1
|
Acute intermittent hypoxia evokes ventilatory long-term facilitation and active expiration in unanesthetized rats. Respir Physiol Neurobiol 2021; 294:103768. [PMID: 34343692 DOI: 10.1016/j.resp.2021.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.
Collapse
|
2
|
Baertsch NA, Baertsch HC, Ramirez JM. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat Commun 2018; 9:843. [PMID: 29483589 PMCID: PMC5827754 DOI: 10.1038/s41467-018-03223-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.
Collapse
Affiliation(s)
- Nathan Andrew Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Hans Christopher Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA.
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
| |
Collapse
|
3
|
Abstract
From birth, animals should possess functional machinery to appropriately regulate its respiration. This machinery has to detect the available oxygen quantity in order to efficiently modulate breathing movements in accordance with body requirements. The chemosensitivity process responsible for this detection is known to be mainly performed by carotid bodies. However, pulmonary neuroendocrine cells, which are mainly gathered in neuroepithelial bodies, also present the capability to exert chemosensitivity. The goal of this article is to put in perspective the potential complementarity in the activity of these two peripheral chemosensors in the context of neonatal oxygen chemosensitivity.
Collapse
Affiliation(s)
- Céline Caravagna
- Institut de Neurosciences de la Timone-Equipe IMAPATH, CERIMED, UMR 7289 CNRS & Aix-Marseille Université, 27 Boulevard Jean Moulin,13385, Marseille Cedex 05, France.
| | - Tommy Seaborn
- Faculté de Médecine, Université Laval, Pavillon Ferdinand-Vandry, Room 4645-A,1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Abstract
Postsynaptic inhibition is a key element of neural circuits underlying behavior, with 20-50% of all mammalian (nongranule) neurons considered inhibitory. For rhythmic movements in mammals, e.g., walking, swimming, suckling, chewing, and breathing, inhibition is often hypothesized to play an essential rhythmogenic role. Here we study the role of fast synaptic inhibitory neurotransmission in the generation of breathing pattern by blocking GABA(A) and glycine receptors in the preBötzinger complex (preBötC), a site essential for generation of normal breathing pattern, and in the neighboring Bötzinger complex (BötC). The breathing rhythm continued following this blockade, but the lung inflation-induced Breuer-Hering inspiratory inhibitory reflex was suppressed. The antagonists were efficacious, as this blockade abolished the profound effects of the exogenously applied GABA(A) receptor agonist muscimol or glycine, either of which under control conditions stopped breathing in vagus-intact or vagotomized, anesthetized, spontaneously breathing adult rats. In vagotomized rats, GABA(A)ergic and glycinergic antagonists had little, if any, effect on rhythm. The effect in vagus-intact rats was to slow the rhythm to a pace equivalent to that seen after suppression of the aforementioned Breuer-Hering inflation reflex. We conclude that postsynaptic inhibition within the preBötC and BötC is not essential for generation of normal respiratory rhythm in intact mammals. We suggest the primary role of inhibition is in shaping the pattern of respiratory motor output, assuring its stability, and in mediating reflex or volitional apnea, but not in the generation of rhythm per se.
Collapse
|
5
|
|
6
|
Belt-and-Suspenders as a Biological Design Principle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:99-103. [DOI: 10.1007/978-0-387-73693-8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Forster HV. The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. J Appl Physiol (1985) 2006. [DOI: 10.1152/japplphysiol.00351.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol (1985) 2006; 101:618-27. [PMID: 16645192 PMCID: PMC4503231 DOI: 10.1152/japplphysiol.00252.2006] [Citation(s) in RCA: 321] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung sensory receptors with afferent fibers coursing in the vagus nerves are broadly divided into three groups: slowly (SAR) and rapidly (RAR) adapting stretch receptors and bronchopulmonary C fibers. Central terminations of each group are found in largely nonoverlapping regions of the caudal half of the nucleus of the solitary tract (NTS). Second order neurons in the pathways from these receptors innervate neurons located in respiratory-related regions of the medulla, pons, and spinal cord. The relative ease of selective activation of SARs, and to a lesser extent RARs, has allowed for more complete physiological and morphological characterization of the second and higher order neurons in these pathways than for C fibers. A subset of NTS neurons receiving afferent input from SARs (termed pump or P-cells) mediates the Breuer-Hering reflex and inhibits neurons receiving afferent input from RARs. P-cells and second order neurons in the RAR pathway also provide inputs to regions of the ventrolateral medulla involved in control of respiratory motor pattern, i.e., regions containing a predominance of bulbospinal premotor neurons, as well as regions containing respiratory rhythm-generating neurons. Axon collaterals from both P-cells and RAR interneurons, and likely from NTS interneurons in the C-fiber pathway, project to the parabrachial pontine region where they may contribute to plasticity in respiratory control and integration of respiratory control with other systems, including those that provide for voluntary control of breathing, sleep-wake behavior, and emotions.
Collapse
Affiliation(s)
- Leszek Kubin
- Dept. of Physiology-M211, Feinberg School of Medicine, Northwestern Univ., 303 E. Chicago Ave., Chicago, IL 60611-3008, USA
| | | | | | | |
Collapse
|
9
|
Glérant JC, Khater-Boidin J, Salzmann F, Duron B. Vagal pulmonary afferents and central respiratory effects of 5-HT in newborn rats. Eur J Neurosci 2005; 22:2249-56. [PMID: 16262663 DOI: 10.1111/j.1460-9568.2005.04417.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In decerebrate newborn rats, serotonin (5-HT) is a respiratory depressant via activation of 5-HT2 receptors, whereas it evokes respiratory stimulant effects when applied to the isolated brainstem obtained from the newborn rat. This discrepancy could be due to deafferentation in the in vitro preparation. The aim of our study was to analyse the role of vagal afferents in the modulation of central respiratory effects of 5-HT. In decerebrate cervically or abdominally bivagotomized newborn rats aged between 0 and 3 days, we recorded electrical activity from the diaphragm and from a hypoglossally innervated tongue muscle, as well as cardiac frequency (Fc), before and after application of 5-HT to the floor of the IVth ventricle. The effects of related agents (a 5-HT1A agonist, 8-OH DPAT, and a 5-HT2 agonist, DOI) were studied in cervically bivagotomized animals. For comparison, and to assess the spontaneous variability in inspiratory frequency (Fi) and Fc, sham groups were studied. Each group comprised ten newborn rats. In cervically bivagotomized newborn rats, 5-HT induces a significant increase in Fi, which is the opposite to that observed in decerebrate newborn rats with intact vagi. This respiratory effect is mediated in particular, via activation of 5-HT1A. By contrast, in abdominally bivagotomized newborn rats, a decrease in Fi was observed in response to 5-HT (as previously described in decerebrate animals with intact vagi). We conclude that pulmonary vagal afferents modulate the central respiratory action of 5-HT in decerebrate newborn rats, explaining the conflicting results between in vivo and in vitro experiments.
Collapse
Affiliation(s)
- J-Ch Glérant
- Faculté de Médecine, Laboratoire de Neurophysiologie Clinique et Expérimentale, 3, rue des Louvels, 80036 Amiens, Cedex 01, France.
| | | | | | | |
Collapse
|
10
|
Gaultier C, Gallego J. Development of respiratory control: Evolving concepts and perspectives. Respir Physiol Neurobiol 2005; 149:3-15. [PMID: 15941676 DOI: 10.1016/j.resp.2005.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying respiratory system immaturity in newborns have been investigated, both in vivo and in vitro, in humans and in animals. Immaturity affects breathing rhythmicity and its modulation by suprapontine influences and by afferents from central and peripheral chemoreceptors. Recent research has moved from bedside tools to sophisticated technologies, bringing new insights into the plasticity and genetics of respiratory control development. Genetic research has benefited from investigations of newborn mice having targeted deletions of genes involved in respiratory control. Genetic variability may govern the normal programming of development and the processes underlying adaptation to homeostasis disturbances induced by prenatal and postnatal insults. Studies of plasticity have emphasized the role of neurotrophic factors. Improvements in our understanding of the mechanistic effects of these factors should lead to new neuroprotective strategies for infants at risk for early respiratory control disturbances, such as apnoeas of prematurity, sudden infant death syndrome and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | | |
Collapse
|
11
|
Harris MB, St-John WM. Phasic pulmonary stretch receptor feedback modulates both eupnea and gasping in an in situ rat preparation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R450-R455. [PMID: 15831763 DOI: 10.1152/ajpregu.00750.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The perfused in situ juvenile rat preparation produces patterns of phrenic discharge comparable to eupnea and gasping in vivo. These ventilatory patterns differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Although we have recently demonstrated that both eupnea and gasping are similarly modulated by a Hering-Breuer expiratory-promoting reflex to tonic pulmonary stretch, it has generally been assumed that gasping was unresponsive to afferent stimuli from pulmonary stretch receptors. In the present study, we recorded eupneic and gasplike efferent activity of the phrenic nerve in the in situ juvenile rat perfused brain stem preparation, with and without phrenic-triggered phasic pulmonary inflation. We tested the hypothesis that phasic pulmonary inflation produces reflex responses in situ akin to those in vivo and that both eupnea and gasping are similarly modulated by phasic pulmonary stretch. In eupnea, we found that phasic pulmonary inflation decreases inspiratory burst duration and the period of expiration, thus increasing burst frequency of the phrenic neurogram. Phasic pulmonary inflation also decreases the duration of expiration and increases the burst frequency during gasping. Bilateral vagotomy eliminated these changes. We conclude that the neural substrate mediating the Hering-Breuer reflex is retained in the in situ preparation and that the brain stem circuitry generating the respiratory patterns respond to phasic activation of pulmonary stretch receptors in both eupnea and gasping. These findings support the homology of eupneic phrenic discharge patterns in the reduced in situ preparation and eupnea in vivo and disprove the common supposition that gasping is insensitive to vagal afferent feedback from pulmonary stretch receptor mechanisms.
Collapse
Affiliation(s)
- Michael B Harris
- Institute of Arctic Biology, Irving I, University of Alaska-Fairbanks, Fairbanks, AK 99775-7000, USA.
| | | |
Collapse
|