1
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Mengozzi A, Costantino S, Mongelli A, Mohammed SA, Gorica E, Delfine V, Masi S, Virdis A, Ruschitzka F, Paneni F. Epigenetic Signatures in Arterial Hypertension: Focus on the Microvasculature. Int J Mol Sci 2023; 24:ijms24054854. [PMID: 36902291 PMCID: PMC10003673 DOI: 10.3390/ijms24054854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Systemic arterial hypertension (AH) is a multifaceted disease characterized by accelerated vascular aging and high cardiometabolic morbidity and mortality. Despite extensive work in the field, the pathogenesis of AH is still incompletely understood, and its treatment remains challenging. Recent evidence has shown a deep involvement of epigenetic signals in the regulation of transcriptional programs underpinning maladaptive vascular remodeling, sympathetic activation and cardiometabolic alterations, all factors predisposing to AH. After occurring, these epigenetic changes have a long-lasting effect on gene dysregulation and do not seem to be reversible upon intensive treatment or the control of cardiovascular risk factors. Among the factors involved in arterial hypertension, microvascular dysfunction plays a central role. This review will focus on the emerging role of epigenetic changes in hypertensive-related microvascular disease, including the different cell types and tissues (endothelial cells, vascular smooth muscle cells and perivascular adipose tissue) as well as the involvement of mechanical/hemodynamic factors, namely, shear stress.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Shafeeq A. Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence: or francesco.paneni@uzh; Tel.: +41-44-6355096
| |
Collapse
|
3
|
Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1571705. [PMID: 35437456 PMCID: PMC9013311 DOI: 10.1155/2022/1571705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.
Collapse
|
4
|
Kim SR, Jiang K, Ferguson CM, Tang H, Chen X, Zhu X, Hickson LJ, Tchkonia T, Kirkland JL, Lerman LO. Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. Am J Physiol Renal Physiol 2020; 318:F1167-F1176. [PMID: 32223312 DOI: 10.1152/ajprenal.00535.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence, a permanent arrest of cell proliferation, is characterized by a senescence-associated secretory phenotype (SASP), which reinforces senescence and exerts noxious effects on adjacent cells. Recent studies have suggested that transplanting small numbers of senescent cells suffices to provoke tissue inflammation. We hypothesized that senescent cells can directly augment renal injury. Primary scattered tubular-like cells (STCs) acquired from pig kidneys were irradiated by 10 Gy of cesium radiation, and 3 wk later cells were characterized for levels of senescence and SASP markers. Control or senescent STCs were then prelabeled and injected (5 × 105 cells) into the aorta of C57BL/6J mice. Four weeks later, renal oxygenation was studied in vivo using 16.4-T magnetic resonance imaging and function by plasma creatinine level. Renal markers of SASP, fibrosis, and microvascular density were evaluated ex vivo. Per flow cytometry, irradiation induced senescence in 80-99% of STCs, which showed increased gene expression of senescence and SASP markers, senescence-associated β-galactosidase staining, and cytokine levels (especially IL-6) secreted in conditioned medium. Four weeks after injection, cells were detected engrafted in the mouse kidneys with no evidence for rejection. Plasma creatinine and renal tissue hypoxia increased in senescent compared with control cells. Senescent kidneys were more fibrotic, with fewer CD31+ endothelial cells, and showed upregulation of IL-6 gene expression. Therefore, exogenously delivered senescent renal STCs directly injure healthy mouse kidneys. Additional studies are needed to determine the role of endogenous cellular senescence in the pathogenesis of kidney injury and evaluate the utility of senolytic therapy.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaojun Chen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.,Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - XiangYang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Watkins JM, von Chamier M, Brown MB, Reyes L, Hayward LF. Prenatal infection with Mycoplasma pulmonis in rats exaggerates the angiotensin II pressor response in adult offspring. Am J Physiol Regul Integr Comp Physiol 2019; 318:R338-R350. [PMID: 31850818 DOI: 10.1152/ajpregu.00194.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to different stressors in utero is linked to adult diseases such as obesity and hypertension. In this study, the impact of prenatal infection (PNI) on adult body weight and cardiovascular function was evaluated using a naturally occurring rodent pathogen, Mycoplasma pulmonis (MP). Pregnant Sprague-Dawley rats were infected with MP on gestational day 14 and gave birth naturally. Adult PNI offspring weighed more than controls, but resting mean arterial pressure (MAP) was unchanged. Subcutaneous injection of angiotensin II (10 μg/kg) elicited a rise in MAP that was greater in both male and female PNI offspring compared with controls (P < 0.03). The accompanying reflex bradycardia was similar to the controls, suggesting that PNI induced baroreflex dysfunction. Subcutaneous nicotine administration, a potent cardiorespiratory stimulus, also elicited a transient rise in MAP that was generally greater in the PNI group, but the change in MAP from baseline was only significant in the PNI females compared with controls (P < 0.03). Elevated body weight and cardiovascular reactivity in the PNI offspring was associated with an increase in the ratio of hypothalamic corticotrophin-releasing hormone receptors type 1 to type 2 gene expression in both sexes compared with controls. These findings support previous studies demonstrating that PNI induces alterations in cardiovascular function and body weight. Yet, unlike previous studies utilizing other models of PNI (e.g., endotoxin), MP PNI did not induce resting hypertension. Thus, our study provides a foundation for future studies evaluating the cardiovascular risks of offspring exposed to microbial challenges in utero.
Collapse
Affiliation(s)
- J M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M von Chamier
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - M B Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - L Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - L F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Arterial Hypertension and Interleukins: Potential Therapeutic Target or Future Diagnostic Marker? Int J Hypertens 2019; 2019:3159283. [PMID: 31186952 PMCID: PMC6521461 DOI: 10.1155/2019/3159283] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hypertension as a multifactorial pathology is one of the most important cardiovascular risk factors, affecting up to 30-40% of the general population. Complex immune responses are involved in the inflammatory mechanism of hypertension, with evidence pointing to increased inflammatory mediators even in prehypertensive patients. Increased vascular permeability, thrombogenesis, and fibrosis, effects that are associated with sustained hypertension, could be attributed to chronic inflammation. Chronic inflammation triggers endothelial dysfunction via increased production of ROS through proinflammatory cytokines. Increased serum level of proinflammatory cytokines such as IL-1β, IL-6, IL-8, IL-17, IL-23, TGFβ, and TNFα in hypertensive patients has been associated with either increased blood pressure values and/or end-organ damage. Moreover, some cytokines (i.e., IL-6) seem to determine a hypertensive response to angiotensin II, regardless of blood pressure values. Understanding hypertension as an inflammatory-based pathology gives way to new therapeutic targets. As such, conventional cardiovascular drugs (statins, calcium channels blockers, and ACEIs/ARBs) have shown additional anti-inflammatory effects that could be linked to their blood pressure lowering properties. Moreover, anti-inflammatory drugs (mycophenolate mofetil) have been shown to decrease blood pressure in hypertensive patients or prevent its development in normotensive individuals. Further research is needed to evaluate whether drugs targeting hypertensive-linked proinflammatory cytokines, such as monoclonal antibodies, could become a new therapeutic option in treating arterial hypertension.
Collapse
|
7
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
8
|
Deng Y, Song L, Nie X, Shou W, Li X. Prenatal inflammation exposure-programmed cardiovascular diseases and potential prevention. Pharmacol Ther 2018; 190:159-172. [PMID: 29803628 DOI: 10.1016/j.pharmthera.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the rapid development of medical and pharmacological interventions has led to a steady decline in certain noncommunicable chronic diseases (NCDs), such as cancer. However, the overall incidence of cardiovascular diseases (CVDs) has not seemed to decline. CVDs have become even more prevalent in many countries and represent a global health threat and financial burden. An increasing number of epidemiological and experimental studies have demonstrated that maternal insults not only can result in birth defects but also can cause developmental functional defects that contribute to adult NCDs. In the current review, we provide an overview of evidence from both epidemiological investigations and experimental animal studies supporting the concept of developmental reprogramming of adult CVDs in offspring that have experienced prenatal inflammation exposure (PIE) during fetal development (PIE-programmed CVDs), a disease-causing event that has not been effectively controlled. This review describes the epidemiological observations, data from animal models, and related mechanisms for the pathogenesis of PIE-programmed CVDs. In addition, the potential therapeutic interventions of PIE-programmed CVDs are discussed. Finally, we also deliberate the need for future mechanistic studies and biomarker screenings in this important field, which creates a great opportunity to combat the global increase in CVDs by managing the adverse effects of inflammation for prepregnant and pregnant individuals who are at risk for PIE-programmed CVDs.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| | - Liang Song
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Weinian Shou
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4 W302D, Indianapolis, IN 46202, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| |
Collapse
|
9
|
Girgis RR, Ciarleglio A, Choo T, Haynes G, Bathon JM, Cremers S, Kantrowitz JT, Lieberman JA, Brown AS. A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Tocilizumab, An Interleukin-6 Receptor Antibody, For Residual Symptoms in Schizophrenia. Neuropsychopharmacology 2018; 43:1317-1323. [PMID: 29090685 PMCID: PMC5916349 DOI: 10.1038/npp.2017.258] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/01/2017] [Accepted: 10/24/2017] [Indexed: 01/16/2023]
Abstract
Evidence from preclinical, epidemiological, and human studies indicates that inflammation, and in particular elevated interleukin-6 (IL-6) activity, may be related to clinical manifestations and pathophysiology of schizophrenia. Furthermore, studies in preclinical models suggest that decreasing IL-6 activity may mitigate or reverse some of these deficits. The purpose of this trial was to test whether an IL-6 receptor antibody, tocilizumab, would improve residual positive and negative symptoms and cognitive deficits in schizophrenia. We randomized 36 clinically stable, moderately symptomatic (i.e., Positive and Negative Syndrome Scale (PANSS) >60) individuals with schizophrenia to 3 monthly infusions of 8 mg/kg tocilizumab or placebo (normal saline). The primary outcome was effect at week 12 on the PANSS Total Score. Effects on the MATRICS, other PANSS subscales, Clinical Global Impression, and Global Assessment of Functioning were secondary outcomes. There were no observed treatment effects on any behavioral outcome measure. Baseline C-reactive protein (CRP) or cytokine levels did not predict treatment outcome, nor were there correlations between changes in these inflammatory markers and the measured outcomes. As expected, IL-6 and IL-8 increased, while CRP decreased, in the tocilizumab group compared with the placebo group. This study did not reveal any evidence that an IL-6 receptor antibody affects behavioral outcomes in schizophrenia. One potential explanation is the lack of capacity of this agent to penetrate the central nervous system. Additional trials of medications aimed at targeting cytokine overactivity that act directly on brain function and/or treatment in early-stage psychosis populations are needed.
Collapse
Affiliation(s)
- Ragy R Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Department of Psychiatry, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Unit 31, New York 10032, NY, USA. Tel: +1 646 774 5553; Fax: +1 646 774 5237; E-mail:
| | - Adam Ciarleglio
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - Tse Choo
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - Gregory Haynes
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - Joan M Bathon
- Department of Medicine, Columbia University, New York, NY, USA
| | - Serge Cremers
- Department of Pathology, Columbia University, New York, NY, USA
| | - Joshua T Kantrowitz
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Jeffrey A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - Alan S Brown
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
10
|
Stoll S, Wang C, Qiu H. DNA Methylation and Histone Modification in Hypertension. Int J Mol Sci 2018; 19:ijms19041174. [PMID: 29649151 PMCID: PMC5979462 DOI: 10.3390/ijms19041174] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Systemic hypertension, which eventually results in heart failure, renal failure or stroke, is a common chronic human disorder that particularly affects elders. Although many signaling pathways involved in the development of hypertension have been reported over the past decades, which has led to the implementation of a wide variety of anti-hypertensive therapies, one half of all hypertensive patients still do not have their blood pressure controlled. The frontier in understanding the molecular mechanisms underlying hypertension has now advanced to the level of epigenomics. Particularly, increasing evidence is emerging that DNA methylation and histone modifications play an important role in gene regulation and are involved in alteration of the phenotype and function of vascular cells in response to environmental stresses. This review seeks to highlight the recent advances in our knowledge of the epigenetic regulations and mechanisms of hypertension, focusing on the role of DNA methylation and histone modification in the vascular wall. A better understanding of the epigenomic regulation in the hypertensive vessel may lead to the identification of novel target molecules that, in turn, may lead to novel drug discoveries for the treatment of hypertension.
Collapse
Affiliation(s)
- Shaunrick Stoll
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Charles Wang
- Center for Genomics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hongyu Qiu
- Division of Pharmacology and Physiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
11
|
Ascorbic Acid Protects against Hypertension through Downregulation of ACE1 Gene Expression Mediated by Histone Deacetylation in Prenatal Inflammation-Induced Offspring. Sci Rep 2016; 6:39469. [PMID: 27995995 PMCID: PMC5171640 DOI: 10.1038/srep39469] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Prenatal exposure to lipopolysaccharide (LPS) leads to hypertension in a rat offspring. However, the mechanism is still unclear. This study unraveled epigenetic mechanism for this and explored the protective effects of ascorbic acid against hypertension on prenatal inflammation-induced offspring. Prenatal LPS exposure resulted in an increase of intrarenal oxidative stress and enhanced angiotensin-converting enzyme 1 (ACE1) gene expression at the mRNA and protein levels in 6- and 12-week-old offspring, correlating with the augmentation of histone H3 acetylation (H3AC) on the ACE1 promoter. However, the prenatal ascorbic acid treatment decreased the LPS-induced expression of ACE1, protected against intrarenal oxidative stress, and reversed the altered histone modification on the ACE1 promoter, showing the protective effect in offspring of prenatal LPS stimulation. Our study demonstrates that ascorbic acid is able to prevent hypertension in offspring from prenatal inflammation exposure. Thus, ascorbic acid can be a new approach towards the prevention of fetal programming hypertension.
Collapse
|
12
|
Wennström M, Hall S, Nägga K, Londos E, Minthon L, Hansson O. Cerebrospinal fluid levels of IL-6 are decreased and correlate with cognitive status in DLB patients. ALZHEIMERS RESEARCH & THERAPY 2015; 7:63. [PMID: 26434635 PMCID: PMC4593189 DOI: 10.1186/s13195-015-0145-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
Introduction Inflammatory processes have previously been shown to influence cognition and progression of dementia. An involvement of interleukin (IL)-6 has in particular been suggested as altered levels of IL-6 in cerebrospinal fluid (CSF) have been found in patients with Alzheimer’s disease (AD). Also, an association between cognitive decline and levels of IL-6 in CSF have been reported. The aim of the present study was to investigate whether patients clinically diagnosed with dementia with Lewy bodies (DLB) display altered CSF IL-6 levels in comparison with patients with AD and control subjects without dementia and whether the IL-6 levels are correlated with cognitive status and biomarkers for AD and synucleinopathy. Methods To analyse CSF of patients with AD (n = 45), patients with DLB (n = 29) and control subjects without dementia (n = 36), we used immunoassays to measure levels of IL-6 (multiplex electrochemiluminescence); AD markers phosphorylated tau, total tau and amyloid-β1–42 (enzyme-linked immunosorbent assay [ELISA]); and α-synuclein (ELISA). Cognitive status was evaluated using the Mini Mental State Examination (MMSE). Results Our analysis showed significantly lower levels of IL-6 in CSF from patients with DLB than in CSF from patients with AD and control subjects without dementia. The IL-6 levels were also negatively correlated with MMSE and positively correlated with α-synuclein CSF levels. Conclusions Our findings support previous studies by demonstrating a link between inflammatory processes and dementia progression and further strengthen the hypothesis that IL-6 is involved in dementia pathology and cognitive decline.
Collapse
Affiliation(s)
- Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | - Sara Hall
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | - Katarina Nägga
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | - Elisabet Londos
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | - Lennart Minthon
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Wallenberg Laboratory, floor 2, Inga-Marie Nilssons gata 53, 205 02, Malmö, Sweden.
| |
Collapse
|
13
|
Hansell P, Palm F. A role for the extracellular matrix component hyaluronan in kidney dysfunction during ACE-inhibitor fetopathy. Acta Physiol (Oxf) 2015; 213:795-804. [PMID: 25600777 DOI: 10.1111/apha.12456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/01/2014] [Accepted: 01/11/2015] [Indexed: 12/13/2022]
Abstract
Despite data showing that inhibitors of the renin-angiotensin system increase the risks of fetal morbidity and dysfunctionality later in life, their use during pregnancy has increased. The fetopathy induced by angiotensin converting enzyme (ACE) inhibitors is characterized by anuria, hypotension and growth restriction, but can also be associated with pulmonary hypoplasia. In the kidney, this fetopathy includes atrophy of the medulla, reduced number of glomeruli, developmental lesions of tubules and vessels, tubulointerstitial inflammation and extracellular matrix accumulation. Although angiotensin II (Ang II) inhibition during nephrogenesis interferes with normal growth and development, this review will focus on effects of the heavily accumulated matrix component hyaluronan (HA). An important mechanism of HA accumulation during nephrogenesis is disruption of its normal reduction as a consequence of lack of Ang II activation of hyaluronidase. Hyaluronan has very large water-attracting properties and is pro-inflammatory when fragmented. The ensuing inflammation and interstitial oedema affect kidney function. Hyaluronan is colocalized with CD44 overexpression and infiltrating immune cells. These properties make HA a plausible contributor to the observed structural and functional kidney defects associated with the fetopathy. Available data support an involvement of HA in kidney dysfunction of the foetus and during adulthood due to the physico-chemical characteristics of HA. No clinical treatment for HA accumulation exists. Treatment with the HA-degrading enzyme hyaluronidase and an HA synthesis inhibitor has been tested successfully in experimental models in the kidney, heart and pancreas. Reduced HA accumulation to reduce interstitial oedema and inflammation may improve organ function, but this concept needs to be tested in a controlled study before causal relationships can be established.
Collapse
Affiliation(s)
- P. Hansell
- Division of Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - F. Palm
- Division of Integrative Physiology; Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
- Department of Medical and Health Sciences; Linköping University; Linköping Sweden
| |
Collapse
|
14
|
Abstract
Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology.
Collapse
Affiliation(s)
- Barbara T Alexander
- Department of Physiology and Biophysics, Women's Health Research Center, Center for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
15
|
Hale MW, Spencer SJ, Conti B, Jasoni CL, Kent S, Radler ME, Reyes TM, Sominsky L. Diet, behavior and immunity across the lifespan. Neurosci Biobehav Rev 2014; 58:46-62. [PMID: 25524877 DOI: 10.1016/j.neubiorev.2014.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.
Collapse
Affiliation(s)
- Matthew W Hale
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia.
| | - Bruno Conti
- The Scripps Research Institute, La Jolla, CA, USA
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Morgan E Radler
- School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| | - Teresa M Reyes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Girgis RR, Kumar SS, Brown AS. The cytokine model of schizophrenia: emerging therapeutic strategies. Biol Psychiatry 2014; 75:292-299. [PMID: 24439555 PMCID: PMC3931550 DOI: 10.1016/j.biopsych.2013.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
We discuss the rationale for a trial of a novel biological immunotherapy in schizophrenia (SCZ). Available antipsychotic treatments for SCZ are often limited by partial effectiveness and significant side effects. The search for novel medications is of high priority. All current antipsychotics function primarily by blocking D2-type dopamine receptors. An emerging theory of SCZ postulates disturbances of cytokines and inflammatory mediators (i.e., the cytokine model), possibly originating in part from infectious exposures. Cytokines are one of the most important components of the immune system that orchestrate the response to infectious and other exogenous insults. Preclinical models of SCZ support a convergence between a role for certain cytokines in the pathophysiology of SCZ and major neurochemical postulates of the disorder, including the dopamine and glutamate hypotheses. Several cytokines are elevated in plasma in SCZ, and positron emission tomography studies have shown active inflammation in the brains of patients with psychosis. Treatment studies of anti-inflammatory agents, such as celecoxib and aspirin, in patients with SCZ have provided further support for neuroinflammation in this disorder. The development of approved biological therapies for autoimmune diseases provides new opportunities to target cytokine signaling directly as a novel treatment strategy in SCZ. In addition, advances in imaging, immunology, and psychopharmacology have paved the way for using measures of target engagement of neuroimmune components that would facilitate the identification of patient subgroups who are most likely to benefit from cytokine modulation.
Collapse
Affiliation(s)
- Ragy R. Girgis
- Department of Psychiatry, Columbia University College of
Physicians and Surgeons, New York, NY, USA
- New York State Psychiatric Institute, New York, NY,
USA
| | - Samhita S. Kumar
- New York State Psychiatric Institute, New York, NY,
USA
- Department of Epidemiology, Columbia University, Mailman
School of Public Health, New York, NY, USA
| | - Alan S. Brown
- Department of Psychiatry, Columbia University College of
Physicians and Surgeons, New York, NY, USA
- New York State Psychiatric Institute, New York, NY,
USA
- Department of Epidemiology, Columbia University, Mailman
School of Public Health, New York, NY, USA
| |
Collapse
|
17
|
Wei Y, Du W, Xiong X, He X, Ping Yi, Deng Y, Chen D, Li X. Prenatal exposure to lipopolysaccharide results in myocardial remodelling in adult murine offspring. JOURNAL OF INFLAMMATION-LONDON 2013; 10:35. [PMID: 24764457 PMCID: PMC3874617 DOI: 10.1186/1476-9255-10-35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/14/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The epigenetic plasticity hypothesis indicates that pregnancy exposure may result in adult-onset diseases, including hypertension, diabetes and cardiovascular disease, in offspring. In a previous study, we discovered that prenatal exposure to inflammatory stimulants, such as lipopolysaccharides (LPS), could lead to hypertension in adult rat offspring. In the present study, we further demonstrate that maternal inflammation induces cardiac hypertrophy and dysfunction via ectopic over-expression of nuclear transcription factor κB (NF- κB), and pyrrolidine dithiocarbamate (PDTC) can protect cardiac function by reducing maternal inflammation. METHODS Pregnant SD rats were randomly divided into three groups and intraperitoneally injected with a vehicle, LPS (0.79 mg/kg), or LPS (0.79 mg/kg) plus PDTC (100 mg/kg) at 8 to 12 days of gestation. The offspring were raised until 4 and 8 months old, at which point an echocardiographic study was performed. The left ventricular (LV) mass index and apoptosis were examined. RESULTS At 4 months of age, the LPS offspring exhibited augmented posterior wall thickness. These rats displayed left ventricle (LV) hypertrophy and LV diastolic dysfunction as well as a higher apoptotic index, a higher level of Bax and a lower level of Bcl-2 at 8 months of age. The protein levels of NF-κB (p65) in the myocardium of the offspring were measured at this time. NF-κB protein levels were higher in the myocardium of LPS offspring. The offspring that were prenatally treated with PDTC displayed improved signs of blood pressure (BP) and LV hypertrophy. CONCLUSIONS Maternal inflammation can induce cardiac hypertrophy in offspring during aging accompanied with hypertension emergence and can be rescued by the maternal administration of PDTC (the inhibitor of NF-κB).
Collapse
Affiliation(s)
- Yanling Wei
- The Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, The Third Military Medical University, Chongqing, China ; Department of Gastroenterology, Research Institute of Surgery, Da ping Hospital, The Third Military Medical University, Chongqing, China
| | - Wenhua Du
- Department of Ultrasound, Research Institute of Surgery, Da ping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiuqin Xiong
- Department of Ultrasound, Research Institute of Surgery, Da ping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoyan He
- The Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, The Third Military Medical University, Chongqing, China
| | - Ping Yi
- Department of Gynaecology, Research Institute of Surgery, Da ping Hospital, The Third Military Medical University, Chongqing, China
| | - Youcai Deng
- The Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, The Third Military Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Research Institute of Surgery, Da ping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- The Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, The Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Cocoros NM, Lash TL, Ozonoff A, Nørgaard M, DeMaria A, Andreasen V, Sørensen HT. Prenatal influenza exposure and cardiovascular events in adulthood. Influenza Other Respir Viruses 2013; 8:83-90. [PMID: 24373293 PMCID: PMC4177801 DOI: 10.1111/irv.12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 11/29/2022] Open
Abstract
Objectives This study examined the association between prenatal exposure to pandemic influenza and cardiovascular events in adulthood. Design Using Danish surveillance data to identify months when influenza activity was highest during three previous pandemics (1918, 1957, and 1968), persons were defined as exposed/unexposed based on whether they were in utero during peak months of one of the pandemics. Episodes of acute myocardial infarction (MI) and stroke were identified in the Danish National Registry of Patients covering all Danish hospitals since 1977. Setting/Sample Information from Danish national registries on all persons with a Civil Personal Registry number and birthdates in 1915 through 1922, 1954 through 1960, and 1966 through 1972 was collected. Main outcome measures Crude incidence rate ratios (IRRs) were calculated per pandemic. Generalized linear models were fit to estimate IRRs adjusted for sex. Results For acute MI, sex-adjusted IRRs for persons in utero during peaks of the 1918, 1957, and 1968 pandemics, compared with those born afterward, were 1·02 (95% confidence interval (CI): 0·99, 1·05), 0·96 (95% CI: 0·87, 1·05), and 1·18 (95% CI: 0·96, 1·45), respectively. For stroke, the corresponding IRRs were 0·99 (95% CI: 0·97, 1·02), 0·99 (95% CI: 0·92, 1·05), and 0·85 (95% CI: 0·77, 0·94), respectively. Conclusions There was generally no evidence of an association between prenatal influenza exposure and acute MI or stroke in adulthood. However, survivor bias and left truncation of outcomes for the 1918 pandemic are possible, and the current young ages of persons included in the analyses for the 1957 and 1968 pandemics may warrant later re-evaluation.
Collapse
Affiliation(s)
- Noelle M Cocoros
- Massachusetts Department of Public Health, Bureau of Infectious Disease, Jamaica Plain, MA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Tang B, Jia H, Kast RJ, Thomas EA. Epigenetic changes at gene promoters in response to immune activation in utero. Brain Behav Immun 2013; 30:168-75. [PMID: 23402795 DOI: 10.1016/j.bbi.2013.01.086] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence suggests that maternal infection increases the risk of psychiatric disorders, such as schizophrenia and autism in offspring. However, the molecular mechanisms associated with these effects are unclear. Here, we have studied epigenetic gene regulation in mice exposed to non-specific immune activation elicited by polyI:C injection to pregnant dams. Using Western blot analysis, we detected global hypoacetylation of histone H3, at lysine residues 9 and 14, and histone H4, at lysine residue 8, in the cortex from juvenile (∼24days of age) offspring exposed to polyI:C in utero, but not from adult (3months of age) offspring, which exhibit significant behavioral abnormalities. Accordingly, we detected robust deficits in the expression of genes associated with neuronal development, synaptic transmission and immune signaling in the cortex of polyI:C-exposed juvenile mice. In particular, we found that several genes in the glutamate receptor signaling pathway, including Gria1 and Slc17a7, showed decreases in promoter-specific histone acetylation, and corresponding gene expression deficits, in polyI:C-exposed offspring at both juvenile and adult ages. In contrast, the expression of these same genes, in addition to Disc1 and Ntrk3, was elevated in the hippocampus of juvenile mice, in concordance with elevated levels of promoter-specific histone acetylation. We suggest that these early epigenetic changes contribute to the delayed behavioral abnormalities that are observed in adult animals after exposure to polyI:C, and which resemble symptoms seen in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Bin Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Red., La Jolla, CA 92037, United States
| | | | | | | |
Collapse
|
20
|
Aguilar-Valles A, Jung S, Poole S, Flores C, Luheshi GN. Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology 2012; 37:956-69. [PMID: 22133515 DOI: 10.1016/j.psyneuen.2011.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/07/2011] [Accepted: 11/04/2011] [Indexed: 12/21/2022]
Abstract
Maternal inflammation during critical stages of gestation is thought to underlie the link between prenatal infection and several neurodevelopmental psychiatric disorders in the offspring, including schizophrenia. Increased activity of mesolimbic dopamine (DA) neurons, a hallmark of psychosis, is found in offspring of rodents exposed to a prenatal inflammatory challenge but it is unclear how this effect is elicited. Using an experimental model of localized aseptic inflammation with turpentine oil (TURP) we sought to establish whether circulating interleukin-6 (IL-6) and leptin play a role in the effects of prenatal inflammation on DA neurons. Both mediators are involved in the systemic inflammatory response to immunogens, with IL-6 mediating the early phase, followed by leptin in the late phase of the response. Maternal treatment with TURP at gestational day (GD) 15 enhanced the locomotor response to the DA indirect agonist, amphetamine (AMPH), increased the expression of tyrosine hydroxylase (TH), an enzyme involved in DA synthesis, DA levels and the expression of the post-synaptic protein spinophilin in the nucleus accumbens (NAcc) in the adult offspring. All of these alterations were totally abolished by co-treating the pregnant dams with a neutralizing IL-6 antiserum. Neutralization of maternal leptin prevented the enhanced behavioral sensitization and elevation of DA and spinophilin in the NAcc but spared other changes regulated by IL-6, such as increased NAcc TH levels and acute locomotor response to AMPH. Our results provide novel evidence to suggest that prenatal surges in both maternal circulating IL-6 and leptin contribute to the appearance of sensitized DA function in the adult offspring.
Collapse
Affiliation(s)
- Argel Aguilar-Valles
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
21
|
Gao J, Chao J, Parbhu KJK, Yu L, Xiao L, Gao F, Gao L. Ontogeny of angiotensin type 2 and type 1 receptor expression in mice. J Renin Angiotensin Aldosterone Syst 2012; 13:341-52. [PMID: 22526820 DOI: 10.1177/1470320312443720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the current experiment, we determined angiotensin type 2 receptor (AT2R) and angiotensin type 1 receptor (AT1R) protein expression by western blot analysis in developing normal mice. The results indicate that: (1) in all detected brain regions and in the spinal cord, adult mice exhibited significantly higher AT2R expression and lower AT1R expression in total protein extracts compared to fetuses and neonates; (2) other major organs, including heart, lung, liver and kidney, exhibited the same expression pattern as the brain and spinal cord; (3) reciprocal changes in AT2R and AT1R expression were found in the total protein extracts from the brainstems of mice from one-day prenatal to six weeks of age, and there was a negative correlation between AT2R and AT1R protein expression; (4) in both membrane and cytosolic fractions from the brainstem, adult mice exhibited higher AT2R and lower AT1R expression than did fetuses and neonates; and (5) in the brainstem, there were no significant differences in AT2R and AT1R messenger RNA (mRNA) levels among fetal, neonatal and adult mice. The above results reconfirmed our previous finding in rats that adult animals have higher AT2R and lower AT1R expression compared to fetuses and neonates. These data imply an involvement of AT1R in fetal development and of AT2R in adult function.
Collapse
Affiliation(s)
- Juan Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71:444-57. [PMID: 22334391 DOI: 10.1002/ana.22620] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/05/2011] [Accepted: 07/15/2011] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being of both physiological and pathological importance in the immature brain. The rationale of this review is to present an update on this topic with focus on long-term consequences of inflammation during childhood and in adults. The immature brain can be exposed to inflammation in connection with viral or bacterial infection during pregnancy or as a result of sterile central nervous system (CNS) insults. Through efficient anti-inflammatory and reparative processes, inflammation may resolve without any harmful effects on the brain. Alternatively, inflammation contributes to injury or enhances CNS vulnerability. Acute inflammation can also be shifted to a chronic inflammatory state and/or adversely affect brain development. Hypothetically, microglia are the main immunocompetent cells in the immature CNS, and depending on the stimulus, molecular context, and timing, these cells will acquire various phenotypes, which will be critical regarding the CNS consequences of inflammation. Inflammation has long-term consequences and could speculatively modify the risk of a variety of neurological disorders, including cerebral palsy, autism spectrum disorders, schizophrenia, multiple sclerosis, cognitive impairment, and Parkinson disease. So far, the picture is incomplete, and data mostly experimental. Further studies are required to strengthen the associations in humans and to determine whether novel therapeutic interventions during the perinatal period can influence the occurrence of neurological disease later in life.
Collapse
Affiliation(s)
- Henrik Hagberg
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sweden.
| | | | | |
Collapse
|
23
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
24
|
Li K, Guo D, Zhu H, Hering-Smith KS, Hamm LL, Ouyang J, Dong Y. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am J Physiol Regul Integr Comp Physiol 2010; 299:R590-5. [PMID: 20504903 DOI: 10.1152/ajpregu.00207.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to elucidate the effects of interleukin-6 (IL-6) on the expression and activity of the epithelial sodium channel (ENaC), which is one of the key mechanisms underlying tubular sodium reabsorption. M-1 cortical collecting duct cells were treated with IL-6 (100 ng/ml) for 12 h. Real-time polymerase chain reaction and immunoblotting were employed to examine the mRNA and protein abundance. Transepithelial voltage (V(te)) and resistance (R(te)) were measured with an ohm/voltmeter (EVOM, WPI). The equivalent current was calculated as the ratio of V(te) to R(te.) Treatment with IL-6 (n = 5) increased the mRNA abundance of alpha-ENaC by 11 +/- 7% (P = not significant), beta-ENaC by 78 +/- 14% (P = 0.01), gamma-ENaC by 185 +/- 38% (P = 0.02), and prostasin by 29 +/- 5% (P = 0.01), all normalized by beta-actin. Treatment with IL-6 increased the protein expression of alpha-ENaC by 19 +/- 3% (P = 0.001), beta-ENaC by 89 +/- 21% (P = 0.01), gamma-ENaC by 36 +/- 12% (P = 0.02), and prostasin by 33 +/- 6% (P = 0.02). The amiloride-sensitive sodium current increased by 37 +/- 5%, from 6.0 +/- 0.4 to 8.2 +/- 0.3 muA/cm(2) (P < 0.01), in the cells treated with IL-6 compared with controls (P = 0.01). Aprotinin (28 microg/ml), a prostasin inhibitor, reduced the amiloride-sensitive sodium current by 61 +/- 5%, from 6.1 +/- 0.3 to 3.7 +/- 0.2 muA/cm(2) (P = 0.01). The magnitude of the IL-6-induced amiloride-sensitive sodium current in the presence of aprotinin dropped by 57 +/- 2%, from 8.6 +/- 0.2 to 4.9 +/- 0.2 muA/cm(2) (P < 0.01). This study has identified a novel function of IL-6, namely, IL-6 may activate ENaC. Therefore, renal inflammation mediated by IL-6 likely contributes to impaired pressure natriuresis.
Collapse
Affiliation(s)
- Ke Li
- Georgia Prevention Institute, Dept. of Pediatrics, Medical College of Georgia, Augusta, GA 30912-3715, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Liao W, Wei Y, Yu C, Zhou J, Li S, Pang Y, Li G, Li X. Prenatal exposure to zymosan results in hypertension in adult offspring rats. Clin Exp Pharmacol Physiol 2009; 35:1413-8. [PMID: 18983578 DOI: 10.1111/j.1440-1681.2008.05062.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Events in utero appear to have a significant role in the development of cardiovascular dysfunction in adulthood. In the present study, we evaluated the effects of prenatal exposure to zymosan, a non-infectious and non-bacterial agent capable of inducing inflammation, on mean systolic arterial pressure (MSAP) in rat offspring at 6-66 weeks of age. 2. Pregnant rats were divided into three groups: (i) a control group, administered 0.5 mL, i.p., saline on gestation Days 8, 10 and 12; (ii) a zymosan-treated group, given 2.37 mg/kg, i.p., zymosan on gestation Days 8, 10 and 12; and (iii) a pyrrolidine dithiocarbamate (PDTC) + zymosan-treated group, which was given 100 mg/kg, i.p., PDTC 1 h before zymosan. At 6, 16, 26, 36, 56 and 66 weeks of age, MSAP was determined in rat offspring from all three groups. Serum levels of tumour necrosis factor (TNF)-alpha were determined in dams, as well as in offspring at 24 and 56 weeks of age. In addition, protein levels of nuclear factor (NF)-kappaB (p65) in the myocardium and kidney of offspring were determined at 24 weeks of age. 3. The results showed that MSAP and NF-kappaB (p65) levels in the myocardium and kidney of offspring from the zymosan-treated group were increased significantly compared with control. This increase was inhibited by concomitant treatment with PDTC. Serum TNF-alpha levels in dams exposed to zymosan and in their offspring at 56 weeks of age (but not at 24 weeks of age) were significantly increased compared with levels in the control group. Following lipopolysaccharide treatment (1 mg/kg, i.p.) of adult rat offspring at 24 weeks of age, there was a further increase in serum TNF-alpha levels in offspring in the zymosan-treated group compared with the other two groups. 4. The findings of the present study suggest that non-bacterial inflammation during gestation can lead to hypertension in offspring and that NF-kappaB signalling may play a critical role in this process.
Collapse
Affiliation(s)
- Wenqiang Liao
- National Integrative Medicine Centre for Cardiovascular Diseases, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|