1
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Abstract
With ascent to high altitude, barometric pressure declines, leading to a reduction in the partial pressure of oxygen at every point along the oxygen transport chain from the ambient air to tissue mitochondria. This leads, in turn, to a series of changes over varying time frames across multiple organ systems that serve to maintain tissue oxygen delivery at levels sufficient to prevent acute altitude illness and preserve cognitive and locomotor function. This review focuses primarily on the physiological adjustments and acclimatization processes that occur in the lungs of healthy individuals, including alterations in control of breathing, ventilation, gas exchange, lung mechanics and dynamics, and pulmonary vascular physiology. Because other organ systems, including the cardiovascular, hematologic and renal systems, contribute to acclimatization, the responses seen in these systems, as well as changes in common activities such as sleep and exercise, are also addressed. While the pattern of the responses highlighted in this review are similar across individuals, the magnitude of such responses often demonstrates significant interindividual variability which accounts for subsequent differences in tolerance of the low oxygen conditions in this environment.
Collapse
Affiliation(s)
- Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Peng Y, Nanduri J, Wang N, Khan SA, Pamenter M, Prabhakar NR. Carotid body responses to O 2 and CO 2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf) 2022; 236:e13851. [PMID: 35757963 PMCID: PMC9787741 DOI: 10.1111/apha.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023]
Abstract
AIM Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO2 in NMRs. METHODS We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane-anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H2 S levels were also determined. RESULTS Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)-1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H2 S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO2 in NMRs were larger than in mice. Carbonic anhydrase (CA)-2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO2 in NMRs, indicating CA activity regulates augmented CB response to CO2 . CONCLUSIONS Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO2 in NMRs.
Collapse
Affiliation(s)
- Ying‐Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada,University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Milloy KM, White MG, Chicilo JOC, Cummings KJ, Pfoh JR, Day TA. Assessing central and peripheral respiratory chemoreceptor interaction in humans. Exp Physiol 2022; 107:1081-1093. [PMID: 35766127 DOI: 10.1113/ep089983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? We investigated the interaction between central and peripheral respiratory chemoreceptors in healthy, awake human participants by (a) using a background of step increases in steady-state normoxic fraction of inspired carbon dioxide to alter central chemoreceptor activation and (b) using the transient hypoxia test to target the peripheral chemoreceptors. What is the main finding and its importance? Our data suggests that the central-peripheral respiratory chemoreceptor interaction is additive in minute ventilation and respiratory rate, but hypoadditive in tidal volume. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. ABSTRACT Arterial blood gas levels are maintained through respiratory chemoreflexes, mediated by central (CCR) in the CNS and peripheral (PCR) chemoreceptors located in the carotid bodies. The interaction between central and peripheral chemoreceptors is controversial, and few studies have investigated this interaction in awake healthy humans, in part due to methodological challenges. We investigated the interaction between the CCRs and PCRs in healthy humans using a transient hypoxia test (three consecutive breaths of 100% N2 ; TT-HVR), which targets the stimulus and temporal domain specificity of the PCRs. TT-HVRs were superimposed upon three randomized background levels of steady-state inspired fraction of normoxic CO2 (FI CO2 ; 0, 0.02 and 0.04). Chemostimuli (calculated oxygen saturation; ScO2 ) and respiratory variable responses (respiratory rate, inspired tidal volume and ventilation; RR , VTI , V̇I ), were averaged from all three TT-HVR trials at each FI CO2 level. Responses were assessed as (a) a change from BL (delta; ∆) and (b) indexed against ∆ScO2 . Aside from a significantly lower ∆VTI response in 0.04 FI CO2 (P = 0.01), the hypoxic rate responses (∆RR or ∆RR /∆ScO2 ; P = 0.46, P = 0.81), hypoxic tidal volume response (∆VTI /∆ScO2 ; P = 0.08) and the hypoxic ventilatory responses (∆V̇I and (∆V̇I /∆ScO2 ; P = 0.09 and P = 0.31) were not significantly different across FI CO2 trials. Our data suggests simple addition between central and peripheral chemoreceptors in V̇I , which is mediated through simple addition in RR responses, but hypo-addition in VTI responses. Our study adds important new data in reconciling chemoreceptor interaction in awake healthy humans, and is consistent with previous reports of simple addition in intact rodents and humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kristin M Milloy
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Matthew G White
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Janelle O C Chicilo
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | | | - Jamie R Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| |
Collapse
|
5
|
Ventilatory responses during and following hypercapnic gas challenge are impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:20557. [PMID: 34663876 PMCID: PMC8523677 DOI: 10.1038/s41598-021-99922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.
Collapse
|
6
|
Getsy PM, Sundararajan S, May WJ, von Schill GC, McLaughlin DK, Palmer LA, Lewis SJ. Short-term facilitation of breathing upon cessation of hypoxic challenge is impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:18346. [PMID: 34526532 PMCID: PMC8443732 DOI: 10.1038/s41598-021-97322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Decreases in arterial blood oxygen stimulate increases in minute ventilation via activation of peripheral and central respiratory structures. This study evaluates the role of endothelial nitric oxide synthase (eNOS) in the expression of the ventilatory responses during and following a hypoxic gas challenge (HXC, 10% O2, 90% N2) in freely moving male and female wild-type (WT) C57BL6 and eNOS knock-out (eNOS-/-) mice. Exposure to HXC caused an array of responses (of similar magnitude and duration) in both male and female WT mice such as, rapid increases in frequency of breathing, tidal volume, minute ventilation and peak inspiratory and expiratory flows, that were subject to pronounced roll-off. The responses to HXC in male eNOS-/- mice were similar to male WT mice. In contrast, several of the ventilatory responses in female eNOS-/- mice (e.g., frequency of breathing, and expiratory drive) were greater compared to female WT mice. Upon return to room-air, male and female WT mice showed similar excitatory ventilatory responses (i.e., short-term potentiation phase). These responses were markedly reduced in male eNOS-/- mice, whereas female eNOS-/- mice displayed robust post-HXC responses that were similar to those in female WT mice. Our data demonstrates that eNOS plays important roles in (1) ventilatory responses to HXC in female compared to male C57BL6 mice; and (2) expression of post-HXC responses in male, but not female C57BL6 mice. These data support existing evidence that sex, and the functional roles of specific proteins (e.g., eNOS) have profound influences on ventilatory processes, including the responses to HXC.
Collapse
Affiliation(s)
- Paulina M. Getsy
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Sripriya Sundararajan
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.411024.20000 0001 2175 4264Present Address: Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Walter J. May
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Graham C. von Schill
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Dylan K. McLaughlin
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Lisa A. Palmer
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Stephen J. Lewis
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Pharmacology, Case Western Reserve University, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
7
|
Getsy PM, Sundararajan S, Lewis SJ. Carotid sinus nerve transection abolishes the facilitation of breathing that occurs upon cessation of a hypercapnic gas challenge in male mice. J Appl Physiol (1985) 2021; 131:821-835. [PMID: 34236243 DOI: 10.1152/japplphysiol.01031.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial pCO2 elevations increase minute ventilation via activation of chemosensors within the carotid body (CB) and brainstem. Although the roles of CB chemoafferents in the hypercapnic (HC) ventilatory response have been investigated, there are no studies reporting the role of these chemoafferents in the ventilatory responses to a HC challenge or the responses that occur upon return to room air, in freely moving mice. This study found that an HC challenge (5% CO2, 21% O2, 74% N2 for 15 min) elicited an array of responses, including increases in frequency of breathing (accompanied by decreases in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives in sham-operated (SHAM) adult male C57BL6 mice, and that return to room air elicited a brief excitatory phase followed by gradual recovery of all parameters toward baseline values over a 15-min period. The array of ventilatory responses to the HC challenge in mice with bilateral carotid sinus nerve transection (CSNX) performed 7 days previously occurred more slowly but reached similar maxima as SHAM mice. A major finding was responses upon return to room air were dramatically lower in CSNX mice than SHAM mice, and the parameters returned to baseline values within 1-2 min in CSNX mice, whereas it took much longer in SHAM mice. These findings are the first evidence that CB chemoafferents play a key role in initiating the ventilatory responses to HC challenge in C57BL6 mice and are essential for the expression of post-HC ventilatory responses.NEW & NOTEWORTHY This study presents the first evidence that carotid body chemoafferents play a key role in initiating the ventilatory responses, such as increases in frequency of breathing, tidal volume, and minute ventilation that occur in response to a hypercapnic gas challenge in freely moving C57BL6 mice. Our study also demonstrates for the first time that these chemoafferents are essential for the expression of the ventilatory responses that occur upon return to room air in these mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western University, Cleveland, Ohio
| | - Sripriya Sundararajan
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen J Lewis
- Department of Pediatrics, Case Western University, Cleveland, Ohio.,Department of Pharmacology, Case Western University, Cleveland, Ohio
| |
Collapse
|
8
|
Niewinski P, Tubek S, Paton JFR, Banasiak W, Ponikowski P. Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection in humans. J Physiol 2021; 599:2323-2340. [DOI: 10.1113/jp281319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Piotr Niewinski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Stanislaw Tubek
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | | | - Piotr Ponikowski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| |
Collapse
|
9
|
Getsy PM, Coffee GA, Lewis SJ. The Role of Carotid Sinus Nerve Input in the Hypoxic-Hypercapnic Ventilatory Response in Juvenile Rats. Front Physiol 2020; 11:613786. [PMID: 33391030 PMCID: PMC7773764 DOI: 10.3389/fphys.2020.613786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
In juvenile rats, the carotid body (CB) is the primary sensor of oxygen (O2) and a secondary sensor of carbon dioxide (CO2) in the blood. The CB communicates to the respiratory pattern generator via the carotid sinus nerve, which terminates within the commissural nucleus tractus solitarius (cNTS). While this is not the only peripheral chemosensory pathway in juvenile rodents, we hypothesize that it has a unique role in determining the interaction between O2 and CO2, and consequently, the response to hypoxic-hypercapnic gas challenges. The objectives of this study were to determine (1) the ventilatory responses to a poikilocapnic hypoxic (HX) gas challenge, a hypercapnic (HC) gas challenge or a hypoxic-hypercapnic (HH) gas challenge in juvenile rats; and (2) the roles of CSN chemoafferents in the interactions between HX and HC signaling in these rats. Studies were performed on conscious, freely moving juvenile (P25) male Sprague Dawley rats that underwent sham-surgery (SHAM) or bilateral transection of the carotid sinus nerves (CSNX) 4 days previously. Rats were placed in whole-body plethysmographs to record ventilatory parameters (frequency of breathing, tidal volume and minute ventilation). After acclimatization, they were exposed to HX (10% O2, 90% N2), HC (5% CO2, 21% O2, 74% N2) or HH (5% CO2, 10% O2, 85% N2) gas challenges for 5 min, followed by 15 min of room-air. The major findings were: (1) the HX, HC and HH challenges elicited robust ventilatory responses in SHAM rats; (2) ventilatory responses elicited by HX alone and HC alone were generally additive in SHAM rats; (3) the ventilatory responses to HX, HC and HH were markedly attenuated in CSNX rats compared to SHAM rats; and (4) ventilatory responses elicited by HX alone and HC alone were not additive in CSNX rats. Although the rats responded to HX after CSNX, CB chemoafferent input was necessary for the response to HH challenge. Thus, secondary peripheral chemoreceptors do not compensate for the loss of chemoreceptor input from the CB in juvenile rats.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
11
|
Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur J Pharmacol 2018; 834:17-29. [PMID: 30012498 DOI: 10.1016/j.ejphar.2018.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Opioid-induced respiratory depression (OIRD) involves decreased sensitivity of ventilatory control systems to decreased blood levels of oxygen (hypoxia) and elevated levels of carbon dioxide (hypercapnia). Understanding the sites and mechanisms by which opioids elicit respiratory depression is pivotal for finding novel therapeutics to prevent and/or reverse OIRD. To examine the contribution of carotid body chemoreceptors OIRD, we used whole-body plethysmography to evaluate hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses including changes in frequency of breathing, tidal volume, minute ventilation and inspiratory drive, after intravenous injection of morphine (10 mg/kg) in sham-operated (SHAM) and in bilateral carotid sinus nerve transected (CSNX) Sprague-Dawley rats. In SHAM rats, morphine produced sustained respiratory depression (e.g., decreases in tidal volume, minute ventilation and inspiratory drive) and reduced the HVR and HCVR responses. Unexpectedly, morphine-induced suppression of HVR and HCVR were substantially greater in CSNX rats than in SHAM rats. This suggests that morphine did not compromise the function of the carotid body-chemoafferent complex and indeed, that the carotid body acts to defend against morphine-induced respiratory depression. These data are the first in vivo evidence that carotid body chemoreceptor afferents defend against rather than participate in OIRD in conscious rats. As such, drugs that stimulate ventilation by targeting primary glomus cells and/or chemoafferent terminals in the carotid bodies may help to alleviate OIRD.
Collapse
|
12
|
Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res 2018; 28:423-435. [PMID: 29574504 DOI: 10.1007/s10286-018-0522-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
Ascent to high-altitude elicits compensatory physiological adaptations in order to improve oxygenation throughout the body. The brain is particularly vulnerable to the hypoxemia of terrestrial altitude exposure. Herein we review the ventilatory and cerebrovascular changes at altitude and how they are both implicated in the maintenance of oxygen delivery to the brain. Further, the interdependence of ventilation and cerebral blood flow at altitude is discussed. Following the acute hypoxic ventilatory response, acclimatization leads to progressive increases in ventilation, and a partial mitigation of hypoxemia. Simultaneously, cerebral blood flow increases during initial exposure to altitude when hypoxemia is the greatest. Following ventilatory acclimatization to altitude, and an increase in hemoglobin concentration-which both underscore improvements in arterial oxygen content over time at altitude-cerebral blood flow progressively decreases back to sea-level values. The complimentary nature of these responses (ventilatory, hematological and cerebral) lead to a tightly maintained cerebral oxygen delivery while at altitude. Despite this general maintenance of global cerebral oxygen delivery, the manner in which this occurs reflects integration of these physiological responses. Indeed, ventilation directly influences cerebral blood flow by determining the prevailing blood gas and acid/base stimuli at altitude, but cerebral blood flow may also influence ventilation by altering central chemoreceptor stimulation via central CO2 washout. The causes and consequences of the integration of ventilatory and cerebral blood flow regulation at high altitude are outlined.
Collapse
|
13
|
Gourine AV, Funk GD. On the existence of a central respiratory oxygen sensor. J Appl Physiol (1985) 2017; 123:1344-1349. [PMID: 28522760 DOI: 10.1152/japplphysiol.00194.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 11/22/2022] Open
Abstract
A commonly held view that dominates both the scientific and educational literature is that in terrestrial mammals the central nervous system lacks a physiological hypoxia sensor capable of triggering increases in lung ventilation in response to decreases in Po2 of the brain parenchyma. Indeed, a normocapnic hypoxic ventilatory response has never been observed in humans following bilateral resection of the carotid bodies. In contrast, almost complete or partial recovery of the hypoxic ventilatory response after denervation/removal of the peripheral respiratory oxygen chemoreceptors has been demonstrated in many experimental animals when assessed in an awake state. In this essay we review the experimental evidence obtained using in vitro and in vivo animal models, results of human studies, and discuss potential mechanisms underlying the effects of CNS hypoxia on breathing. We consider experimental limitations and discuss potential reasons why the recovery of the hypoxic ventilatory response has not been observed in humans. We review recent experimental evidence suggesting that the lower brain stem contains functional oxygen sensitive elements capable of stimulating respiratory activity independently of peripheral chemoreceptor input.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; and
| | - Gregory D Funk
- Department of Physiology, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Laouafa S, Elliot-Portal E, Revollo S, Schneider Gasser EM, Joseph V, Voituron N, Gassmann M, Soliz J. Hypercapnic ventilatory response is decreased in a mouse model of excessive erythrocytosis. Am J Physiol Regul Integr Comp Physiol 2016; 311:R940-R947. [PMID: 27605561 DOI: 10.1152/ajpregu.00226.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 11/22/2022]
Abstract
The impact of cerebral erythropoietin (Epo) in the regulation of the hypercapnic ventilatory response (HcVR) is controversial. While we reported that cerebral Epo does not affect the central chemosensitivity in C57Bl6 mice receiving an intracisternal injection of sEpoR (the endogenous antagonist of Epo), a recent study in transgenic mice with constitutive high levels of human Epo in brain and circulation (Tg6) and in brain only (Tg21), showed that Epo blunts the HcVR, maybe by interacting with central and peripheral chemoreceptors. High Epo serum levels in Tg6 mice lead to excessive erythrocytosis (hematocrit ~80-90%), the main symptom of chronic mountain sickness (CMS). These latter results support the hypothesis that reduced central chemosensitivity accounts for the hypoventilation observed in CMS patients. To solve this intriguing divergence, we reevaluate HcVR in Tg6 and Tg21 mouse lines, by assessing the metabolic rate [O consumption (V̇) and CO production (V̇)], a key factor modulating ventilation, the effect of which was not considered in the previous study. Our results showed that the decreased HcVR observed in Tg6 mice (~70% reduction; < 0.01) was due to a significant decrease in the metabolism (~40%; < 0.0001) rather than Epo's effect on CO chemosensitivity. Additional analysis in Tg21 mice did not reveal differences of HcVR or metabolism. We concluded that cerebral Epo does not modulate the central chemosensitivity system, and that a metabolic effect upon CO inhalation is responsible for decreased HcVR observed in Tg6 animals. As CMS patients also show decreased HcVR, our findings might help to better understand respiratory disorders at high altitude.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Elizabeth Elliot-Portal
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Susana Revollo
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Edith M Schneider Gasser
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; and
| | - Vincent Joseph
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons," Bobigny, France
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland; and.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Jorge Soliz
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada;
| |
Collapse
|
15
|
Menuet C, Khemiri H, de la Poëze d'Harambure T, Gestreau C. Polycythemia and high levels of erythropoietin in blood and brain blunt the hypercapnic ventilatory response in adult mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R979-91. [PMID: 26936784 DOI: 10.1152/ajpregu.00474.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Changes in arterial Po2, Pco2, and pH are the strongest stimuli sensed by peripheral and central chemoreceptors to adjust ventilation to the metabolic demand. Erythropoietin (Epo), the main regulator of red blood cell production, increases the hypoxic ventilatory response, an effect attributed to the presence of Epo receptors in both carotid bodies and key brainstem structures involved in integration of peripheral inputs and control of breathing. However, it is not known whether Epo also has an effect on the hypercapnic chemoreflex. In a first attempt to answer this question, we tested the hypothesis that Epo alters the ventilatory response to increased CO2 levels. Basal ventilation and hypercapnic ventilatory response (HCVR) were recorded from control mice and from two transgenic mouse lines constitutively expressing high levels of human Epo in brain only (Tg21) or in brain and plasma (Tg6), the latter leading to polycythemia. To tease apart the potential effects of polycythemia and levels of plasma Epo in the HCVR, control animals were injected with an Epo analog (Aranesp), and Tg6 mice were treated with the hemolytic agent phenylhydrazine after splenectomy. Ventilatory parameters measured by plethysmography in conscious mice were consistent with data from electrophysiological recordings in anesthetized animals and revealed a blunted HCVR in Tg6 mice. Polycythemia alone and increased levels of plasma Epo blunt the HCVR. In addition, Tg21 mice with an augmented level of cerebral Epo also had a decreased HCVR. We discuss the potential implications of these findings in several physiopathological conditions.
Collapse
|
16
|
Wilson RJA, Teppema LJ. Integration of Central and Peripheral Respiratory Chemoreflexes. Compr Physiol 2016; 6:1005-41. [PMID: 27065173 DOI: 10.1002/cphy.c140040] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A debate has raged since the discovery of central and peripheral respiratory chemoreceptors as to whether the reflexes they mediate combine in an additive (i.e., no interaction), hypoadditive or hyperadditive manner. Here we critically review pertinent literature related to O2 and CO2 sensing from the perspective of system integration and summarize many of the studies on which these seemingly opposing views are based. Despite the intensity and quality of this debate, we have yet to reach consensus, either within or between species. In reviewing this literature, we are struck by the merits of the approaches and preparations that have been brought to bear on this question. This suggests that either the nature of combination is not important to system responses, contrary to what has long been supposed, or that the nature of the combination is more malleable than previously assumed, changing depending on physiological state and/or respiratory requirement.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luc J Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Basting TM, Abe C, Viar KE, Stornetta RL, Guyenet PG. Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the PCO2 set-point after carotid body denervation in rats? J Physiol 2016; 594:3371-90. [PMID: 26842799 DOI: 10.1113/jp272046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arterial PCO2 is kept constant via breathing adjustments elicited, at least partly, by central chemoreceptors (CCRs) and the carotid bodies (CBs). The CBs may be active in a normal oxygen environment because their removal reduces breathing. Thereafter, breathing slowly returns to normal. In the present study, we investigated whether an increase in the activity of CCRs accounts for this return. One week after CB excision, the hypoxic ventilatory reflex was greatly reduced as expected, whereas ventilation and blood gases at rest under normoxia were normal. Optogenetic inhibition of Phox2b-expressing neurons including the retrotrapezoid nucleus, a cluster of CCRs, reduced breathing proportionally to arterial pH. The hypopnoea was greater after CB excision but only in a normal or hypoxic environment. The difference could be simply explained by the loss of fast feedback from the CBs. We conclude that, in rats, CB denervation may not produce CCR plasticity. We also question whether the transient hypoventilation elicited by CB denervation means that these afferents are active under normoxia. ABSTRACT Carotid body denervation (CBD) causes hypoventilation and increases the arterial PCO2 set-point; these effects eventually subside. The hypoventilation is attributed to reduced CB afferent activity and the PCO2 set-point recovery to CNS plasticity. In the present study, we investigated whether the retrotrapezoid nucleus (RTN), a group of non-catecholaminergic Phox2b-expressing central respiratory chemoreceptors (CCRs), is the site of such plasticity. We evaluated the contribution of the RTN to breathing frequency (FR ), tidal volume (VT ) and minute volume (VE ) by inhibiting this nucleus optogenetically for 10 s (archaerhodopsinT3.0) in unanaesthetized rats breathing various levels of O2 and/or CO2 . The measurements were made in seven rats before and 6-7 days after CBD and were repeated in seven sham-operated rats. Seven days post-CBD, blood gases and ventilation in 21% O2 were normal, whereas the hypoxic ventilatory reflex was still depressed (95.3%) and hypoxia no longer evoked sighs. Sham surgery had no effect. In normoxia or hypoxia, RTN inhibition produced a more sustained hypopnoea post-CBD than before; in hyperoxia, the responses were identical. Post-CBD, RTN inhibition reduced FR and VE in proportion to arterial pH or PCO2 (ΔVE : 3.3 ± 1.5% resting VE /0.01 pHa). In these rats, 20.7 ± 8.9% of RTN neurons expressed archaerhodopsinT3.0. Hypercapnia (3-6% FiCO2 ) increased FR and VT in CBD rats (n = 4). In conclusion, RTN regulates FR and VE in a pH-dependent manner after CBD, consistent with its postulated CCR function. RTN inhibition produces a more sustained hypopnoea after CBD than before, although this change may simply result from the loss of the fast feedback action of the CBs.
Collapse
Affiliation(s)
- Tyler M Basting
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Chikara Abe
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
18
|
Fatemian M, Herigstad M, Croft QPP, Formenti F, Cardenas R, Wheeler C, Smith TG, Friedmannova M, Dorrington KL, Robbins PA. Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. J Physiol 2016; 594:1197-213. [PMID: 25907672 PMCID: PMC4771781 DOI: 10.1113/jp270061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.
Collapse
Affiliation(s)
- Marzieh Fatemian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mari Herigstad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Quentin P P Croft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Federico Formenti
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Rosa Cardenas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carly Wheeler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas G Smith
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Maria Friedmannova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
19
|
Smith CA, Blain GM, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 : role of carotid body CO2. J Physiol 2015; 593:4225-43. [PMID: 26171601 DOI: 10.1113/jp270114] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/26/2015] [Indexed: 11/08/2022] Open
Abstract
We asked if the type of carotid body (CB) chemoreceptor stimulus influenced the ventilatory gain of the central chemoreceptors to CO2 . The effect of CB normoxic hypocapnia, normocapnia and hypercapnia (carotid body PCO2 ≈ 22, 41 and 68 mmHg, respectively) on the ventilatory CO2 sensitivity of central chemoreceptors was studied in seven awake dogs with vascularly-isolated and extracorporeally-perfused CBs. Chemosensitivity with one CB was similar to that in intact dogs. In four CB-denervated dogs, absence of hyper-/hypoventilatory responses to CB perfusion with PCO2 of 19-75 mmHg confirmed separation of the perfused CB circulation from the brain. The group mean central CO2 response slopes were increased 303% for minute ventilation (V̇I)(P ≤ 0.01) and 251% for mean inspiratory flow rate (VT /TI ) (P ≤ 0.05) when the CB was hypercapnic vs. hypocapnic; central CO2 response slopes for tidal volume (VT ), breathing frequency (fb ) and rate of rise of the diaphragm EMG increased in 6 of 7 animals but the group mean changes did not reach statistical significance. Group mean central CO2 response slopes were also increased 237% for V̇I(P ≤ 0.01) and 249% for VT /TI (P ≤ 0.05) when the CB was normocapnic vs. hypocapnic, but no significant differences in any of the central ventilatory response indices were found between CB normocapnia and hypercapnia. These hyperadditive effects of CB hyper-/hypocapnia agree with previous findings using CB hyper-/hypoxia.We propose that hyperaddition is the dominant form of chemoreceptor interaction in quiet wakefulness when the chemosensory control system is intact, response gains physiological, and carotid body chemoreceptors are driven by a wide range of O2 and/or CO2 .
Collapse
Affiliation(s)
- Curtis A Smith
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grégory M Blain
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Nice Sophia Antipolis, Toulon, LAMHESS, EA 6309, F-06205, Nice, France
| | - Kathleen S Henderson
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jerome A Dempsey
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
Wilson RJA, Day TA. CrossTalk opposing view: peripheral and central chemoreceptors have hypoadditive effects on respiratory motor output. J Physiol 2014; 591:4355-7. [PMID: 24037127 DOI: 10.1113/jphysiol.2013.256578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Dempsey JA, Powell FL, Bisgard GE, Blain GM, Poulin MJ, Smith CA. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J Appl Physiol (1985) 2013; 116:858-66. [PMID: 24371017 DOI: 10.1152/japplphysiol.01126.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During sojourn to high altitudes, progressive time-dependent increases occur in ventilation and in sympathetic nerve activity over several days, and these increases persist upon acute restoration of normoxia. We discuss evidence concerning potential mediators of these changes, including the following: 1) correction of alkalinity in cerebrospinal fluid; 2) increased sensitivity of carotid chemoreceptors; and 3) augmented translation of carotid chemoreceptor input (at the level of the central nervous system) into increased respiratory motor output via sensitization of hypoxic sensitive neurons in the central nervous system and/or an interdependence of central chemoreceptor responsiveness on peripheral chemoreceptor sensory input. The pros and cons of chemoreceptor sensitization and cardiorespiratory acclimatization to hypoxia and intermittent hypoxemia are also discussed in terms of their influences on arterial oxygenation, the work of breathing, sympathoexcitation, systemic blood pressure, and exercise performance. We propose that these adaptive processes may have negative implications for the cardiovascular health of patients with sleep apnea and perhaps even for athletes undergoing regimens of "sleep high-train low"!
Collapse
|
22
|
Abstract
Neurophysiologically, central apnea is due to a temporary failure in the pontomedullary pacemaker generating breathing rhythm. As a polysomnographic finding, central apneas occur in many pathophysiological conditions. Depending on the cause or mechanism, central apneas may not be clinically significant, for example, those that occur normally at sleep onset. In contrast, central apneas occur in a number of disorders and result in pathophysiological consequences. Central apneas occur commonly in high-altitude sojourn, disrupt sleep, and cause desaturation. Central sleep apnea also occurs in number of disorders across all age groups and both genders. Common causes of central sleep apnea in adults are congestive heart failure and chronic use of opioids to treat pain. Under such circumstances, diagnosis and treatment of central sleep apnea may improve quality of life, morbidity, and perhaps mortality. The mechanisms of central sleep apnea have been best studied in congestive heart failure and hypoxic conditions when there is increased CO2 sensitivity below eupnea resulting in lowering eupneic PCO2 below apneic threshold causing cessation of breathing until the PCO2 rises above the apneic threshold when breathing resumes. In many other disorders, the mechanism of central sleep apnea (CSA) remains to be investigated.
Collapse
Affiliation(s)
- S Javaheri
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | |
Collapse
|
23
|
Niewinski P, Janczak D, Rucinski A, Tubek S, Engelman ZJ, Jazwiec P, Banasiak W, Sobotka PA, Hart ECJ, Paton JFR, Ponikowski P. Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure. Exp Physiol 2013; 99:552-61. [PMID: 24243836 DOI: 10.1113/expphysiol.2013.075580] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While the ventilatory response to hypoxia is known to be mediated by the carotid bodies, the origin of the haemodynamic alterations evoked by hypoxia is less certain. Bilateral carotid body removal (CBR) performed to treat congestive heart failure may serve as a model to improve our understanding of haemodynamic responses to hypoxia in humans. We studied six congestive heart failure patients before and 1 month after CBR [median (interquartile range): age, 58.5 (56-61) years old; and ejection fraction, 32 (25-34)%]. Peripheral chemosensitivity (hypoxic ventilatory response) was equated to the slope relating lowest oxygen saturation to highest minute ventilation following exposures to hypoxia. Likewise, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) slopes were calculated as slopes relating the lowest oxygen saturations to the highest SBP, DBP and HR responses. We found that CBR reduces the hypoxic ventilatory response (91%, P < 0.05), SBP (71%, P < 0.05) and DBP slopes (59%, P = 0.07). In contrast, the HR slope remained unchanged. The dissociation between the blood pressure and HR responses after CBR shows involvement of a different chemoreceptive site(s) maintaining the response to acute hypoxia. We conclude that carotid bodies are responsible for ventilatory and blood pressure responses, while the HR response might be mediated by the aortic bodies. The significant reduction of the blood pressure response to hypoxia after CBR suggests a decrease in sympathetic tone, which is of particular clinical relevance in congestive heart failure.
Collapse
Affiliation(s)
- Piotr Niewinski
- * Department of Cardiology, Centre for Heart Disease, 4th Military Hospital, 4 Wojskowy Szpital Kliniczny, Ul. Weigla 5, Wroclaw 50-981, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Evaluating the importance of the carotid chemoreceptors in controlling breathing during exercise in man. BIOMED RESEARCH INTERNATIONAL 2013; 2013:893506. [PMID: 24236297 PMCID: PMC3819889 DOI: 10.1155/2013/893506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/08/2013] [Indexed: 01/24/2023]
Abstract
Only the carotid chemoreceptors stimulate breathing during hypoxia in Man. They are also ideally located to warn if the brain's oxygen supply falls, or if hypercapnia occurs. Since their discovery ~80 years ago stimulation, ablation, and recording experiments still leave 3 substantial difficulties in establishing how important the carotid chemoreceptors are in controlling breathing during exercise in Man: (i) they are in the wrong location to measure metabolic rate (but are ideally located to measure any mismatch), (ii) they receive no known signal during exercise linking them with metabolic rate and no overt mismatch signals occur and (iii) their denervation in Man fails to prevent breathing matching metabolic rate in exercise. New research is needed to enable recording from carotid chemoreceptors in Man to establish whether there is any factor that rises with metabolic rate and greatly increases carotid chemoreceptor activity during exercise. Available evidence so far in Man indicates that carotid chemoreceptors are either one of two mechanisms that explain breathing matching metabolic rate or have no importance. We still lack key experimental evidence to distinguish between these two possibilities.
Collapse
|
25
|
Miller JR, Neumueller S, Muere C, Olesiak S, Pan L, Hodges MR, Forster HV. Changes in neurochemicals within the ventrolateral medullary respiratory column in awake goats after carotid body denervation. J Appl Physiol (1985) 2013; 115:1088-98. [PMID: 23869058 DOI: 10.1152/japplphysiol.00293.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A current and major unanswered question is why the highly sensitive central CO2/H(+) chemoreceptors do not prevent hypoventilation-induced hypercapnia following carotid body denervation (CBD). Because perturbations involving the carotid bodies affect central neuromodulator and/or neurotransmitter levels within the respiratory network, we tested the hypothesis that after CBD there is an increase in inhibitory and/or a decrease in excitatory neurochemicals within the ventrolateral medullary column (VMC) in awake goats. Microtubules for chronic use were implanted bilaterally in the VMC within or near the pre-Bötzinger Complex (preBötC) through which mock cerebrospinal fluid (mCSF) was dialyzed. Effluent mCSF was collected and analyzed for neurochemical content. The goats hypoventilated (peak +22.3 ± 3.4 mmHg PaCO2) and exhibited a reduced CO2 chemoreflex (nadir, 34.8 ± 7.4% of control ΔVE/ΔPaCO2) after CBD with significant but limited recovery over 30 days post-CBD. After CBD, GABA and glycine were above pre-CBD levels (266 ± 29% and 189 ± 25% of pre-CBD; P < 0.05), and glutamine and dopamine were significantly below pre-CBD levels (P < 0.05). Serotonin, substance P, and epinephrine were variable but not significantly (P > 0.05) different from control after CBD. Analyses of brainstem tissues collected 30 days after CBD exhibited 1) a midline raphe-specific reduction (P < 0.05) in the percentage of tryptophan hydroxylase-expressing neurons, and 2) a reduction (P < 0.05) in serotonin transporter density in five medullary respiratory nuclei. We conclude that after CBD, an increase in inhibitory neurotransmitters and a decrease in excitatory neuromodulation within the VMC/preBötC likely contribute to the hypoventilation and attenuated ventilatory CO2 chemoreflex.
Collapse
|
26
|
May WJ, Gruber RB, Discala JF, Puskovic V, Henderson F, Palmer LA, Lewis SJ. Morphine has latent deleterious effects on the ventilatory responses to a hypoxic challenge. ACTA ACUST UNITED AC 2013; 3:166-180. [PMID: 25045593 DOI: 10.4236/ojmip.2013.34022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to determine whether morphine depresses the ventilatory responses elicited by a hypoxic challenge (10% O2, 90% N2) in conscious rats at a time when the effects of morphine on arterial blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient and minute ventilation (VM) had completely subsided. In vehicle-treated rats, each episode of hypoxia stimulated ventilatory function and the responses generally subsided during each normoxic period. Morphine (5 mg/kg, i.v.) induced an array of depressant effects on ABG chemistry, A-a gradient and VM (via decreases in tidal volume). Despite resolution of these morphine-induced effects, the first episode of hypoxia elicited substantially smaller increases in VM than in vehicle-treated rats, due mainly to smaller increases in frequency of breathing. The pattern of ventilatory responses during subsequent episodes of hypoxia and normoxia changed substantially in morphine-treated rats. It is evident that morphine has latent deleterious effects on ventilatory responses elicited by hypoxic challenge.
Collapse
Affiliation(s)
- Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan B Gruber
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Joseph F Discala
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Veljko Puskovic
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephen J Lewis
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Bavis RW, Fallon SC, Dmitrieff EF. Chronic hyperoxia and the development of the carotid body. Respir Physiol Neurobiol 2013; 185:94-104. [PMID: 22640932 PMCID: PMC3448014 DOI: 10.1016/j.resp.2012.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 01/27/2023]
Abstract
Preterm infants often experience hyperoxia while receiving supplemental oxygen. Prolonged exposure to hyperoxia during development is associated with pathologies such as bronchopulmonary dysplasia and retinopathy of prematurity. Over the last 25 years, however, experiments with animal models have revealed that moderate exposures to hyperoxia (e.g., 30-60% O(2) for days to weeks) can also have profound effects on the developing respiratory control system that may lead to hypoventilation and diminished responses to acute hypoxia. This plasticity, which is generally inducible only during critical periods of development, has a complex time course that includes both transient and permanent respiratory deficits. Although the molecular mechanisms of hyperoxia-induced plasticity are only beginning to be elucidated, it is clear that many of the respiratory effects are linked to abnormal morphological and functional development of the carotid body, the principal site of arterial O(2) chemoreception for respiratory control. Specifically, developmental hyperoxia reduces carotid body size, decreases the number of chemoafferent neurons, and (at least transiently) diminishes the O(2) sensitivity of individual carotid body glomus cells. Recent evidence suggests that hyperoxia may also directly or indirectly impact development of the central neural control of breathing. Collectively, these findings emphasize the vulnerability of the developing respiratory control system to environmental perturbations.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | | | | |
Collapse
|
28
|
Palmer LA, May WJ, deRonde K, Brown-Steinke K, Gaston B, Lewis SJ. Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 2012. [PMID: 23183420 DOI: 10.1016/j.resp.2012.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this study was to compare the ventilatory responses of C57BL6 female and male mice during a 15 min exposure to a hypoxic-hypercapnic (H-H) or a hypoxic (10% O(2), 90% N(2)) challenge and subsequent return to room air. The ventilatory responses to H-H were similar in males and females whereas there were pronounced gender differences in the ventilatory responses during and following hypoxic challenge. In males, the hypoxic response included initial increases in minute volume via increases in tidal volume and frequency of breathing. These responses declined substantially (roll-off) during hypoxic exposure. Upon return to room-air, relatively sustained increases in these ventilatory parameters (short-term potentiation) were observed. In females, the initial responses to hypoxia were similar to those in males whereas roll-off was greater and post-hypoxia facilitation was smaller than in males. The marked differences in ventilatory roll-off and post-hypoxia facilitation between female and male C57BL6 mice provide evidence that gender is of vital importance to ventilatory control.
Collapse
Affiliation(s)
- Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
29
|
Teppema LJ, Berendsen RR. Response to the reply of J. Duffin to our letter entitled ‘Acetazolamide and cerebrovascular function at high altitude’. J Physiol 2012. [DOI: 10.1113/jphysiol.2012.237222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
30
|
Snyder KL, Snaterse M, Donelan JM. Running perturbations reveal general strategies for step frequency selection. J Appl Physiol (1985) 2012; 112:1239-47. [PMID: 22241053 DOI: 10.1152/japplphysiol.01156.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent research has suggested that energy minimization in human walking involves both a fast preprogrammed process and a slow optimization process. Here, we studied human running to test whether these two processes represent control mechanisms specific to walking or a more general strategy for minimizing energetic cost in human locomotion. To accomplish this, we used free response experiments to enforce step frequency with a metronome at values above and below preferred step frequency and then determined the response times for the return to preferred steady-state step frequency when the auditory constraint was suddenly removed. In forced response experiments, we applied rapid changes in treadmill speed and examined response times for the processes involved in the consequent adjustments to step frequency. We then compared the dynamics of step frequency adjustments resulting from the two different perturbations to each other and to previous results found in walking. Despite the distinct perturbations applied in the two experiments, both responses were dominated by a fast process with a response time of 1.47 ± 0.05 s with fine-tuning provided by a slow process with a response time of 34.33 ± 0.50 s. The dynamics of the processes underlying step frequency adjustments in running match those found previously in walking, both in magnitude and relative importance. Our results suggest that the underlying mechanisms are fundamental strategies for minimizing energetic cost in human locomotion.
Collapse
Affiliation(s)
- Kristine L Snyder
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
31
|
Abstract
Acute exposure to altitude principally encompasses aviation and space activities. These environments can be associated with very acute changes in pressure, oxygenation and temperature due to rates and magnitude of ascent that are not experienced in more chronic exposure such as mountaineering. The four key physiological challenges during acute exposure to altitude are: hypoxia (and hyperventilation), gas volume changes, decompression sickness and cold. The brief nature of aviation exposure to altitude provides little opportunity for acclimatisation, leading to markedly different effects when an individual is exposed to the same altitude acutely compared with an acclimatised individual climbing an 8000m (26 347ft) peak. Challenges such as hypobaric decompression sickness are not considered a hazard for chronic altitude exposure but are routine considerations for those flying to high altitude. Protective systems are essential for aircrew and passengers to survive and function during acute exposure to altitude.
Collapse
Affiliation(s)
- P D Hodkinson
- Royal Air Force Centre of Aviation Medicine, Royal Air Force Henlow, Hitchin, Bedfordshire, UK.
| |
Collapse
|
32
|
Snaterse M, Ton R, Kuo AD, Donelan JM. Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking. J Appl Physiol (1985) 2011; 110:1682-90. [PMID: 21393467 DOI: 10.1152/japplphysiol.00536.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans spontaneously select a step frequency that minimizes the energy expenditure of walking. This selection might be embedded within the neural circuits that generate gait so that the optimum is pre-programmed for a given walking speed. Or perhaps step frequency is directly optimized, based on sensed feedback of energy expenditure. Direct optimization is expected to be slow due to the compounded effect of delays and iteration, whereas a pre-programmed mechanism presumably allows for faster step frequency selection, albeit dependent on prior experience. To test for both pre-programmed selection and direct optimization, we applied perturbations to treadmill walking to elicit transient changes in step frequency. We found that human step frequency adjustments (n = 7) occurred with two components, the first dominating the response (66 ± 10% of total amplitude change; mean ± SD) and occurring quite quickly (1.44 ± 1.14 s to complete 95% of total change). The other component was of smaller amplitude (35 ± 10% of total change) and took tens of seconds (27.56 ± 16.18 s for 95% completion). The fast process appeared to be too fast for direct optimization and more indicative of a pre-programmed response. It also persisted even with unusual closed-loop perturbations that conflicted with prior experience and rendered the response energetically suboptimal. The slow process was more consistent with the timing expected for direct optimization. Our interpretation of these results is that humans may rely heavily on pre-programmed gaits to rapidly select their preferred step frequency and then gradually fine-tune that selection with direct optimization.
Collapse
Affiliation(s)
- Mark Snaterse
- Dept. of Biomedical Physiology & Kinesiology, Simon Fraser Univ., 8888 Univ. Dr., Burnaby, BC, Canada V5A 1S6.
| | | | | | | |
Collapse
|
33
|
Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 2010; 588:2455-71. [PMID: 20421288 DOI: 10.1113/jphysiol.2010.187211] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We assessed the contribution of carotid body chemoreceptors to the ventilatory response to specific CNS hypercapnia in eight unanaesthetized, awake dogs. We denervated one carotid body (CB) and used extracorporeal blood perfusion of the reversibly isolated remaining CB to maintain normal CB blood gases (normoxic, normocapnic perfusate), to inhibit (hyperoxic, hypocapnic perfusate) or to stimulate (hypoxic, normocapnic perfusate) the CB chemoreflex, while the systemic circulation, and therefore the CNS and central chemoreceptors, were exposed consecutively to four progressive levels of systemic arterial hypercapnia via increased fractional inspired CO(2) for 7 min at each level. Neither unilateral CB denervation nor CB perfusion, per se, affected breathing. Relative to CB control conditions (normoxic, normocapnic perfusion), we found that CB chemoreflex inhibition decreased the slope of the ventilatory response to CNS hypercapnia in all dogs to an average of 19% of control values (range 0-38%; n = 6), whereas CB chemoreflex stimulation increased the slope of the ventilatory response to CNS hypercapnia in all dogs to an average of 223% of control values (range 204-235%; n = 4). We conclude that the gain of the CNS CO(2)/H(+) chemoreceptors in dogs is critically dependent on CB afferent activity and that CNS-CB interaction results in hyperadditive ventilatory responses to central hypercapnia.
Collapse
Affiliation(s)
- Gregory M Blain
- The John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | | | | | | |
Collapse
|
34
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Nichols NL, Wilkinson KA, Powell FL, Dean JB, Putnam RW. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats. Respir Physiol Neurobiol 2009; 168:272-80. [PMID: 19619674 DOI: 10.1016/j.resp.2009.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 11/17/2022]
Abstract
We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.
Collapse
Affiliation(s)
- Nicole L Nichols
- Department of Neuroscience, Cell Biology & Physiology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
36
|
Day TA, Wilson RJA. A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 2008; 587:883-96. [PMID: 19103684 DOI: 10.1113/jphysiol.2008.160689] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interaction between central (brainstem) and peripheral (carotid body) respiratory chemosensitivity is vital to protect blood gases against potentially deleterious fluctuations, especially during sleep. Previously, using an in situ arterially perfused, vagotomized, decerebrate preparation in which brainstem and peripheral chemoreceptors are perfused separately (i.e. dual perfused preparation; DPP), we observed that the phrenic response to specific carotid body hypoxia was larger when the brainstem was held at 25 Torr P(CO(2)) compared to 50 Torr P(CO(2)). This suggests a negative (i.e. hypo-additive) interaction between chemoreceptors. The current study was designed to (a) determine whether this observation could be generalized to all carotid body stimuli, and (b) exclude the possibility that the hypo-additive response was the simple consequence of ventilatory saturation at high brainstem P(CO(2)). Specifically, we tested how steady-state brainstem P(CO(2)) modulates peripheral chemoreflex magnitude in response to carotid body P(CO(2)) and P(O(2)) perturbations, both above and below eupnoeic levels. We found that the peripheral chemoreflex was more responsive the lower the brainstem P(CO(2)) regardless of whether the peripheral chemoreceptors received stimuli which increased or decreased activation. These findings demonstrate a negative interaction between brainstem and peripheral chemosensitivity in the rat in the absence of ventilatory saturation. We suggest that a negative interaction in humans may contribute to increased controller gain associated with sleep-related breathing disorders and propose that the assumption of simple addition between chemoreceptor inputs used in current models of the respiratory control system be reconsidered.
Collapse
Affiliation(s)
- Trevor A Day
- Department of Chemical and Biological Sciences, Mount Royal College, Calgary, Alberta, Canada
| | | |
Collapse
|
37
|
Sheel AW, MacNutt MJ. Control of ventilation in humans following intermittent hypoxia. Appl Physiol Nutr Metab 2008; 33:573-81. [DOI: 10.1139/h08-008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chronic or intermittent hypoxia produces alterations in the ventilatory response to hypoxia. These adaptations can differ depending on the severity of the hypoxic stimulus, its duration, its pattern, and the presence or absence of other chemical stimuli. As such, there are significant differences between the responses to intermittent versus continuous hypoxia. Intermittent hypoxia (IH) has been shown to elicit significant changes in the peripheral chemoresponse, but the functional implications of these changes for resting and exercise ventilation are not clear. We summarize the impact of IH on resting chemosensitivity and discuss the use of IH to better understand ventilatory control during exercise. We also suggest future directions for this relatively young field, including potential clinical applications of IH research.
Collapse
Affiliation(s)
- Andrew William Sheel
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Meaghan Joelle MacNutt
- Health and Integrative Physiology Laboratory, School of Human Kinetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
38
|
Abstract
After defining the current approach to measuring the hypoxic ventilatory response this paper explains why this method is not appropriate for comparisons between individuals or conditions, and does not adequately measure the parameters of the peripheral chemoreflex. A measurement regime is therefore proposed that incorporates three procedures. The first procedure measures the peripheral chemoreflex responsiveness to both hypoxia and CO(2) in terms of hypoxia's effects on the sensitivity and ventilatory recruitment threshold of the peripheral chemoreflex response to CO(2). The second and third procedures employ current methods for measuring the isocapnic and poikilocapnic ventilatory responses to hypoxia, respectively, over a period of 20 min. The isocapnic measure is used to determine the time course characteristics of hypoxic ventilatory decline and the poikilocapnic measure shows the ventilatory response to a hypoxic environment. A measurement regime incorporating these three procedures will permit a detailed assessment of the peripheral chemoreflex response to hypoxia that allows comparisons to be made between individuals and different physiological and environmental conditions.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Dahan A, Nieuwenhuijs D, Teppema L. Plasticity of central chemoreceptors: effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med 2007; 4:e239. [PMID: 17676946 PMCID: PMC1925127 DOI: 10.1371/journal.pmed.0040239] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human breathing is regulated by feedback and feed-forward control mechanisms, allowing a strict matching between metabolic needs and the uptake of oxygen in the lungs. The most important control mechanism, the metabolic ventilatory control system, is fine-tuned by two sets of chemoreceptors, the peripheral chemoreceptors in the carotid bodies (located in the bifurcation of the common carotid arteries) and the central CO2 chemoreceptors in the ventral medulla. Animal data indicate that resection of the carotid bodies results, apart from the loss of the peripheral chemoreceptors, in reduced activity of the central CO2 sensors. We assessed the acute and chronic effect of carotid body resection in three humans who underwent bilateral carotid body resection (bCBR) after developing carotid body tumors. METHODS AND FINDINGS The three patients (two men, one woman) were suffering from a hereditary form of carotid body tumors. They were studied prior to surgery and at regular intervals for 2-4 y following bCBR. We obtained inspired minute ventilation (Vi) responses to hypoxia and CO2. The Vi-CO2 responses were separated into a peripheral (fast) response and a central (slow) response with a two-compartment model of the ventilatory control system. Following surgery the ventilatory CO2 sensitivity of the peripheral chemoreceptors and the hypoxic responses were not different from zero or below 10% of preoperative values. The ventilatory CO2 sensitivity of the central chemoreceptors decreased by about 75% after surgery, with peak reduction occurring between 3 and 6 mo postoperatively. This was followed by a slow return to values close to preoperative values within 2 y. During this slow return, the Vi-CO2 response shifted slowly to the right by about 8 mm Hg. CONCLUSIONS The reduction in central Vi-CO2 sensitivity after the loss of the carotid bodies suggests that the carotid bodies exert a tonic drive or tonic facilitation on the output of the central chemoreceptors that is lost upon their resection. The observed return of the central CO2 sensitivity is clear evidence for central plasticity within the ventilatory control system. Our data, although of limited sample size, indicate that the response mechanisms of the ventilatory control system are not static but depend on afferent input and exhibit a large degree of restoration or plasticity. In addition, the permanent absence of the breathing response to hypoxia after bCBR may aggravate the pathological consequences of sleep-disordered breathing.
Collapse
Affiliation(s)
- Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
40
|
Yamashiro SM. Non-linear dynamics of human periodic breathing and implications for sleep apnea therapy. Med Biol Eng Comput 2007; 45:345-56. [PMID: 17325827 DOI: 10.1007/s11517-006-0153-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 12/21/2006] [Indexed: 11/30/2022]
Abstract
A mathematical model of non-obstructive human periodic breathing (Cheyne-Stokes respiration) or central sleep apnea (CSA) is described which focused on explaining recently reported non-linear behavior. Evidence was presented that CHF (chronic heart failure)-CSA and ICSA (idiopathic central sleep apnea) both involved limit cycle oscillations. The validity of applying linear control theory for stabilization must then be re-examined. Critical threshold values and ranges of parameters were predicted which caused a change (bifurcation) from limit cycle periodic breathing to stable breathing. Changes in lung volume were predicted to form a bifurcation during CHF-CSA where stability and instability can involve a lung volume change as small as 0.1 l. CSA therapy based on reducing control loop gain was predicted to be relatively ineffective during stable limit cycle oscillation. The relative ratios of durations of ventilation to apnea (T(v)/T(a)) during periodic breathing were primarily determined by peripheral chemoreceptor dynamics during crescendo, de-crescendo, and apnea phases of CSA.
Collapse
Affiliation(s)
- S M Yamashiro
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089-1451, USA.
| |
Collapse
|
41
|
Day TA, Wilson RJA. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol 2006; 578:843-57. [PMID: 17082232 PMCID: PMC2151337 DOI: 10.1113/jphysiol.2006.119594] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inputs from central (brainstem) and peripheral (carotid body) respiratory chemoreceptors are coordinated to protect blood gases against potentially deleterious fluctuations. However, the mathematics of the steady-state interaction between chemoreceptors has been difficult to ascertain. Further, how this interaction affects time-dependent phenomena (in which chemoresponses depend upon previous experience) is largely unknown. To determine how central P(CO2) modulates the response to peripheral chemostimulation in the rat, we utilized an in situ arterially perfused, vagotomized, decerebrate preparation, in which central and peripheral chemoreceptors were perfused separately (i.e. dual perfused preparation (DPP)). We carried out two sets of experiments: in Experiment 1, we alternated steady-state brainstem P(CO2) between 25 and 50 Torr in each preparation, and applied specific carotid body hypoxia (60 Torr P(O2) and 40 Torr P(CO2)) under both conditions; in Experiment 2, we applied four 5 min bouts (separated by 5 min) of specific carotid body hypoxia (60 Torr P(O2) and 40 Torr P(CO2)) while holding the brainstem at either 30 Torr or 50 Torr P(CO2). We demonstrate that the level of brainstem P(CO2) modulates (a) the magnitude of the phrenic responses to a single step of specific carotid body hypoxia and (b) the magnitude of time-dependent phenomena. We report that the interaction between chemoreceptors is negative (i.e. hypo-additive), whereby a lower brainstem P(CO2) augments phrenic responses resulting from specific carotid body hypoxia. A negative interaction may underlie the pathophysiology of central sleep apnoea in populations that are chronically hypocapnic.
Collapse
Affiliation(s)
- Trevor A Day
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
42
|
Smith CA, Rodman JR, Chenuel BJA, Henderson KS, Dempsey JA. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol (1985) 2006; 100:13-9. [PMID: 16166236 DOI: 10.1152/japplphysiol.00926.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the speed of the ventilatory response to square-wave changes in alveolar Pco2 and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemoreceptor while preventing it from sensing systemic changes in CO2, thereby allowing us to determine the response of the central chemoreceptors alone. We found the following. 1) The ventilatory response of the central chemoreceptors alone is 11.2 (SD = 3.6) s slower than when carotid bodies are allowed to sense CO2 changes. 2) On average, the central chemoreceptors contribute ∼63% of the gain to steady-state increases in CO2. There was wide dog-to-dog variability in the relative contributions of central vs. carotid body chemoreceptors; the central exceeded the carotid body gain in four of six dogs, but in two dogs carotid body gain exceeded central CO2 gain. If humans respond similarly to dogs, we propose that the slower response of the central chemoreceptors vs. the carotid chemoreceptors prevents the central chemoreceptors from contributing significantly to ventilatory responses to rapid, transient changes in arterial Pco2 such as those after periods of hypoventilation or hyperventilation (“ventilatory undershoots or overshoots”) observed during sleep-disordered breathing. However, the greater average responsiveness of the central chemoreceptors to brain hypercapnia in the steady-state suggests that these receptors may contribute significantly to ventilatory overshoots once unstable/periodic breathing is fully established.
Collapse
Affiliation(s)
- C A Smith
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, School of Medicine, Rm. 4245 MSC, University of Wisconsin, 1300 Univ. Ave., Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Xie A, Skatrud JB, Puleo DS, Dempsey JA. Influence of arterial O2 on the susceptibility to posthyperventilation apnea during sleep. J Appl Physiol (1985) 2005; 100:171-7. [PMID: 16179400 DOI: 10.1152/japplphysiol.00440.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the contribution of the peripheral chemoreceptors to the susceptibility to posthyperventilation apnea, we evaluated the time course and magnitude of hypocapnia required to produce apnea at different levels of peripheral chemoreceptor activation produced by exposure to three levels of inspired P(O2). We measured the apneic threshold and the apnea latency in nine normal sleeping subjects in response to augmented breaths during normoxia (room air), hypoxia (arterial O2 saturation = 78-80%), and hyperoxia (inspired O2 fraction = 50-52%). Pressure support mechanical ventilation in the assist mode was employed to introduce a single or multiple numbers of consecutive, sigh-like breaths to cause apnea. The apnea latency was measured from the end inspiration of the first augmented breath to the onset of apnea. It was 12.2 +/- 1.1 s during normoxia, which was similar to the lung-to-ear circulation delay of 11.7 s in these subjects. Hypoxia shortened the apnea latency (6.3 +/- 0.8 s; P < 0.05), whereas hyperoxia prolonged it (71.5 +/- 13.8 s; P < 0.01). The apneic threshold end-tidal P(CO2) (Pet(CO2)) was defined as the Pet(CO2)) at the onset of apnea. During hypoxia, the apneic threshold Pet(CO2) was higher (38.9 +/- 1.7 Torr; P < 0.01) compared with normoxia (35.8 +/- 1.1; Torr); during hyperoxia, it was lower (33.0 +/- 0.8 Torr; P < 0.05). Furthermore, the difference between the eupneic Pet(CO2) and apneic threshold Pet(CO2) was smaller during hypoxia (3.0 +/- 1.0 Torr P < 001) and greater during hyperoxia (10.6 +/- 0.8 Torr; P < 0.05) compared with normoxia (8.0 +/- 0.6 Torr). Correspondingly, the hypocapnic ventilatory response to CO2 below the eupneic Pet(CO2) was increased by hypoxia (3.44 +/- 0.63 l.min(-1).Torr(-1); P < 0.05) and decreased by hyperoxia (0.63 +/- 0.04 l.min(-1).Torr(-1); P < 0.05) compared with normoxia (0.79 +/- 0.05 l.min(-1).Torr(-1)). These findings indicate that posthyperventilation apnea is initiated by the peripheral chemoreceptors and that the varying susceptibility to apnea during hypoxia vs. hyperoxia is influenced by the relative activity of these receptors.
Collapse
Affiliation(s)
- Ailiang Xie
- Department of Medicine, University of Wisconsin, Madison, USA.
| | | | | | | |
Collapse
|
45
|
Bin-Jaliah I, Maskell PD, Kumar P. Carbon dioxide sensitivity during hypoglycaemia-induced, elevated metabolism in the anaesthetized rat. J Physiol 2005; 563:883-93. [PMID: 15661819 PMCID: PMC1665607 DOI: 10.1113/jphysiol.2004.080085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have utilized an anaesthetized rat model of insulin-induced hypoglycaemia to test the hypothesis that peripheral chemoreceptor gain is augmented during hypermetabolism. Insulin infusion at 0.4 U kg (-1)min(-1) decreased blood glucose concentration significantly to 3.37 +/- 0.12 mmol l(-1). Whole-body metabolism and basal ventilation were elevated without increase in P(a,CO(2)) (altered non-significantly from the control level, to 37.3 +/- 2.6 mmHg). Chemoreceptor gain, measured either as spontaneous ventilatory airflow sensitivity to P(a,CO(2)) during rebreathing, or by phrenic minute activity responses to altered P(a,CO(2)) induced by varying the level of artificial ventilation, was doubled during the period of hypermetabolism. This stimulatory effect was primarily upon the mean inspiratory flow rate, or phrenic ramp component of breathing and was reduced by 75% following bilateral carotid sinus nerve section. In vitro recordings of single carotid body chemoafferents showed that reducing superfusate glucose concentration from 10 mM to 2 mM reduced CO(2) chemosensitivity significantly from 0.007 +/- 0.002 Hz mmHg(-1) to 0.001 +/- 0.002 Hz mmHg(-1). Taken together, these data suggest that the hyperpnoea observed during hypermetabolism might be mediated by an increase in the CO(2) sensitivity of the carotid body, and this effect is not due to the insulin-induced fall in blood glucose concentration.
Collapse
Affiliation(s)
- I Bin-Jaliah
- Department of Physiology, Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
46
|
Hodges MR, Opansky C, Qian B, Davis S, Bonis JM, Krause K, Pan LG, Forster HV. Carotid body denervation alters ventilatory responses to ibotenic acid injections or focal acidosis in the medullary raphe. J Appl Physiol (1985) 2004; 98:1234-42. [PMID: 15579571 DOI: 10.1152/japplphysiol.01011.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our aim was to determine the effects of carotid body denervation (CBD) on the ventilatory responses to focal acidosis and ibotenic acid (IA) injections into the medullary raphe area of awake, adult goats. Multiple microtubules were chronically implanted into the midline raphe area nuclei either before or after CBD. For up to 15 days after bilateral CBD, arterial PCO2 (PaCO2) (13.3 +/- 1.9 Torr) was increased (P < 0.001), and CO2 sensitivity (-53.0 +/- 6.4%) was decreased (P <0.001). Thereafter, resting PaCO2 and CO2 sensitivity returned (P <0.01) toward control, but PaCO2 remained elevated (4.8 +/- 1.9 Torr) and CO2 sensitivity reduced (-24.7 +/- 6.0%) > or =40 days after CBD. Focal acidosis (FA) at multiple medullary raphe area sites 23-44 days post-CBD with 50 or 80% CO(2) increased inspiratory flow (Vi), tidal volume (Vt), metabolic rate (VO2), and heart rate (HR) (P <0.05). The effects of FA with 50% CO2 after CBD did not differ from intact goats. However, CBD attenuated (P <0.05) the increase in Vi, Vt, and HR with 80% CO2, but it had no effect on the increase in VO2. Rostral but not caudal raphe area IA injections increased Vi, BP, and HR (P < 0.05), and these responses were accentuated (P <0.001) after CBD. CO2 sensitivity was attenuated (-20%; P <0.05) <7 days after IA injection, but thereafter it returned to prelesion values in CBD goats. We conclude the following: 1) the attenuated response to FA after CBD provides further evidence that the carotid bodies provide a tonic facilitory input into respiratory control centers, 2) the plasticity after CBD is not due to increased raphe chemoreceptor sensitivity, and 3) the "error-sensing" function of the carotid body blunts the effect of strong stimulation of the raphe.
Collapse
Affiliation(s)
- M R Hodges
- Dept. of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Dahan A, Romberg R, Sarton E, Teppema L. Antioxidants Prevent Blunting of Hypoxic Ventilatory Response by Low-Dose Halothane. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 551:217-20. [PMID: 15602967 DOI: 10.1007/0-387-27023-x_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|