1
|
Hook JL, Kuebler WM. CFTR as a therapeutic target for severe lung infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L229-L238. [PMID: 39772994 DOI: 10.1152/ajplung.00289.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is-in addition to its well-established roles in the lung airway and extrapulmonary organs-increasingly recognized as a key regulator of alveolar homeostasis and defense. In the alveolar epithelium, CFTR mediates alveolar fluid secretion and liquid homeostasis; in the microvascular endothelium, CFTR maintains vascular barrier function. CFTR also contributes to alveolar immunity. Yet, in lung infection, diverse molecular mechanisms reduce CFTR abundance and otherwise impair its function, promoting alveolar inflammation, edema, and cell death. Preservation or restoration of CFTR function by CFTR modulator drugs thus presents a promising avenue to combat lung infection in a pathogen-independent manner.
Collapse
Affiliation(s)
- Jaime L Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
3
|
Comizzoli P, Amelkina O, Lee PC. Damages and stress responses in sperm cells and other germplasms during dehydration and storage at nonfreezing temperatures for fertility preservation. Mol Reprod Dev 2022; 89:565-578. [PMID: 36370428 DOI: 10.1002/mrd.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Long-term preservation of sperm, oocytes, and gonadal tissues at ambient temperatures has the potential to lower the costs and simplify biobanking in human reproductive medicine, as well as for the management of animal populations. Over the past decades, different dehydration protocols and long-term storage solutions at nonfreezing temperatures have been explored, mainly for mammalian sperm cells. Oocytes and gonadal tissues are more challenging to dehydrate so little to no progress have been made. Currently, the detrimental effects of the drying process itself are better characterized than the impact of long-term storage at nonfreezing temperatures. While structural and functional properties of germ cells can be preserved after dehydration, a long list of damages and stresses in nuclei, organelles, and cytoplasmic membranes have been reported and sometimes mitigated. Characterizing those damages and better understanding the response of germ cells and tissues to the stress of dehydration is fundamental. It will contribute to the development of optimal protocols while proving the safety of alternative storage options for fertility preservation. The objective of this review is to (1) document the types of damages and stress responses, as well as their mitigation in cells dried with different techniques, and (2) propose new research directions.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Salman AA, Waheed MH, Ali-Abdulsahib AA, Atwan ZW. Low type I interferon response in COVID-19 patients: Interferon response may be a potential treatment for COVID-19. Biomed Rep 2021; 14:43. [PMID: 33786172 PMCID: PMC7995242 DOI: 10.3892/br.2021.1419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFN) are antiviral cytokines that mitigate the effects of invading viruses early on during the infection process. SARS-CoV and MERS induce weak IFN responses; hence, the clinical trials which included recombinant IFN accompanied with other antiviral drugs exhibited improved results in terms of shortening the duration of illness. The aim of the present study was to evaluate the type I IFN response in COVID-19 patients to determine whether it is sufficient to eliminate or reduce the severity of the infection, and whether it can be recommended as a potential therapy. Total RNA samples were converted to cDNA and used as templates to evaluate the gene expression levels of IFN regulatory factor (IRF)3 and IFN-β in COVID-19 patients or control. The results showed that IRF3 gene expression was upregulated ~250-fold compared with the negative samples. In contrast, IFN-β expression increased slightly in COVID-19 patients. Consistent with other coronaviruses, such as SARS-CoV and MERS, COVID-19 infection does not induce an efficient IFN response to reduce the severity of the virus. This may be attributed to an incomplete response of IRF3 in activating the IFN-β promoter in the infected patients. The results suggest IFN-β or α may be used as potential treatments.
Collapse
Affiliation(s)
| | | | | | - Zeenah Weheed Atwan
- Genetic Engineering Laboratory, Biology Department, College of Science, Basrah University, Basrah, Iraq
| |
Collapse
|
6
|
Rocha RA, Fox JM, Genever PG, Hancock Y. Biomolecular phenotyping and heterogeneity assessment of mesenchymal stromal cells using label-free Raman spectroscopy. Sci Rep 2021; 11:4385. [PMID: 33623051 PMCID: PMC7902661 DOI: 10.1038/s41598-021-81991-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Easy, quantitative measures of biomolecular heterogeneity and high-stratified phenotyping are needed to identify and characterise complex disease processes at the single-cell level, as well as to predict cell fate. Here, we demonstrate how Raman spectroscopy can be used in the difficult-to-assess case of clonal, bone-derived mesenchymal stromal cells (MSCs) to identify MSC lines and group these according to biological function (e.g., differentiation capacity). Biomolecular stratification is achieved using high-precision measures obtained from representative statistical sampling that also enable quantified heterogeneity assessment. Application to primary MSCs and human dermal fibroblasts shows use of these measures as a label-free assay to classify cell sub-types within complex heterogeneous cell populations, thus demonstrating the potential for therapeutic translation, and broad application to the phenotypic characterisation of other cells.
Collapse
Affiliation(s)
- R A Rocha
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Federal University of Technology-Paraná, Campus Dois Vizinhos, Paraná, 85660-000, Brazil
| | - J M Fox
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - P G Genever
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Y Hancock
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
- York Cross-disciplinary Centre for Systems Analysis, University of York, Heslington, York, YO30 5GG, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE19RT, UK.
| |
Collapse
|
7
|
Kalaiyarasu S, Bhatia S, Mishra N, Senthil Kumar D, Kumar M, Sood R, Rajukumar K, Ponnusamy B, Desai D, Singh VP. Elicitation of Highly Pathogenic Avian Influenza H5N1 M2e and HA2-Specific Humoral and Cell-Mediated Immune Response in Chicken Following Immunization With Recombinant M2e-HA2 Fusion Protein. Front Vet Sci 2021; 7:571999. [PMID: 33614753 PMCID: PMC7892607 DOI: 10.3389/fvets.2020.571999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The study was aimed to evaluate the elicitation of highly pathogenic avian influenza (HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1 sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2 were identified. Synthetic gene construct coding for M2e and two immunodominant HA2 conserved regions was designed and synthesized after codon optimization. The fusion recombinant protein (~38 kDa) was expressed in a prokaryotic system and characterized by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The M2e–HA2 fusion protein was found to be highly reactive with known AIV-positive and -negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens were immunized (i/m) with M2e synthetic peptide and M2e–HA2 recombinant protein along with one control group with booster on the 14th day and 28th day with the same dose and route. Pre-immunization sera and whole blood were collected on day 0 followed by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method revealed that the stimulation index (SI) was increased gradually from days 0 to 14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR) mRNA analysis by RT-qPCR showed maximum upregulation in the M2e–HA2-vaccinated group compared to M2e- and sham-vaccinated groups. M2e–HA2 recombinant protein-based indirect ELISA revealed that M2e–HA2 recombinant fusion protein has induced strong M2e and HA2-specific antibody responses from 7 days post-primary immunization, and then the titer gradually increased after booster dose. Similarly, M2e peptide ELISA revealed that M2e–HA2 recombinant fusion protein elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response was detected in the chicken immunized with synthetic peptide M2e alone or control group. Findings of this study will be very useful in future development of broad protective H5N1 influenza vaccine targeting M2e and HA2.
Collapse
Affiliation(s)
- Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Bhatia
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Dhanapal Senthil Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Manoj Kumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Katherukamem Rajukumar
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Boopathi Ponnusamy
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Dhruv Desai
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
| | - Vijendra Pal Singh
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
8
|
Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers (Basel) 2019; 11:cancers11121920. [PMID: 31810265 PMCID: PMC6966454 DOI: 10.3390/cancers11121920] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
Collapse
|
9
|
Zhang J, Hussain A, Yue S, Zhang T, Marshall J. Osmotically induced removal of lens epithelial cells to prevent PCO after pediatric cataract surgery: Pilot study to assess feasibility. J Cataract Refract Surg 2019; 45:1480-1489. [PMID: 31564322 DOI: 10.1016/j.jcrs.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Development of an osmotic-shock technique to remove human lens epithelial cells (LECs) as a preventive measure to address posterior capsule opacification (PCO) after pediatric cataract surgery. SETTING Department of Genetics, UCL Institute of Ophthalmology, London, England, and Department of Ophthalmology, Ruijin Hospital, Jiao Tong University, Shanghai, China. DESIGN Laboratory study. METHODS Various tissue preparations of human LECs (cultured on coverslips/collagen-coated membrane inserts, human lens capsule biopsies, and lens organ cultured PCO models) were subjected to a single or incremental hyperosmotic shock (NaCl, 350-4000 mOsm/L) in the presence of inhibitors of the Na+-K+-2Cl- cotransporter (NKCC) (to disable the regulatory volume increase [RVI] process). The integrity of the cell monolayer was determined by phase-contrast microscopy, viability assays, and measurement of transepithelial resistance. RESULTS Hyperosmotic shock (400 mOsm/L) caused rapid cell shrinkage (<5 minutes) in all the LEC models studied. In the absence of the NKCC inhibitor, the shrunk cells gradually returned to their original cell volume and architecture over time, while still exposed to the hyperosmotic shock. However, inhibition of the RVI process disabled the ability for restoration of cell volume leading to persistent cell shrinkage, subsequently resulting in cell detachment from the underlying support medium. CONCLUSION Hyperosmotic shock in the presence of inhibitors of the RVI process was effective in rapidly detaching LECs from their basement membranes. This technique could potentially facilitate removal of residual LECs left on the lens capsule after cataract surgery, thus decreasing or eliminating the risk for aggressive cell proliferation and the development of PCO.
Collapse
Affiliation(s)
- JinJun Zhang
- Department of Genetics, UCL Institute of Ophthalmology, London, England.
| | - Ali Hussain
- Department of Genetics, UCL Institute of Ophthalmology, London, England
| | - Sun Yue
- Department of Genetics, UCL Institute of Ophthalmology, London, England; Department of Ophthalmology, Ruijin Hospital, Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Department of Genetics, UCL Institute of Ophthalmology, London, England
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, England
| |
Collapse
|
10
|
Zanoni BV, Brasil Romão G, Andrade RS, Barretto Cicarelli RM, Trovatti E, Chiari-Andrèo BG, Iglesias M. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells: in vitro and in silico studies. Toxicol Res (Camb) 2019; 8:447-458. [PMID: 31160977 PMCID: PMC6505392 DOI: 10.1039/c8tx00338f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
Protic ionic liquids (PILs) are innovative chemical compounds, which due to their peculiar nature and amazing physico-chemical properties, have been studied as potential sustainable solvents in many areas of modern science, such as in the industrial fields of textile dyeing, pharmaceuticals, biotechnology, energy and many others. Due to their more than probable large-scale use in a short space of time, a wider analysis in terms of ecotoxicity and biological safety to humans has been attracting significant attention, once many ionic liquids were found to be "a little less than green compounds" towards cells and living organisms. The aim of this study is to investigate the cytotoxicity of 13 recently synthesized PILs, as well as to reinforce knowledge in terms of key thermodynamic magnitudes. All the studied compounds were tested for their in vitro toxic activities on two human cell lines (normal keratinocytes HaCaT and hepatocytes HepG2). In addition, due to the enormous number of possible combinations of anions and cations that can form ionic liquids, a group contribution QSAR model has been tested in order to predict their cytotoxicity. The estimated and experimental values were adequately correlated (correlation coefficient R 2 = 0.9260). The experimental obtained results showed their remarkable low toxicity for the studied in vitro systems.
Collapse
Affiliation(s)
- Bruna Varela Zanoni
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Gabriela Brasil Romão
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| | - Rebecca S Andrade
- Universidade Federal do Recôncavo da Bahia , Av. Centenário , 697 , Sim , CEP 44042-280 , Feira de Santana , BA , Brazil .
| | - Regina Maria Barretto Cicarelli
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Eliane Trovatti
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Bruna Galdorfini Chiari-Andrèo
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Miguel Iglesias
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| |
Collapse
|
11
|
Chloroquine Protects Human Corneal Epithelial Cells from Desiccation Stress Induced Inflammation without Altering the Autophagy Flux. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7627329. [PMID: 30519584 PMCID: PMC6241345 DOI: 10.1155/2018/7627329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Dry eye disease (DED) is a multifactorial ocular surface disorder affecting millions of individuals worldwide. Inflammation has been associated with dry eye and anti-inflammatory drugs are now being targeted as the alternate therapeutic approach for dry eye condition. In this study, we have explored the anti-inflammatory and autophagy modulating effect of chloroquine (CQ) in human corneal epithelial and human corneal fibroblasts cells exposed to desiccation stress, (an in-vitro model for DED). Gene and protein expression profiling of inflammatory and autophagy related molecular factors were analyzed in HCE-T and primary HCF cells exposed to desiccation stress with and without CQ treatment. HCE-T and HCF cells exposed to desiccation stress exhibited increased levels of activated p65, TNF-α, MCP-1, MMP-9, and IL-6. Further, treatment with CQ decreased the levels of active p65, TNF-α, MCP-1, and MMP-9 in cells underdesiccation stress. Increased levels of LC3B and LAMP1 markers in HCE-T cells exposed to desiccation stress suggest activation of autophagy and the addition of CQ did not alter these levels. Changes in the phosphorylation levels of MAPKinase and mTOR pathway proteins were found in HCE-T cells under desiccation stress with or without CQ treatment. Taken together, the data suggests that HCE-T cells under desiccation stress showed NFκB mediated inflammation, which was rescued through the anti-inflammatory effect of CQ without altering the autophagy flux. Therefore, CQ may be used as an alternate therapeutic management for dry eye condition.
Collapse
|
12
|
Anti-Inflammatory and Anti-Apoptotic Effects of Acer Palmatum Thumb. Extract, KIOM-2015EW, in a Hyperosmolar-Stress-Induced In Vitro Dry Eye Model. Nutrients 2018; 10:nu10030282. [PMID: 29495608 PMCID: PMC5872700 DOI: 10.3390/nu10030282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to assess the anti-inflammatory and anti-apoptotic effects of KIOM-2015EW, the hot-water extract of maple leaves in hyperosmolar stress (HOS)-induced human corneal epithelial cells (HCECs). HCECs were exposed to hyperosmolar medium and exposed to KIOM-2015EW with or without the hyperosmolar media. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production and apoptosis were observed, and the activation of mitogen-activated protein kinases (MAPKs) including extracellular signal regulated kinase (ERK), p38 and c-JUN N-terminal kinase (JNK) signaling and nuclear factor (NF)-κB was confirmed. Compared to isomolar medium, the induction of cell cytotoxicity significantly increased in HCECs exposed to hyperosmolar medium in a time-dependent manner. KIOM-2015EW-treatment significantly reduced the mRNA and protein expression of pro-inflammatory mediators and apoptosis. KIOM-2015EW-treatment inhibited HOS-induced MAPK signaling activation. Additionally, the HOS-induced increase in NF-κB phosphorylation was attenuated by KIOM-2015EW. The results demonstrated that KIOM-2015EW protects the ocular surface by suppressing inflammation in dry eye disease, and suggest that KIOM-2015EW may be used to treat several ocular surface diseases where inflammation plays a key role.
Collapse
|
13
|
Wu GQ, Lv CR, Jiang YT, Wang SY, Shao QY, Hong QH, Quan GB. The Replacement of Monosaccharide by Mannitol or Sorbitol in the Freezing Extender Enhances Cryosurvival of Ram Spermatozoa. Biopreserv Biobank 2016; 14:357-366. [DOI: 10.1089/bio.2015.0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guo Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Chun Rong Lv
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Yan Ting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Si Yu Wang
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Qing Yong Shao
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Qiong Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Guo Bo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| |
Collapse
|
14
|
Telonis-Scott M, Sgrò CM, Hoffmann AA, Griffin PC. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster. Mol Biol Evol 2016; 33:1053-67. [PMID: 26733490 PMCID: PMC4776712 DOI: 10.1093/molbev/msv349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philippa C Griffin
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. Compr Physiol 2014; 4:257-85. [PMID: 24692140 DOI: 10.1002/cphy.c130017] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).
Collapse
Affiliation(s)
- Samuel N Cheuvront
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | |
Collapse
|
16
|
Wang L, Dai W, Lu L. Osmotic stress-induced phosphorylation of H2AX by polo-like kinase 3 affects cell cycle progression in human corneal epithelial cells. J Biol Chem 2014; 289:29827-35. [PMID: 25202016 DOI: 10.1074/jbc.m114.597161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased concentrations of extracellular solutes affect cell function and fate by stimulating cellular responses, such as evoking MAPK cascades, altering cell cycle progression, and causing apoptosis. Our study results here demonstrate that hyperosmotic stress induced H2AX phosphorylation (γH2AX) by an unrevealed kinase cascade involving polo-like kinase 3 (Plk3) in human corneal epithelial (HCE) cells. We found that hyperosmotic stress induced DNA-double strand breaks and increased γH2AX in HCE cells. Phosphorylation of H2AX at serine 139 was catalyzed by hyperosmotic stress-induced activation of Plk3. Plk3 directly interacted with H2AX and was colocalized with γH2AX in the nuclei of hyperosmotic stress-induced cells. Suppression of Plk3 activity by overexpression of a kinase-silencing mutant or by knocking down Plk3 mRNA effectively reduced γH2AX in hyperosmotic stress-induced cells. This was consistent with results that show γH2AX was markedly suppressed in the Plk3(-/-) knock-out mouse corneal epithelial layer in response to hyperosmotic stimulation. The effect of hyperosmotic stress-activated Plk3 and increased γH2AX in cell cycle progression showed an accumulation of G2/M phase, altered population in G1 and S phases, and increased apoptosis. Our results for the first time reveal that hyperosmotic stress-activated Plk3 elicited γH2AX. This Plk3-mediated activation of γH2AX subsequently regulates the cell cycle progression and cell fate.
Collapse
Affiliation(s)
- Ling Wang
- From the Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502 and
| | - Wei Dai
- the Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Luo Lu
- From the Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502 and
| |
Collapse
|
17
|
Tyagi M, Bhattacharyya R, Bauri AK, Patro BS, Chattopadhyay S. DNA damage dependent activation of checkpoint kinase-1 and mitogen-activated protein kinase-p38 are required in malabaricone C-induced mitochondrial cell death. Biochim Biophys Acta Gen Subj 2014; 1840:1014-27. [DOI: 10.1016/j.bbagen.2013.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/15/2022]
|
18
|
Piorkowski GS, Bezanson GS, Jamieson RC, Hansen LT, Yost CK. Effect of hillslope position and manure application rates on the persistence of fecal source tracking indicators in an agricultural soil. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:450-458. [PMID: 25602646 DOI: 10.2134/jeq2013.07.0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The influence of liquid dairy manure (LDM) application rates (12.5 and 25 kL ha) and soil type on the decay rates of library-independent fecal source tracking markers (host-associated and mitochondrial DNA) and persistent (>58 d) population structure was examined in a field study. The soils compared were an Aquic Haplorthod and a Typic Haplorthod in Nova Scotia, Canada, that differed according to landscape position and soil moisture regime. Soil type and LDM application rate did not influence decay rates (0.045-0.057 d). population structure, in terms of the occurrence of abundance of strain types, varied according to soil type ( = 0.012) but did not vary by LDM application rate ( = 0.121). Decay of ruminant-specific (BacR), bovine-specific (CowM2), and mitochondrial DNA (AcytB) markers was analyzed for 13 d after LDM application. The decay rates of BacR were greater under high-LDM application rates (0.281-0.358 d) versus low-LDM application rates (0.212-0.236 d) but were unaffected by soil type. No decay rates could be calculated for the CowM2 marker because it was undetectable within 6 d after manure application. Decay rates for AcytB were lower for the Aquic Haplorthod (0.088-0.100 d), with higher moisture status compared with the Typic Haplorthod (0.135 d). Further investigation into the decay of fecal source tracking indicators in agricultural field soils is warranted to assess the influence of soil type and agronomic practice on the differential decay of relevant markers and the likelihood of transport in runoff.
Collapse
|
19
|
Terhzaz S, Overend G, Sebastian S, Dow JAT, Davies SA. The D. melanogaster capa-1 neuropeptide activates renal NF-kB signaling. Peptides 2014; 53:218-24. [PMID: 23954477 DOI: 10.1016/j.peptides.2013.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 01/20/2023]
Abstract
The capa peptide family exists in a very wide range of insects including species of medical, veterinary and agricultural importance. Capa peptides act via a cognate G-protein coupled receptor (capaR) and have a diuretic action on the Malpighian tubules of Dipteran and Lepidopteran species. Capa signaling is critical for fluid homeostasis and has been associated with desiccation tolerance in the fly, Drosophila melanogaster. The mode of capa signaling is highly complex, affecting calcium, nitric oxide and cyclic GMP pathways. Such complex physiological regulation by cell signaling pathways may occur ultimately for optimal organismal stress tolerance to multiple stressors. Here we show that D. melanogaster capa-1 (Drome-capa-1) acts via the Nuclear Factor kappa B (NF-kB) stress signaling network. Human PCR gene arrays of capaR-transfected Human Embryonic Kidney (HEK) 293 cells showed that Drome-capa-1 increases expression of NF-kB, NF-kB regulated genes including IL8, TNF and PTGS2, and NF-kB pathway-associated transcription factors i.e. EGR1, FOS, cJUN. Furthermore, desiccated HEK293 cells show increased EGR1, EGR3 and PTGS2 - but not IL8, expression. CapaR-transfected NF-kB reporter cells showed that Drome-capa-1 increased NF-kB promoter activity via increased calcium. In Malpighian tubules, both Drome-capa-1 stimulation and desiccation result in increased gene expression of the D. melanogaster NF-kB orthologue, Relish; as well as EGR-like stripe and klumpfuss. Drome-capa-1 also induces Relish translocation in tubule principal cells. Targeted knockdown of Relish in only tubule principal cells reduces desiccation stress tolerance of adult flies. Together, these data suggest that Drome-capa-1 acts in desiccation stress tolerance, by activating NF-kB signaling.
Collapse
Affiliation(s)
- Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gayle Overend
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sujith Sebastian
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Life and Veterinary Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
20
|
Loi P, Iuso D, Czernik M, Zacchini F, Ptak G. Towards storage of cells and gametes in dry form. Trends Biotechnol 2013; 31:688-95. [DOI: 10.1016/j.tibtech.2013.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
21
|
Sitaula R, Jimenez J, Bhowmick S. Osmotic Damage as a Predictor of Motility Loss During Convective Desiccation of Bovine Sperm. Biopreserv Biobank 2013; 11:371-8. [DOI: 10.1089/bio.2013.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ranjan Sitaula
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Jorge Jimenez
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Sankha Bhowmick
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| |
Collapse
|
22
|
Decrease in hyperosmotic stress-induced corneal epithelial cell apoptosis by L-carnitine. Mol Vis 2013; 19:1945-56. [PMID: 24068862 PMCID: PMC3782369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/17/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To characterize the osmoprotective properties of L-carnitine on human corneal epithelial cell volume and apoptosis during hyperosmotic stress. METHODS Human corneal limbal epithelial (HCLE) cells were exposed to culture medium at 300 mOsm (isotonic) or 500 mOsm (hyperosmotic) with or without L-carnitine (10 mM). Induction of apoptosis was detected by quantifying the proteolytic activity of caspase-8, caspase-9, and caspase-3/7 using caspase activity assays, the expression of tumor necrosis factor (TNF)-α with enzyme-linked immunosorbent assay, and annexin V/propidium iodide staining of HCLE cells evaluated with confocal microscopy and flow cytometry. Cell volume changes in response to hyperosmotic stress were analyzed using flow cytometry. RESULTS After the HCLE cells were exposed to hyperosmotic medium (500 mOsm), the percentage of shrunken cells and damaged/dead cells (stained positively for annexin V and/or propidium iodide) was six- and three-fold, respectively, higher than that under isotonic conditions (300 mOsm). This was paralleled by an increase in TNF-α concentration in media and caspase-8, -9, and -3/7 activities (six-, four-, ten-, and twelve-fold, respectively; all showing p < 0.001). Addition of L-carnitine during hyperosmotic stress partly restored cell volume and significantly reduced the concentration of TNF-α released (p = 0.005) and caspase-9 activity (p = 0.0125). Addition of L-carnitine reduced the percentage of hyperosmolarity-induced damaged/dead cells to levels observed under isotonic conditions. CONCLUSIONS L-carnitine can regulate human corneal epithelial cell volume under hyperosmotic stress and ameliorate hyperosmotic stress-induced apoptosis.
Collapse
|
23
|
Betaine stabilizes cell volume and protects against apoptosis in human corneal epithelial cells under hyperosmotic stress. Exp Eye Res 2013; 108:33-41. [DOI: 10.1016/j.exer.2012.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/17/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
|
24
|
Zhu Q, Liao C, Liu Y, Wang P, Guo W, He M, Huang Z. Ethanolic extract and water-soluble polysaccharide from Chaenomeles speciosa fruit modulate lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:441-447. [PMID: 23036814 DOI: 10.1016/j.jep.2012.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaenomeles speciosa fruits have been widely used in traditional Chinese medicine for treatment of diseases related to inflammatory reaction. This study aims to identify anti-inflammatory and immunomodulatory components of Chaenomeles speciosa fruit and unravel their potential mechanisms. MATERIALS AND METHODS Ethanolic extract and its n-hexane, chloroform, ethyl acetate and n-butanol fractions, as well as water-soluble polysaccharide, were prepared from dry fruits of Chaenomeles speciosa. The mouse macrophage-like RAW264.7 cells were induced by lipopolysaccharide (LPS) and used as an inflammatory cell model. Production of nitric oxide in the cells was determined by the Griess assay, and cell viability was tested by the MTT method. Cellular apoptosis was evaluated by fluorescence-activated cell sorting. Relative quantification of inflammation-related genes was analyzed by real-time PCR. RESULTS LPS-induced production of nitric oxide in RAW264.7 cells was significantly inhibited by the ethyl acetate fraction (EAF) at 200-800μg/ml, while Chaenomeles speciosa polysaccharide (CPS) promoted nitric oxide production at 250-750μg/ml either alone or in an additive fashion with LPS. Both EAF and CPS did not provoke noticeable cytotoxicity and apoptosis at the above effective concentrations. EAF significantly reduced LPS-induced upshift of iNOS mRNA level but showed no significant effect on the induction of IFN-γ and G-CSF, while CPS reduced the gene induction of TNF-α, IFN-γ and G-CSF by LPS. CONCLUSIONS EAF was able to inhibit nitric oxide production by reducing LPS-induced upshift of iNOS mRNA level. CPS was an activator of nitric oxide production through cytokines such as TNF-α, IFN-γ and G-CSF. These results demonstrate the therapeutic effects of both ethanolic and aqueous extracts of Chaenomeles speciosa fruit, a traditional edible medicine used in health maintenance and disease treatment.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee VHY, Lam IPY, Choi HS, Chow BKC, Lee LTO. The estrogen-related receptor alpha upregulates secretin expressions in response to hypertonicity and angiotensin II stimulation. PLoS One 2012; 7:e39913. [PMID: 22761926 PMCID: PMC3382582 DOI: 10.1371/journal.pone.0039913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/03/2012] [Indexed: 01/17/2023] Open
Abstract
Osmoregulation via maintenance of water and salt homeostasis is a vital process. In the brain, a functional secretin (SCT) and secretin receptor (SCTR) axis has recently been shown to mediate central actions of angiotensin II (ANGII), including initiation of water intake and stimulation of vasopressin (VP) expression and release. In this report, we provide evidence that estrogen-related receptor α (ERRα, NR3B1), a transcription factor mainly involved in metabolism, acts as an upstream activator of the SCT gene. In vitro studies using mouse hypothalamic cell line N-42 show that ERRα upregulates SCT promoter and gene expression. More importantly, knockdown of endogenous ERRα abolishes SCT promoter activation in response to hypertonic and ANGII stimulations. In mouse brain, ERRα coexpresses with SCT in various osmoregulatory brain regions, including the lamina terminalis and the paraventricular nucleus of the hypothalamus, and its expression is induced by hyperosmotic and ANGII treatments. Based on our data, we propose that both the upregulation of ERRα and/or the increased binding of ERRα to the mouse SCT promoter are two possible mechanisms for the elevated SCT expression upon hyperosmolality and central ANGII stimulation.
Collapse
Affiliation(s)
- Vien H. Y. Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ian P. Y. Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hueng-Sik Choi
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
26
|
Banton MC, Tunnacliffe A. MAPK phosphorylation is implicated in the adaptation to desiccation stress in nematodes. J Exp Biol 2012; 215:4288-98. [DOI: 10.1242/jeb.074799] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Summary
Some nematodes can survive almost complete desiccation by entering an ametabolic state called anhydrobiosis requiring the accumulation of protective molecules such as trehalose and LEA proteins. However, it is not known how anhydrobiotic organisms sense and regulate the response to water loss. Mitogen-activated protein kinases (MAPKs) are highly conserved signalling proteins that regulate adaptation to various stresses. Here, we first compared the anhydrobiotic potential of three nematode species, Caenorhabditis elegans (Maupas, 1900), Aphelenchus avenae (Bastian, 1865) and Panagrolaimus superbus (Fuchs, 1930), and then determined the phosphorylation status of the MAPKs p38, JNK and ERK during desiccation and rehydration. C. elegans was unable to undergo anhydrobiosis even after an initial phase of slow drying (preconditioning), while A. avenae did survive desiccation after preconditioning. In contrast, P. superbus withstood desiccation under rapid drying conditions, although survival rates improved with preconditioning. These results characterise C. elegans as desiccation sensitive, A. avenae as a slow desiccation strategist anhydrobiote, and P. superbus as a fast desiccation strategist anhydrobiote. Both C. elegans and A. avenae showed increased MAPK phosphorylation during drying, consistent with an attempt to mount protection systems against desiccation stress. In P. superbus, however, MAPK phosphorylation was apparent prior to water loss and then decreased on dehydration, suggesting that signal transduction pathways are constitutively active in this nematode. Inhibition of p38 and JNK in P. superbus decreased its desiccation tolerance. This is consistent with the designation of P. superbus as a fast desiccation strategist and its high level of preparedness for anhydrobiosis in the hydrated state. These findings show that MAPKs play an important role in the survival of organisms during anhydrobiosis.
Collapse
|
27
|
Hosseinzadeh Z, Bhavsar SK, Lang F. Down-Regulation of the Myoinositol Transporter SMIT by JAK2. Cell Physiol Biochem 2012. [DOI: 10.1159/000343335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Wang L, Payton R, Dai W, Lu L. Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells. J Biol Chem 2010; 286:1951-8. [PMID: 21098032 DOI: 10.1074/jbc.m110.166009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated extracellular solute concentration (hyperosmotic stress) perturbs cell function and stimulates cell responses by evoking MAPK cascades and activating AP-1 transcription complex resulting in alterations of gene expression, cell cycle arrest, and apoptosis. The results presented here demonstrate that hyperosmotic stress elicited increases in ATF-2 phosphorylation through a novel Polo-like kinase 3 (Plk3) pathway in human corneal epithelial (HCE) cells. We found in hyperosmotic stress-induced HCE cells that Plk3 transferred to the nuclear compartment and was colocalized with ATF-2 in nuclei. Kinase activity of Plk3 was significantly activated by hyperosmotic stimulation. Further downstream, active Plk3 phosphorylated ATF-2 at the Thr-71 site in vivo and in vitro. Overexpression of Plk3 and its mutants enhanced hyperosmotic stress-induced ATF-2 phosphorylation. In contrast, suppression of Plk3 by knocking down Plk3 mRNA effectively diminished the effect of hyperosmotic stress-induced ATF-2 phosphorylation. The effect of hyperosmotic stress-induced activation of Plk3 on ATF-2 transcription factor function was also examined in CRE reporter-overexpressed HCE cells. Our results for the first time reveal that hyperosmotic stress can activate the Plk3 signaling pathway that subsequently regulates the AP-1 complex by directly phosphorylating ATF-2 independent from the effects of JNK and p38 activation.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
29
|
Huang Z, Banton MC, Tunnacliffe A. Modeling anhydrobiosis: activation of the mitogen-activated protein kinase ERK by dehydration in both human cells and nematodes. ACTA ACUST UNITED AC 2010; 313:660-70. [DOI: 10.1002/jez.637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/21/2010] [Accepted: 07/13/2010] [Indexed: 11/07/2022]
|
30
|
Sitaula R, Fowler A, Toner M, Bhowmick S. A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm. Cryobiology 2010; 60:331-6. [DOI: 10.1016/j.cryobiol.2010.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
31
|
Chakraborty N, Biswas D, Elliott GD. A Simple Mechanistic Way to Increase the Survival of Mammalian Cells During Processing for Dry Storage. Biopreserv Biobank 2010; 8:107-14. [DOI: 10.1089/bio.2010.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nilay Chakraborty
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Debasree Biswas
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Gloria D. Elliott
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
32
|
Byun JY, Kim MJ, Eum DY, Yoon CH, Seo WD, Park KH, Hyun JW, Lee YS, Lee JS, Yoon MY, Lee SJ. Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol 2009; 76:734-44. [PMID: 19574249 DOI: 10.1124/mol.109.056259] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Naturally occurring triterpenoid compounds have long been used as anti-inflammatory, antimalarial, and insecticidal agents. It has become evident that some of the natural or synthetic triterpenoids have promising clinical potential as both a therapeutic and chemopreventive agent for cancer. However, the molecular basis for the antitumor activity of triterpenoid has yet to be defined. In this study, we show that pristimerin, a natural triterpenoid, induces mitochondrial cell death in human cervical cancer cells and that reactive oxygen species (ROS)-dependent activation of both Bax and poly(ADP-ribose) polymerase-1 (PARP-1) is critically required for the mitochondrial dysfunction. We also showed that c-Jun N-terminal kinase (JNK) is involved in ROS-dependent Bax activation. Treatment of pristimerin induced an increase in intracellular ROS, JNK activation, conformational change, and mitochondrial redistribution of Bax, mitochondrial membrane potential loss, and cell death. The PARP-1 was also found to be activated by pristimerin treatment. An antioxidant, N-acetyl-l-cysteine (NAC), inhibited pristimerin-induced JNK activation, Bax relocalization, and PARP-1 activation, as well as mitochondrial cell death. Moreover, inhibition of JNK clearly suppressed conformational change and mitochondrial translocation of Bax and subsequent mitochondrial cell death but did not affect PARP-1 activation. Inhibition of PARP-1 with 1,5-dihydroxyisoquinoline (DIQ) or with small interfering RNA of PARP-1 significantly attenuated pristimerin-induced mitochondrial membrane potential loss and cell death but did not affect JNK activation and Bax relocalization. These results indicate that the natural triterpenoid pristimerin induces mitochondrial cell death through ROS-dependent activation of both Bax and PARP-1 in human cervical cancer cells and that JNK is involved in ROS-dependent Bax activation.
Collapse
Affiliation(s)
- Joo-Yun Byun
- Department of Chemistry, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schill RO, Mali B, Dandekar T, Schnölzer M, Reuter D, Frohme M. Molecular mechanisms of tolerance in tardigrades: New perspectives for preservation and stabilization of biological material. Biotechnol Adv 2009; 27:348-52. [DOI: 10.1016/j.biotechadv.2009.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Adhikari BN, Wall DH, Adams BJ. Desiccation survival in an Antarctic nematode: molecular analysis using expressed sequenced tags. BMC Genomics 2009; 10:69. [PMID: 19203352 PMCID: PMC2667540 DOI: 10.1186/1471-2164-10-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Nematodes are the dominant soil animals in Antarctic Dry Valleys and are capable of surviving desiccation and freezing in an anhydrobiotic state. Genes induced by desiccation stress have been successfully enumerated in nematodes; however we have little knowledge of gene regulation by Antarctic nematodes which can survive multiple environmental stresses. To address this problem we investigated the genetic responses of a nematode species, Plectus murrayi, that is capable of tolerating Antarctic environmental extremes, in particular desiccation and freezing. In this study, we provide the first insight into the desiccation induced transcriptome of an Antarctic nematode through cDNA library construction and suppressive subtractive hybridization. Results We obtained 2,486 expressed sequence tags (ESTs) from 2,586 clones derived from the cDNA library of desiccated P. murrayi. The 2,486 ESTs formed 1,387 putative unique transcripts of which 523 (38%) had matches in the model-nematode Caenorhabditis elegans, 107 (7%) in nematodes other than C. elegans, 153 (11%) in non-nematode organisms and 605 (44%) had no significant match to any sequences in the current databases. The 1,387 unique transcripts were functionally classified by using Gene Ontology (GO) hierarchy and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results indicate that the transcriptome contains a group of transcripts from diverse functional areas. The subtractive library of desiccated nematodes showed 80 transcripts differentially expressed during desiccation stress, of which 28% were metabolism related, 19% were involved in environmental information processing, 28% involved in genetic information processing and 21% were novel transcripts. Expression profiling of 14 selected genes by quantitative Real-time PCR showed 9 genes significantly up-regulated, 3 down-regulated and 2 continuously expressed in response to desiccation. Conclusion The establishment of a desiccation EST collection for Plectus murrayi, a useful model in assessing the structural, physiological, biochemical and genetic aspects of multiple stress tolerance, is an important step in understanding the genome level response of this nematode to desiccation stress. The type of transcript analysis performed in this study sets the foundation for more detailed functional and genome level analyses of the genes involved in desiccation tolerance in nematodes.
Collapse
Affiliation(s)
- Bishwo N Adhikari
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.
| | | | | |
Collapse
|
35
|
Elliott GD, Chakraborty N, Biswas D. Anhydrous Preservation of Mammalian Cells: Cumulative Osmotic Stress Analysis. Biopreserv Biobank 2008; 6:253-60. [DOI: 10.1089/bio.2008.0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gloria D. Elliott
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Nilay Chakraborty
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Debasree Biswas
- Department of Information Technology, Clark University, Worcester, Massachusetts
| |
Collapse
|
36
|
Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci U S A 2007; 104:18073-8. [PMID: 17984052 PMCID: PMC2084298 DOI: 10.1073/pnas.0706964104] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of certain plants, invertebrates, and microorganisms to survive almost complete loss of water has long been recognized, but the molecular mechanisms of this phenomenon remain to be defined. One phylogenetically widespread adaptation is the presence of abundant, highly hydrophilic proteins in desiccation-tolerant organisms. The best characterized of these polypeptides are the late embryogenesis abundant (LEA) proteins, first described in plant seeds >20 years ago but recently identified in invertebrates and bacteria. The function of these largely unstructured proteins has been unclear, but we now show that a group 3 LEA protein from the desiccation-tolerant nematode Aphelenchus avenae is able to prevent aggregation of a wide range of other proteins both in vitro and in vivo. The presence of water is essential for maintenance of the structure of many proteins, and therefore desiccation stress induces unfolding and aggregation. The nematode LEA protein is able to abrogate desiccation-induced aggregation of the water-soluble proteomes from nematodes and mammalian cells and affords protection during both dehydration and rehydration. Furthermore, when coexpressed in a human cell line, the LEA protein reduces the propensity of polyglutamine and polyalanine expansion proteins associated with neurodegenerative diseases to form aggregates, demonstrating in vivo function of an LEA protein as an antiaggregant. Finally, human cells expressing LEA protein exhibit increased survival of dehydration imposed by osmotic upshift, consistent with a broad protein stabilization function of LEA proteins under conditions of water stress.
Collapse
|
37
|
Ostrowski J, Mikula M, Karczmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, Gaj P, Dadlez M, Butruk E, Regula J. Molecular defense mechanisms of Barrett's metaplasia estimated by an integrative genomics. J Mol Med (Berl) 2007; 85:733-43. [PMID: 17415542 DOI: 10.1007/s00109-007-0176-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/11/2007] [Accepted: 01/30/2007] [Indexed: 12/18/2022]
Abstract
Barrett's esophagus is characterized by the replacement of squamous epithelium with specialized intestinal metaplastic mucosa. The exact mechanisms of initiation and development of Barrett's metaplasia remain unknown, but a hypothesis of "successful adaptation" against noxious reflux components has been proposed. To search for the repertoire of adaptation mechanisms of Barrett's metaplasia, we employed high-throughput functional genomic and proteomic methods that defined the molecular background of metaplastic mucosa resistance to reflux. Transcriptional profiling was established for 23 pairs of esophageal squamous epithelium and Barrett's metaplasia tissue samples using Affymetrix U133A 2.0 GeneChips and validated by quantitative real-time polymerase chain reaction. Differences in protein composition were assessed by electrophoretic and mass-spectrometry-based methods. Among 2,822 genes differentially expressed between Barrett's metaplasia and squamous epithelium, we observed significantly overexpressed metaplastic mucosa genes that encode cytokines and growth factors, constituents of extracellular matrix, basement membrane and tight junctions, and proteins involved in prostaglandin and phosphoinositol metabolism, nitric oxide production, and bioenergetics. Their expression likely reflects defense and repair responses of metaplastic mucosa, whereas overexpression of genes encoding heat shock proteins and several protein kinases in squamous epithelium may reflect lower resistance of normal esophageal epithelium than Barrett's metaplasia to reflux components. Despite the methodological and interpretative difficulties in data analyses discussed in this paper, our studies confirm that Barrett's metaplasia may be regarded as a specific microevolution allowing for accumulation of mucosal morphological and physiological changes that better protect against reflux injury.
Collapse
Affiliation(s)
- Jerzy Ostrowski
- Department of Gastroenterology, Medical Center for Postgraduate Education, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, ul. Roentgena 5, 02-781, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tyson T, Reardon W, Browne JA, Burnell AM. Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants. Int J Parasitol 2007; 37:763-76. [PMID: 17306805 DOI: 10.1016/j.ijpara.2006.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/13/2006] [Accepted: 12/17/2006] [Indexed: 01/03/2023]
Abstract
The dauer juvenile (DJ) stage of the insect parasitic nematode Steinernema carpocapsae is the only stage in the life cycle which is capable of surviving outside its host and it is adapted for tolerating environmental stresses and for host finding. We have isolated 45 unique expressed sequence tags (ESTs) that are up-regulated in response to desiccation in S. carpocapsae DJs. The majority of these ESTs were co-expressed in response to desiccation and osmotic stress and were generally not induced in response to heat and cold stress. Thirty-two ESTs showed similarity to known sequences. Among these were sequences which encode putative signalling molecules or transcription factors, sequences which detoxify reactive oxygen species, two C-type lectin sequences, ESTs which encode membrane-associated proteins and seven distinct late embryogenic abundant (LEA) sequences. We also isolated 13 novel ESTs. These data show that the molecular response to desiccation stress in entomopathogenic nematode DJs is complex and parallels many of the adaptive changes which occur in drought tolerant plants during exposure to desiccation and osmotic stress. A notable feature of the desiccation response of plants is the number and diversity of hydrophilic LEA proteins synthesised in response to desiccation. All of the LEA sequences detected in animals to date, including those reported in this study, belong to LEA3 group. We show that S. carpocapsae expresses several novel sequences which encode putative hydrophilic and natively unfolded proteins. It is likely that these novel and putative proteins play an important role in desiccation tolerance, possibly by carrying out analogous roles in nematodes to those carried out by the other LEA protein classes in plants.
Collapse
Affiliation(s)
- Trevor Tyson
- Institute of Bioengineering and Agroecology, Biology Department, National University of Ireland Maynooth, Maynooth Co, Kildare, Ireland
| | | | | | | |
Collapse
|
39
|
Alfieri RR, Petronini PG. Hyperosmotic stress response: comparison with other cellular stresses. Pflugers Arch 2007; 454:173-85. [PMID: 17206446 DOI: 10.1007/s00424-006-0195-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Cellular responses induced by stress are essential for the survival of cells under adverse conditions. These responses, resulting in cell adaptation to the stress, are accomplished by a variety of processes at the molecular level. After an alteration in homeostatic conditions, intracellular signalling processes link the sensing mechanism to adaptive or compensatory changes in gene expression. The ability of cells to adapt to hyperosmotic stress involves early responses in which ions move across cell membranes and late responses characterized by increased synthesis of either membrane transporters essential for uptake of organic osmolytes or of enzymes involved in their synthesis. The goal of these responses is to return the cell to its normal size and maintain cellular homeostasis. The enhanced synthesis of molecular chaperones, such as heat shock proteins, is another important component of the adaptive process that contributes to cell survival. Some responses are common to different stresses, whereas others are specific. In the first part of the review, we illustrate the characteristic and specific features of adaptive response to hypertonicity; we then describe similarities to and differences from other cellular stresses, such as genotoxic agents, nutrient starvation and heat shock.
Collapse
Affiliation(s)
- Roberta R Alfieri
- Dipartimento di Medicina Sperimentale, Sezione di Patologia Molecolare e Immunologia, Università degli Studi di Parma, 43100 Parma, Italy.
| | | |
Collapse
|
40
|
Ma FY, Flanc RS, Tesch GH, Han Y, Atkins RC, Bennett BL, Friedman GC, Fan JH, Nikolic-Paterson DJ. A Pathogenic Role for c-Jun Amino-Terminal Kinase Signaling in Renal Fibrosis and Tubular Cell Apoptosis. J Am Soc Nephrol 2007; 18:472-84. [PMID: 17202416 DOI: 10.1681/asn.2006060604] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis and tubular apoptosis are common mechanisms of progressive kidney disease. In vitro studies have implicated the c-Jun amino-terminal kinase (JNK) pathway in these processes. Both of the major JNK isoforms, JNK1 and JNK2, are expressed in the kidney, but their relative contribution to JNK signaling is unknown. This study investigated the role of JNK signaling in renal fibrosis and tubular apoptosis in the unilateral ureteral obstruction model using two different approaches: (1) Mice that were deficient in either JNK1 or JNK2 and (2) a specific inhibitor of all JNK isoforms, CC-401. Western blotting and immunostaining identified a marked increase in JNK signaling in the obstructed kidney, with substantial redundancy between JNK1 and JNK2 isoforms. Administration of CC-401 blocked JNK signaling in the rat obstructed kidney and significantly inhibited renal fibrosis in terms of interstitial myofibroblast accumulation and collagen IV deposition. This effect was attributed to suppression of gene transcription for the profibrotic molecules TGF-beta1 and connective tissue growth factor. CC-401 treatment also significantly reduced tubular apoptosis in the obstructed kidney. Genetic deletion of JNK1 or JNK2 did not protect mice from renal fibrosis in the unilateral ureteral obstruction model, but JNK1 deletion did result in a significant reduction in tubular cell apoptosis. In conclusion, this is the first study to demonstrate that JNK signaling plays a pathogenic role in renal fibrosis and tubular apoptosis. Furthermore, JNK1 plays a nonredundant role in tubular cell apoptosis. These studies identify the JNK pathway as a potential therapeutic target in progressive kidney disease.
Collapse
Affiliation(s)
- Frank Y Ma
- Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Dehydration through evaporation, or air drying, is expected to have both similarities and differences to osmostress. Both stresses involve water loss, but the degree of dehydration will ultimately be more severe during desiccation. Despite the severity of desiccation stress, there are examples of organisms that can survive almost complete water loss, including resurrection plants and plant seeds, certain invertebrates among the nematodes, brine shrimps, tardigrades and bdelloid rotifers, and many microorganisms, including bakers' yeast. During desiccation, these organisms enter a state of suspended animation, a process known as anhydrobiosis ("life without water"). For other organisms, desiccation is lethal, but there is considerable interest in using what is known about anhydrobiosis to confer desiccation tolerance on sensitive cell types, such as mammalian cells. Success with this approach, which we have termed anhydrobiotic engineering, will require a more complete knowledge of the mechanisms of desiccation tolerance and the sensing and response of nontolerant organisms to extreme dehydration. With this goal in mind, we have attempted to characterize the response of human tissue culture cells to desiccation and to compare this response with osmotic upshift. This chapter describes some of the methods used to begin to uncover the response to evaporative water loss in human cell cultures.
Collapse
Affiliation(s)
- Zebo Huang
- College of Pharmacy, Wuhan University, Wuhan, China
| | | |
Collapse
|
42
|
Blumer JB, Smrcka AV, Lanier S. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 2006; 113:488-506. [PMID: 17240454 PMCID: PMC1978177 DOI: 10.1016/j.pharmthera.2006.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 01/14/2023]
Abstract
Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents and plays an important role in adaptive processes of organs; aberrant processing of signals through these transducing systems is a component of various disease states. In addition to G-protein coupled receptor (GPCR)-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Galphabetagamma heterotrimer or Galpha and Gbetagamma subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Galpha and Gbetagamma) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Galphabetagamma. Such regulatory accessory proteins include the family of regulator of G-protein signaling (RGS) proteins that accelerate the GTPase activity of Galpha and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor-independent activators of G-protein signaling (AGS) proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways, and provide a platform for diverse functions of both the heterotrimeric Galphabetagamma and the individual Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
| | - Alan V. Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 711, Rochester, NY 14642-8711
| | - S.M. Lanier
- ** Corresponding Author, Stephen M. Lanier, Ph.D., Department of Pharmacology, Medical University of South Carolina, Colcock Hall, 2nd Floor, PO Box 250002, 179 Ashley Avenue, Charleston, SC 29425, 843-792-0442, E-mail:
| |
Collapse
|
43
|
Huang Z, Tunnacliffe A. Cryptobiosis, aging, and cancer: yin-yang balancing of signaling networks. Rejuvenation Res 2006; 9:292-6. [PMID: 16706657 DOI: 10.1089/rej.2006.9.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some organisms adapt to persistent and severe stress by reversibly adjusting life-death balance to a new equilibrium, e.g., anhydrobiosis ("life without water") enables survival in a quiescent state on extreme desiccation. Aging is characterized by declining response and increasing vulnerability to stress, and the balance slowly, and irreversibly, tilts toward death. Although tumorigenesis tips the balance of cells to prolonged life, paradoxically it can cause organismal death. At the molecular level, all these phenomena involve complex signaling pathways, but it is highly likely that the overall balance of signaling outcomes, rather than individual signals themselves, plays the pivotal role in life-death decisions.
Collapse
Affiliation(s)
- Zebo Huang
- Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Jack GD, Mead EA, Garst JF, Cabrera MC, DeSantis AM, Slaughter SM, Jervis J, Brooks AI, Potts M, Helm RF. Long term metabolic arrest and recovery of HEK293 spheroids involves NF-kappaB signaling and sustained JNK activation. J Cell Physiol 2006; 206:526-36. [PMID: 16155929 DOI: 10.1002/jcp.20499] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding how cells withstand a depletion of intracellular water is relevant to the study of longevity, aging, and quiescence because one consequence of air-drying is metabolic arrest. After removal of medium, HEK293 spheroids with intracellular water content of approximately 65% survived partial vacuum, with antistatic control, for weeks in the dark at 25 degrees C. In contrast, only a limited exposure of monolayers to air was lethal; the mitochondrion being a target of this stress. The pathways activated during the long-term arrest and recovery of spheroids depended on both NF-kappaB signaling and sustained JNK activation. A cyclical cascade, presumably originating from an intercellular stress signal, led to endogenous cytokine production (TNF-alpha, IL-1b, and IL-8) and propagation of the cellular stress signal through the co-activation of NF-kappaB and JNK. Increased levels of downstream pathway signaling members, specifically Gadd45beta, c-jun, and ATF3 were observed, as was activation of c-jun (phosphorylation). Activation of these pathways permit cells to survive long-term storage and recovery because chemical inhibition of both NF-kappaB nuclear translocation and JNK phosphorylation led to cell death. The capacity of an immortalized cell to enter, and then exit, a state of long-term quiescence, without genetic or chemical intervention, has implications for the study of cell transformation. In addition, the ability to monitor the relevant signaling pathways at endogenous levels, from effector to transcriptional regulator, emphasizes the utility of multicellular aggregate models in delineating stress response pathways.
Collapse
Affiliation(s)
- Graham D Jack
- Department of Biochemistry, Virginia Tech Center for Genomics, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Huang Z, Tunnacliffe A. Gene induction by desiccation stress in human cell cultures. FEBS Lett 2005; 579:4973-7. [PMID: 16115627 DOI: 10.1016/j.febslet.2005.07.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/17/2005] [Accepted: 07/30/2005] [Indexed: 11/28/2022]
Abstract
One strategy for investigating desiccation tolerance is to use mammalian cells, which are sensitive to desiccation, as a model for testing putative adaptive mechanisms. However, how mammalian cells themselves respond to desiccation is poorly characterised. Although MAPK signal transduction pathways are activated by desiccation of human cells, hypertonicity-responsive genes AR, BGT1 and SMIT are not significantly induced, although they are proposed to be regulated by physiological changes which should occur during drying. To determine whether a response to desiccation occurs at the transcriptional level in human cells, we performed genome-wide microarray analysis. Twenty upregulated genes, including early stress response and transcription factor genes, were identified, most of which, e.g., EGR1, EGR3, SNAI1, RASD1 and GADD45B, were also induced by hypertonicity, indicating common regulatory mechanisms. Our data suggest that human cells can initiate a complex desiccation stress response distinct from, but overlapping with, that to hypertonic stress.
Collapse
Affiliation(s)
- Zebo Huang
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | |
Collapse
|
46
|
Liedtke W. TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J Physiol 2005; 567:53-8. [PMID: 15961428 PMCID: PMC1474158 DOI: 10.1113/jphysiol.2005.088963] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The TRPV4 ion channel, previously named vanilloid receptor-related osmotically activated channel (VR-OAC), functions in vivo in the transduction of osmotic and mechanical stimuli. In trpv4 null mice, TRPV4 was found to be necessary for the maintenance of systemic osmotic equilibrium, and for normal thresholds in response to noxious mechanical stimuli. In a Caenorhabditis elegans TRPV mutant transgenic for mammalian TRPV4, the mammalian transgene was directing the osmotic and mechanical avoidance response in the context of the ASH 'nociceptive' neurone. Molecular mechanisms of gating of TRPV4 in vivo are not known at this point and have to be determined.
Collapse
Affiliation(s)
- Wolfgang Liedtke
- Center for Translational Neuroscience, Duke University Medical Center, Box 2900, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Liedtke W. TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 2005; 451:176-80. [PMID: 15952033 DOI: 10.1007/s00424-005-1449-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel was named initially vanilloid-receptor-related osmotically activated channel (VR-OAC). Preliminary answers to the question, "What is the function of the trpv4 gene in live animals ?" are highlighted briefly in this review. In trpv4 null mice, TRPV4 is necessary for the maintenance of osmotic equilibrium, and in Caenorhabditis elegans transgenic for mammalian TRPV4, TRPV4 directs the osmotic avoidance response in the context of the ASH "nociceptive" neuron. The molecular mechanisms of gating of TRPV4 in vivo need to be determined; in particular, whether TRPV4 in live animals is gated via phosphorylation of defined amino-acid residues or more directly through the osmotic stimulus itself.
Collapse
Affiliation(s)
- Wolfgang Liedtke
- Center for Translational Neuroscience, Duke University Medical Center, Box 2900, Durham, NC 27710, USA.
| |
Collapse
|
48
|
Gal TZ, Glazer I, Koltai H. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 2005; 577:21-6. [PMID: 15527756 DOI: 10.1016/j.febslet.2004.09.049] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/21/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
In order to establish a functional role for late embryogenesis abundant (LEA) proteins in response to stress conditions in Caenorhabditis elegans, we silenced the expression of an LEA (Ce-lea-1) gene and determined the survival of worms under stress conditions. Ce-lea-1 transcription was induced during dehydration of C. elegans dauer juveniles. Following partial silencing of Ce-lea-1 transcription, we demonstrated a specific and significant reduction in worm survival during induction of desiccation, osmotic and heat stress. Together, these results establish a functional role for Ce-lea-1 in stress survival of C. elegans and suggest that Ce-lea-1 may function as a component that is common to the responses to the examined stress conditions.
Collapse
Affiliation(s)
- Tali Z Gal
- Department of Nematology, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | | | | |
Collapse
|
49
|
Sheikh-Hamad D, Gustin MC. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 2004; 287:F1102-10. [PMID: 15522988 DOI: 10.1152/ajprenal.00225.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptation to hypertonicity in mammalian cells is driven by multiple signaling pathways that include p38 kinase, Fyn, the catalytic subunit of PKA, ATM, and JNK2. In addition to the well-characterized tonicity enhancer (TonE)-TonE binding protein interaction, other transcription factors (and their respective cis elements) can potentially respond to hypertonicity. This review summarizes the current knowledge about the signaling pathways that regulate the adaptive response to osmotic stress and discusses new insights from yeast that could be relevant to the osmostress response in mammals.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Affiliation(s)
- Joan D Ferraris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA.
| | | |
Collapse
|