, but not bicuculline, blocked the Rp-cAMPS-evoked increase in frequency, but not the depression of phrenic burst amplitude. We conclude that endogenous PKA activity in excitatory inspiratory preBötzinger neurons and phrenic premotor neurons, but not motor neurons, regulates network inspiratory drive currents that underpin the intensity of phrenic nerve discharge. We show that inhibition of PKA activity reduces tonic glycinergic transmission that normally restrains the frequency of rhythmic respiratory activity. Finally, we suggest that the maintenance of the respiratory rhythm in vivo is not dependent on endogenous cAMP-PKA signalling.
Collapse
Affiliation(s)
- P G R Burke
- Australian School of Advanced Medicine, Level 1, 2 Technology Drive, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
24
|
Miot S, Voituron N, Sterlin A, Vigneault E, Morel L, Matrot B, Ramanantsoa N, Amilhon B, Poirel O, Lepicard E, Mestikawy SE, Hilaire G, Gallego J. The vesicular glutamate transporter VGLUT3 contributes to protection against neonatal hypoxic stress. J Physiol 2012; 590:5183-98. [PMID: 22890712 DOI: 10.1113/jphysiol.2012.230722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neonates respond to hypoxia initially by increasing ventilation, and then by markedly decreasing both ventilation (hypoxic ventilatory decline) and oxygen consumption (hypoxic hypometabolism). This latter process, which vanishes with age, reflects a tight coupling between ventilatory and thermogenic responses to hypoxia. The neurological substrate of hypoxic hypometabolism is unclear, but it is known to be centrally mediated, with a strong involvement of the 5-hydroxytryptamine (5-HT, serotonin) system. To clarify this issue, we investigated the possible role of VGLUT3, the third subtype of vesicular glutamate transporter. VGLUT3 contributes to glutamate signalling by 5-HT neurons, facilitates 5-HT transmission and is expressed in strategic regions for respiratory and thermogenic control. We therefore assumed that VGLUT3 might significantly contribute to the response to hypoxia. To test this possibility, we analysed this response in newborn mice lacking VGLUT3 using anatomical, biochemical, electrophysiological and integrative physiology approaches. We found that the lack of VGLUT3 did not affect the histological organization of brainstem respiratory networks or respiratory activity under basal conditions. However, it impaired respiratory responses to 5-HT and anoxia, showing a marked alteration of central respiratory control. These impairments were associated with altered 5-HT turnover at the brainstem level. Furthermore, under cold conditions, the lack of VGLUT3 disrupted the metabolic rate, body temperature, baseline breathing and the ventilatory response to hypoxia. We conclude that VGLUT3 expression is dispensable under basal conditions but is required for optimal response to hypoxic stress in neonates.
Collapse
Affiliation(s)
- Stéphanie Miot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U952, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huda R, Pollema-Mays SL, Chang Z, Alheid GF, McCrimmon DR, Martina M. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract. J Physiol 2012; 590:4761-75. [PMID: 22890703 DOI: 10.1113/jphysiol.2012.232470] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .
Collapse
Affiliation(s)
- Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moraes DJA, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by l-glutamate in the RVLM/Bötzinger complex of rats. J Neurophysiol 2012; 108:610-23. [DOI: 10.1152/jn.00057.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Bötzinger/pre-Bötzinger complexes (RVLM/BötC/pre-BötC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BötC/pre-BötC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BötC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 ± 0.02 vs. 1 ± 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 ± 2 vs. 82 ± 2%; P < 0.05; n = 8), but decreased postinspiratory (35 ± 3 vs. 12 ± 2%; P < 0.05) and late-expiratory (24 ± 4 vs. 2 ±1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 ± 6 vs. 40 ± 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 ± 8 vs. 26 ± 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BötC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BötC; n = 16) abolished inspiratory responses [PN ( n = 16) and HN ( n = 6)], and no changes in magnitude of sympathoexcitatory ( n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BötC and RVLM/pre-BötC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BötC is essential to the coupling of active expiration and sympathoexcitatory response.
Collapse
Affiliation(s)
- Davi J. A. Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Spirovski D, Li Q, Pilowsky PM. Brainstem galanin-synthesizing neurons are differentially activated by chemoreceptor stimuli and represent a subpopulation of respiratory neurons. J Comp Neurol 2011; 520:154-73. [DOI: 10.1002/cne.22723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Respiratory responses to somatostatin microinjections into the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Neurosci Lett 2011; 498:26-30. [DOI: 10.1016/j.neulet.2011.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 11/19/2022]
|
29
|
Zoccal DB, Huidobro-Toro JP, Machado BH. Chronic intermittent hypoxia augments sympatho-excitatory response to ATP but not to L-glutamate in the RVLM of rats. Auton Neurosci 2011; 165:156-62. [PMID: 21684220 DOI: 10.1016/j.autneu.2011.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 02/07/2023]
Abstract
The development of sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia (CIH) involve alterations in the central mechanisms controlling respiratory and autonomic functions. Herein, we assessed whether CIH alters glutamatergic and/or purinergic signaling in the ventrolateral medulla (VLM), a region that encompasses the pre-sympathetic neurons and respiratory neurons of the ventral respiratory column. Groups of juvenile rats were exposed for 10 days to CIH (6% O(2) for 40s, every 9min, 8h/day) or normoxia (controls). Following treatment, in situ working heart-brainstem preparations were performed to record simultaneously respiratory and sympathetic motor outputs. In separate CIH and control groups, the VLM was dissected for western-blot analyses of ionotropic glutamatergic and P2 receptors. l-glutamate microinjections (1, 3 or 10mM) into VLM of control (n=6) and CIH groups (n=10) produced similar increases of sympathetic and abdominal activities associated with phrenic nerve inhibition; immunoreactive NMDAR1 and GluR2/3 densities at the VLM were also alike between groups (n=4). In contrast, VLM microinjections of ATP (1, 10 or 50mM) evoked larger sympatho-excitatory responses in CIH (n=8) than in control rats (n=7, P<0.05) whilst the abdominal increase and phrenic nerve inhibition were of comparable magnitudes. The immunoreactive densities of P2X3 and P2X4 receptors, but not P2X1 and P2Y2, were 20% higher in VLM of CIH (n=8; P<0.05) than controls (n=8). Altogether, our findings suggest that CIH augments purinergic signaling in the VLM, supporting the concept that nucleotides play a role in the dynamic central control of the sympathetic autonomic function.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | |
Collapse
|
30
|
Caudal nuclei of the rat nucleus of the solitary tract differentially innervate respiratory compartments within the ventrolateral medulla. Neuroscience 2011; 190:207-27. [PMID: 21704133 DOI: 10.1016/j.neuroscience.2011.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 12/15/2022]
Abstract
A substantial array of respiratory, cardiovascular, visceral and somatic afferents are relayed via the nucleus of the solitary tract (NTS) to the brainstem (and forebrain). Despite some degree of overlap within the NTS, specificity is maintained in central respiratory reflexes driven by second order afferent relay neurons in the NTS. While the topographic arrangement of respiratory-related afferents targeting the NTS has been extensively investigated, their higher order brainstem targets beyond the NTS has only rarely been defined with any precision. Nonetheless, the various brainstem circuits serving blood gas homeostasis and airway protective reflexes must clearly receive a differential innervation from the NTS in order to evoke stimulus appropriate behavioral responses. Accordingly, we have examined the question of which specific NTS nuclei project to particular compartments within the ventral respiratory column (VRC) of the ventrolateral medulla. Our analyses of NTS labeling after retrograde tracer injections in the VRC and the nearby neuronal groups controlling autonomic function indicate a significant distinction between projections to the Bötzinger complex and preBötzinger complex compared to the remainder of the VRC. Specifically, the caudomedial NTS, including caudal portions of the medial solitary nucleus and the commissural division of NTS project relatively densely to the region of the retrotrapezoid nucleus and rostral ventrolateral medullary nucleus as well as to the rostral ventral respiratory group while avoiding the intervening Bötzinger and preBötzinger complexes. Area postrema appears to demonstrate a pattern of projections similar to that of caudal medial and commissural NTS nuclei. Other, less pronounced differential projections of lateral NTS nuclei to the various VRC compartments are additionally noted.
Collapse
|
31
|
Moraes DJA, Bonagamba LGH, Zoccal DB, Machado BH. Modulation of respiratory responses to chemoreflex activation by L-glutamate and ATP in the rostral ventrolateral medulla of awake rats. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1476-86. [PMID: 21411762 DOI: 10.1152/ajpregu.00825.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Bötzinger complex (BötC)] and inspiratory [pre-Bötzinger complex (pre-BötC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BötC) enhanced the tachypneic (120 ± 9 vs. 180 ± 9 cpm; P < 0.01) and attenuated the pressor response (55 ± 2 vs. 15 ± 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-BötC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/BötC reduced chemoreflex tachypneic response (127 ± 6 vs. 70 ± 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/BötC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 ± 2 vs. 157 ± 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/BötC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/BötC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
32
|
Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group. Respir Physiol Neurobiol 2010; 173:244-55. [PMID: 20188865 PMCID: PMC2891992 DOI: 10.1016/j.resp.2010.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
The rat retrotrapezoid nucleus (RTN) contains about 2000 Phox2b-expressing glutamatergic neurons (ccRTN neurons; 800 in mice) with a well-understood developmental lineage. ccRTN neuron development fails in mice carrying a Phox2b mutation commonly present in the congenital central hypoventilation syndrome. In adulthood, ccRTN neurons regulate the breathing rate and intensity, and may regulate active expiration along with other neighboring respiratory neurons. Prenatally, ccRTN neurons form an autonomous oscillator (embryonic parafacial group, e-pF) that activates and possibly paces inspiration. The pacemaker properties of the ccRTN neurons probably vanish after birth to be replaced by synaptic drives. The neonatal parafacial respiratory group (pfRG) may represent a transitional phase during which ccRTN neurons lose their group pacemaker properties. ccRTN neurons are activated by acidification via an intrinsic mechanism or via ATP released by glia. In summary, throughout life, ccRTN neurons seem to be a critical hub for the regulation of CO(2) via breathing.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | |
Collapse
|
33
|
Rubin JE, Bacak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA. Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 2010; 30:607-32. [PMID: 20927576 DOI: 10.1007/s10827-010-0281-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/24/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
In mammalian respiration, late-expiratory (late-E, or pre-inspiratory) oscillations emerge in abdominal motor output with increasing metabolic demands (e.g., during hypercapnia, hypoxia, etc.). These oscillations originate in the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) and couple with the respiratory oscillations generated by the interacting neural populations of the Bötzinger (BötC) and pre-Bötzinger (pre-BötC) complexes, representing the kernel of the respiratory central pattern generator. Recently, we analyzed experimental data on the generation of late-E oscillations and proposed a large-scale computational model that simulates the possible interactions between the BötC/pre-BötC and RTN/pFRG oscillations under different conditions. Here we describe a reduced model that maintains the essential features and architecture of the large-scale model, but relies on simplified activity-based descriptions of neural populations. This simplification allowed us to use methods of dynamical systems theory, such as fast-slow decomposition, bifurcation analysis, and phase plane analysis, to elucidate the mechanisms and dynamics of synchronization between the RTN/pFRG and BötC/pre-BötC oscillations. Three physiologically relevant behaviors have been analyzed: emergence and quantal acceleration of late-E oscillations during hypercapnia, transformation of the late-E activity into a biphasic-E activity during hypercapnic hypoxia, and quantal slowing of BötC/pre-BötC oscillations with the reduction of pre-BötC excitability. Each behavior is elicited by gradual changes in excitatory drives or other model parameters, reflecting specific changes in metabolic and/or physiological conditions. Our results provide important theoretical insights into interactions between RTN/pFRG and BötC/pre-BötC oscillations and the role of these interactions in the control of breathing under different metabolic conditions.
Collapse
Affiliation(s)
- Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Kanbar R, Stornetta RL, Cash DR, Lewis SJ, Guyenet PG. Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 2010; 182:1184-94. [PMID: 20622037 DOI: 10.1164/rccm.201001-0047oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Hypoventilation is typically treated with positive pressure ventilation or, in extreme cases, by phrenic nerve stimulation. This preclinical study explores whether direct stimulation of central chemoreceptors could be used as an alternative method to stimulate breathing. OBJECTIVES To determine whether activation of the retrotrapezoid nucleus (RTN), which is located in the rostral ventrolateral medulla (RVLM), stimulates breathing with appropriate selectivity. METHODS A lentivirus was used to induce expression of the photoactivatable cationic channel channelrhodopsin-2 (ChR2) by RVLM Phox2b-containing neurons, a population that consists of central chemoreceptors (the ccRTN neurons) and blood pressure (BP)-regulating neurons (the C1 cells). The transfected neurons were activated with pulses of laser light. Respiratory effects were measured by plethysmography or diaphragmatic EMG recording and cardiovascular effects by monitoring BP, renal sympathetic nerve discharge, and the baroreflex. MEASUREMENTS AND MAIN RESULTS The RVLM contained 600 to 900 ChR2-transfected neurons (63% C1, 37% ccRTN). RVLM photostimulation significantly increased breathing rate (+42%), tidal volume (21%), minute volume (68%), and peak expiratory flow (48%). Photostimulation increased diaphragm EMG amplitude (19%) and frequency (21%). Photostimulation increased BP (4 mmHg) and renal sympathetic nerve discharge (43%) while decreasing heart rate (15 bpm). CONCLUSIONS Photostimulation of ChR2-transfected RVLM Phox2b neurons produces a vigorous stimulation of breathing accompanied by a small sympathetically mediated increase in BP. These results demonstrate that breathing can be relatively selectively activated in resting unanesthetized mammals via optogenetic manipulation of RVLM neurons presumed to be central chemoreceptors. This methodology could perhaps be used in the future to enhance respiration in humans.
Collapse
Affiliation(s)
- Roy Kanbar
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
35
|
Tan W, Pagliardini S, Yang P, Janczewski WA, Feldman JL. Projections of preBötzinger complex neurons in adult rats. J Comp Neurol 2010; 518:1862-78. [PMID: 20235095 DOI: 10.1002/cne.22308] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The preBötzinger Complex (preBötC) contains neural microcircuitry essential for normal respiratory rhythm generation in rodents. A subpopulation of preBötC neurons expresses somatostatin, a neuropeptide with a modulatory action on breathing. Acute silencing of a subpopulation of preBötC neurons transfected by a virus driving protein expression under the somatostatin promoter results in persistent apnea in awake adult rats. Given the profound effect of silencing these neurons, their projections are of interest. We used an adeno-associated virus to overexpress enhanced green fluorescent protein driven by the somatostatin promoter in preBötC neurons to label their axons and terminal fields. These neurons send brainstem projections to: 1) contralateral preBötC; 2) ipsi- and contralateral Bötzinger Complex; 3) ventral respiratory column caudal to preBötC; 4) parafacial respiratory group/retrotrapezoid nucleus; 5) parahypoglossal nucleus/nucleus of the solitary tract; 6) parabrachial/Kölliker-Fuse nuclei; and 7) periaqueductal gray. We did not find major projections to either cerebellum or spinal cord. We conclude that there are widespread projections from preBötC somatostatin-expressing neurons specifically targeted to brainstem regions implicated in control of breathing, and provide a network basis for the profound effects and the essential role of the preBötC in breathing.
Collapse
Affiliation(s)
- Wenbin Tan
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
36
|
Bongianni F, Mutolo D, Cinelli E, Pantaleo T. Respiratory responses induced by blockades of GABA and glycine receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Brain Res 2010; 1344:134-47. [PMID: 20483350 DOI: 10.1016/j.brainres.2010.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/01/2023]
Abstract
The respiratory role of GABA(A), GABA(B) and glycine receptors within the Bötzinger complex (BötC) and the pre-Bötzinger complex (preBötC) was investigated in alpha-chloralose-urethane anesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nl) of GABA and glycine receptor agonists and antagonists. GABA(A) receptor blockade by bicuculline (5mM) or gabazine (2mM) within the BötC induced strong depression of respiratory activity up to apnea. The latter was reversed by hypercapnia. Glycine receptor blockade by strychnine (5mM) within the BötC decreased the frequency and amplitude of phrenic bursts. Bicuculline microinjections into the preBötC caused decreases in respiratory frequency and the appearance of two alternating different levels of peak phrenic activity. Strychnine microinjections into the preBötC increased respiratory frequency and decreased peak phrenic amplitude. GABA(A), but not glycine receptor antagonism within the preBötC restored respiratory rhythmicity during apnea due to bicuculline or gabazine applied to the BötC. GABA(B) receptor blockade by CGP-35348 (50mM) within the BötC and the preBötC did not affect baseline respiratory activity, though microinjections of the GABA(B) receptor agonist baclofen (1mM) into the same regions altered respiratory activity. The results show that only GABA(A) and glycine receptors within the BötC and the preBötC mediate a potent control on both the intensity and frequency of inspiratory activity during eupneic breathing. This study is the first to provide evidence that these inhibitory receptors have a respiratory function within the BötC.
Collapse
Affiliation(s)
- Fulvia Bongianni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale GB Morgagni 63, I-50134 Firenze, Italy.
| | | | | | | |
Collapse
|
37
|
Kline DD, King TL, Austgen JR, Heesch CM, Hasser EM. Sensory afferent and hypoxia-mediated activation of nucleus tractus solitarius neurons that project to the rostral ventrolateral medulla. Neuroscience 2010; 167:510-27. [PMID: 20153814 PMCID: PMC2849863 DOI: 10.1016/j.neuroscience.2010.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/19/2010] [Accepted: 02/05/2010] [Indexed: 02/07/2023]
Abstract
The nucleus tractus solitarius (nTS) of the brainstem receives sensory afferent inputs, processes that information, and sends projections to a variety of brain regions responsible for influencing autonomic and respiratory output. The nTS sends direct projections to the rostral ventrolateral medulla (RVLM), an area important for cardiorespiratory reflexes and homeostasis. Since the net reflex effect of nTS processing ultimately depends on the properties of output neurons, we determined the characteristics of these RVLM-projecting nTS neurons using electrophysiological and immunohistochemical techniques. RVLM-projecting nTS neurons were identified by retrograde tracers. Patch clamp analysis in the horizontal brainstem nTS slice demonstrated that RVLM-projecting nTS cells exhibit constant latency solitary tract evoked excitatory postsynaptic currents (EPSCs), suggesting they receive strong monosynaptic contacts from visceral afferents. Three distinct patterns of action potential firing, associated with different underlying potassium currents, were observed in RVLM-projecting cells. Following activation of the chemoreflex in conscious animals by 3 h of acute hypoxia, 11.2+/-1.9% of the RVLM-projecting nTS neurons were activated, as indicated by positive Fos-immunoreactivity. Very few RVLM-projecting nTS cells were catecholaminergic. Taken together, these data suggest that RVLM projecting nTS neurons receive strong monosynaptic inputs from sensory afferents and a subpopulation participates in the chemoreflex pathway.
Collapse
Affiliation(s)
- D D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
38
|
Burke P, Abbott S, McMullan S, Goodchild A, Pilowsky P. Somatostatin selectively ablates post-inspiratory activity after injection into the Bötzinger complex. Neuroscience 2010; 167:528-39. [DOI: 10.1016/j.neuroscience.2010.01.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/15/2010] [Accepted: 01/30/2010] [Indexed: 11/26/2022]
|
39
|
Mustapic S, Radocaj T, Sanchez A, Dogas Z, Stucke AG, Hopp FA, Stuth EAE, Zuperku EJ. Clinically relevant infusion rates of mu-opioid agonist remifentanil cause bradypnea in decerebrate dogs but not via direct effects in the pre-Bötzinger complex region. J Neurophysiol 2009; 103:409-18. [PMID: 19906886 DOI: 10.1152/jn.00188.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic administration of mu-opioids at clinical doses for analgesia typically slows respiratory rate. Mu-opioid receptors (MORs) on pre-Bötzinger Complex (pre-BötC) respiratory neurons, the putative kernel of respiratory rhythmogenesis, are potential targets. The purpose of this study was to determine the contribution of pre-BötC MORs to the bradypnea produced in vivo by intravenous administration of clinically relevant infusion rates of remifentanil (remi), a short-acting, potent mu-opioid analgesic. In decerebrate dogs, multibarrel micropipettes were used to record pre-BötC neuronal activity and to eject the opioid antagonist naloxone (NAL, 0.5 mM), the glutamate agonist D-homocysteic acid (DLH, 20 mM), or the MOR agonist [D-Ala(2), N-Me-Phe(4), gly-ol(5)]-enkephalin (DAMGO, 100 microM). Inspiratory and expiratory durations (T(I) and T(E)) and peak phrenic nerve activity (PPA) were measured from the phrenic neurogram. The pre-BötC was functionally identified by its rate altering response (typically tachypnea) to DLH microinjection. During intravenous remi-induced bradypnea (approximately 60% decrease in central breathing frequency, f(B)), bilateral injections of NAL in the pre-BötC did not change T(I), T(E), f(B), and PPA. Also, NAL picoejected onto single pre-BötC neurons depressed by intravenous remi had no effect on their discharge. In contrast, approximately 60 microg/kg of intravenous NAL rapidly reversed all remi-induced effects. In a separate group of dogs, microinjections of DAMGO in the pre-BötC increased f(B) by 44%, while subsequent intravenous remi infusion more than offset this DAMGO induced tachypnea. These results indicate that mu-opioids at plasma concentrations that cause profound analgesia produce their bradypneic effect via MORs located outside the pre-BötC region.
Collapse
Affiliation(s)
- Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Clement J. Zablocki VA Medical Center, 5000 W. National Ave., Milwaukee, WI 53295, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
41
|
Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168:109-18. [DOI: 10.1016/j.resp.2009.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 12/21/2022]
|
42
|
Galanin microinjection into the PreBötzinger or the Bötzinger Complex terminates central inspiratory activity and reduces responses to hypoxia and hypercapnia in rat. Respir Physiol Neurobiol 2009; 167:299-306. [DOI: 10.1016/j.resp.2009.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/04/2009] [Accepted: 06/06/2009] [Indexed: 11/18/2022]
|
43
|
Goodchild AK, Moon EA. Maps of cardiovascular and respiratory regions of rat ventral medulla: focus on the caudal medulla. J Chem Neuroanat 2009; 38:209-21. [PMID: 19549567 DOI: 10.1016/j.jchemneu.2009.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/13/2009] [Accepted: 06/15/2009] [Indexed: 02/07/2023]
Abstract
The ventral medulla oblongata is critical for cardiorespiratory regulation. Here we review previous literature relating to sites within the ventral medulla that have been identified as having a 'cardiovascular' or 'respiratory' function. Together with the maps generated here, of sites from which cardiovascular and respiratory responses were evoked by glutamate microinjection, specific 'cardiovascular' regions have been defined and delineated. Commonly investigated regions, including the vasopressor rostral ventrolateral medulla (RVLM) and vasodepressor caudal ventrolateral medulla (CVLM), or areas only described by others, such as the medullary cerebral vasodilator area, are included for completeness. Emphasis is given to the caudal medulla, where three pressor regions, the caudal pressor area (CPA), the intermediate pressor area (IPA) and the medullo-cervical pressor area (MCPA), caudal to the vasodepressor CVLM were defined in the original data provided. The IPA is most responsive under pentobarbitone rather than urethane anaesthesia clearly delineating it from both the rostrally located CPA and the caudally located MCPA. The description of these multiple pressor areas appears to clarify the confusion that surrounds the identification of the 'CPA'. Also noted is a vasopressor region adjacent to the vasodepressor CVLM. Apart from the well described ventral respiratory column, a region medial to the pre-Bötzinger is described, from which increases in both phrenic nerve frequency and amplitude were evoked. Limitations associated with the technique of glutamate microinjection to define functionally specific regions are discussed. Particular effort has been made to define and delineate the regions with respect to ventrally located anatomical landmarks rather than the commonly used ventral surface or dorsal landmarks such as the obex or calamus scriptorius that may vary with the brain orientation or histological processing. This should ensure that a region can easily be defined by all investigators. Study of defined regions will help expedite the identification of the role of the multiple cell groups with diverse neurotransmitter complements that exist even within each of the regions described, in coordinating the delivery of oxygenated blood to the tissues.
Collapse
Affiliation(s)
- Ann K Goodchild
- The Australian School of Advanced Medicine, Macquarie University, New South Wales, 2109, Australia.
| | | |
Collapse
|
44
|
Dutschmann M, Mörschel M, Reuter J, Zhang W, Gestreau C, Stettner GM, Kron M. Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern. Respir Physiol Neurobiol 2009; 164:72-9. [PMID: 18620081 DOI: 10.1016/j.resp.2008.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/15/2008] [Accepted: 06/16/2008] [Indexed: 01/10/2023]
Abstract
The shape of the three-phase respiratory motor pattern (inspiration, postinspiration, late expiration) is controlled by a central pattern generator (CPG) located in the ponto-medullary brainstem. Synaptic interactions between and within specific sub-compartments of the CPG are subject of intensive research. This review addresses the neural control of postinspiratory activity as the essential determinant of inspiratory/expiratory phase duration. The generation of the postinspiratory phase depends on synaptic interaction between neurones of the nucleus tractus solitarii (NTS), which relay afferent inputs from pulmonary stretch receptors, and the pontine Kölliker-Fuse nucleus (KF) as integral parts of the CPG. Both regions undergo significant changes during the first three postnatal weeks in rodents. Developmental changes in glutamatergic synaptic functions and its modulation by brain-derived neurotrophic factor may have implications in synaptic plasticity within the NTS/KF axis. We propose that dependent on these developmental changes, the CPG becomes permissive for short- and long-term plasticity associated with environmental, metabolic and behavioural adaptation of the breathing pattern.
Collapse
Affiliation(s)
- Mathias Dutschmann
- CNRS UMR 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Faculté Saint Jérôme, Case 362, 13397 Marseille Cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pilowsky PM. Neurochemical phenotypes of cardiorespiratory neurons. Respir Physiol Neurobiol 2009; 164:12-7. [PMID: 18707031 DOI: 10.1016/j.resp.2008.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/20/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Interactions between the cardiovascular and respiratory systems have been known for many years but the functional significance of the interactions is still widely debated. Here I discuss the possible role of metabotropic receptors in regulating cardiorespiratory neurons in the brainstem and spinal cord. It is clear that, although much has been discovered, cardiorespiratory regulation is certainly one area that still has a long way to go before its secrets are fully divulged and their function in controlling circulatory and respiratory function is revealed.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School ofAdvanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
46
|
Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 2009; 164:3-11. [PMID: 18706532 DOI: 10.1016/j.resp.2008.07.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/29/2022]
Abstract
The chemical neuroanatomy of breathing must ultimately encompass all the various neuronal elements physiologically identified in brainstem respiratory circuits and their apparent aggregation into "compartments" within the medulla and pons. These functionally defined respiratory compartments in the brainstem provide the major source of input to cranial motoneurons controlling the airways, and to spinal motoneurons activating inspiratory and expiratory pump muscles. This review provides an overview of the neuroanatomy of the major compartments comprising brainstem respiratory circuits, and a synopsis of the transmitters used by their constituent respiratory neurons.
Collapse
Affiliation(s)
- George F Alheid
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611-3008, USA.
| | | |
Collapse
|
47
|
Vandam RJ, Shields EJ, Kelty JD. Rhythm generation by the pre-Bötzinger complex in medullary slice and island preparations: effects of adenosine A(1) receptor activation. BMC Neurosci 2008; 9:95. [PMID: 18826652 PMCID: PMC2567986 DOI: 10.1186/1471-2202-9-95] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/01/2008] [Indexed: 11/20/2022] Open
Abstract
Background The pre-Bötzinger complex (preBötC) is a central pattern generator within the ventrolateral medulla oblongata's ventral respiratory group that is important for the generation of respiratory rhythm. Activation of adenosine A1 receptors (A1R) depresses preBötC rhythmogenesis. Although it remains unclear whether A1R activation is important for organisms in a normal metabolic state, A1R activation is important to the response of the preBötC to metabolic stress, such as hypoxia. This study examined mechanisms linking A1R activation to depression of preBötC rhythmogenesis in medullary slice and island preparations from neonatal mice. Results Converting medullary slices to islands by cutting away much of the medullary tissue adjacent to the preBötC decreased the amplitude of action potential bursts generated by a population of neurons within the preBötC (recorded with an extracellular electrode, and integrated using a hardware integrator), without noticeably affecting burst frequency. The A1R agonist N6-Cyclopentyladenosine (NCPA) reduced population burst frequency in slices by ca. 33% and in islands by ca. 30%. As in normal (drug-free) artificial cerebrospinal fluid (aCSF), NCPA decreased burst frequency in slices when GABAAergic or GABAAergic and glycinergic transmission were blocked, and in islands when GABAAergic transmission was antagonized. Converting slices to island preparations decreased synaptic input to inspiratory neurons. NCPA further decreased the frequency of synaptic inputs to neurons in island preparations and lowered the input resistance of inspiratory neurons, even when chemical communication between neurons and other cells was impeded. Conclusion Together these data support the suggestion that depression of preBötC activity by A1R activation involves both decreased neuronal excitability and diminished inter-neuronal communication.
Collapse
Affiliation(s)
- Richard J Vandam
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48858, USA
| | | | | |
Collapse
|
48
|
Bongianni F, Mutolo D, Cinelli E, Pantaleo T. Neurokinin receptor modulation of respiratory activity in the rabbit. Eur J Neurosci 2008; 27:3233-43. [PMID: 18554294 DOI: 10.1111/j.1460-9568.2008.06295.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory role of neurokinin (NK) receptors was investigated in alpha-chloralose-urethane-anaesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nL) of NK receptor agonists and antagonists. Microinjections were performed in a region located just caudal to the rostral expiratory neurons. This region displayed features similar to those of the pre-Bötzinger complex (pre-BötC) of adult cats and rats, and proved to produce excitatory respiratory effects in response to microinjections of D,L-homocysteic acid. We used as agonists (0.1, 0.5 and 5 mM) substance P (SP), the NK1 receptor agonists [Sar(9), Met(O2)(11)]-SP and GR 73632, the NK2 receptor agonist NKA, the NK3 receptor agonist senktide, and as antagonists (5 mM) the NK1 receptor antagonist CP-99,994 and the NK2 receptor antagonist MEN 10376. SP always increased respiratory frequency, but NK1 receptor agonists did not change respiratory variables. NKA and senktide at 5 mm increased respiratory frequency. CP-99,994 caused increases in respiratory frequency and did not antagonize the effects of SP. MEN 10376 prevented the respiratory responses induced by NKA and reduced those provoked by SP. SP or the NK1 receptor agonists (5 mM) injected (1 microL) into the IV ventricle caused marked excitatory effects on respiration. The results suggest that NK2 and NK3, but not NK1, receptors are involved in the excitatory modulation of inspiratory activity within the investigated region and are consistent with the notion that the pre-BötC neurons are important components of the inspiratory rhythm-generating mechanisms.
Collapse
Affiliation(s)
- Fulvia Bongianni
- Dipartimento di Scienze Fisiologiche, Universita' degli Studi di Firenze, Viale G.B. Morgagni 63, I-50134 Firenze, Italy
| | | | | | | |
Collapse
|
49
|
Takakura AC, Moreira TS, Stornetta RL, West GH, Gwilt JM, Guyenet PG. Selective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in rats. J Physiol 2008; 586:2975-91. [PMID: 18440993 DOI: 10.1113/jphysiol.2008.153163] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Injection of the neurotoxin saporin-substance P (SSP-SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a specific type of interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b(+)TH(-)). We show that RTN contains around 2100 Phox2b(+)TH(-) cells. Injections of SSP-SAP into RTN destroyed Phox2b(+)TH(-) neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Two weeks after SSP-SAP, the apnoeic threshold measured under anaesthesia was unchanged when fewer than 57% of the Phox2b(+)TH(-) neurons were destroyed. However, destruction of 70 +/- 3.5% of these cells was associated with a dramatic rise of the apnoeic threshold (from 5.6 to 7.9% end-expiratory P(CO(2))). In anaesthetized rats with unilateral lesions of around 70% of the Phox2b(+)TH(-) neurons, acute inhibition of the contralateral intact RTN with muscimol instantly eliminated phrenic nerve discharge (PND) but normal PND could usually be elicited by strong peripheral chemoreceptor stimulation (8/12 rats). Muscimol had no effect in rats with an intact contralateral RTN. In conclusion, the destruction of the Phox2b(+)TH(-) neurons is a plausible cause of the respiratory deficits caused by injection of SSP-SAP into RTN. Two weeks after toxin injection, 70% of these cells must be killed to cause a severe attenuation of the central chemoreflex under anaesthesia. The loss of an even greater percentage of these cells would presumably be required to produce significant breathing deficits in the awake state.
Collapse
Affiliation(s)
- Ana C Takakura
- University of Virginia Health System, PO Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bojic T, Saponjic J, Radulovacki M, Carley DW, Kalauzi A. Monotone Signal Segments Analysis as a novel method of breath detection and breath-to-breath interval analysis in rat. Respir Physiol Neurobiol 2008; 161:273-80. [PMID: 18420469 DOI: 10.1016/j.resp.2008.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
We applied a novel approach to respiratory waveform analysis--Monotone Signal Segments Analysis (MSSA) on 6-h recordings of respiratory signals in rats. To validate MSSA as a respiratory signal analysis tool we tested it by detecting: breaths and breath-to-breath intervals; respiratory timing and volume modes; and changes in respiratory pattern caused by lesions of monoaminergic systems in rats. MSSA differentiated three respiratory timing (tachypneic, eupneic, bradypneic-apneic), and three volume (artifacts, normovolemic, hypervolemic-sighs) modes. Lesion-induced respiratory pattern modulation was visible as shifts in the distributions of monotone signal segment amplitudes, and of breath-to-breath intervals. Specifically, noradrenergic lesion induced an increase in mean volume (p<or=0.03), with no change of the mean breath-to-breath interval duration (p>or=0.06). MSSA of timing modes detected noradrenergic lesion-induced interdependent changes in the balance of eupneic (decrease; p<or=0.02), and tachypneic (an increase; p<or=0.02) breath intervals with respect to control. In terms of breath durations within each timing mode, there was a tendency toward prolongation of the eupneic (p<or=0.08) and bradypneic-apneic (p<or=0.06) intervals. These results demonstrate that MSSA is sensitive to subtle shifts in respiratory rhythmogenesis not detectable by simple respiratory pattern descriptive statistics. MSSA represents a potentially valuable new tool for investigations of respiratory pattern control.
Collapse
Affiliation(s)
- Tijana Bojic
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | | | | | | |
Collapse
|