1
|
Beltrán-Matas P, Hartveit E, Veruki ML. Functional properties of GABA A receptors of AII amacrine cells of the rat retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1134765. [PMID: 38983040 PMCID: PMC11182327 DOI: 10.3389/fopht.2023.1134765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 07/11/2024]
Abstract
Amacrine cells are a highly diverse group of inhibitory retinal interneurons that sculpt the responses of bipolar cells, ganglion cells, and other amacrine cells. They integrate excitatory inputs from bipolar cells and inhibitory inputs from other amacrine cells, but for most amacrine cells, little is known about the specificity and functional properties of their inhibitory inputs. Here, we have investigated GABAA receptors of the AII amacrine, a critical neuron in the rod pathway microcircuit, using patch-clamp recording in rat retinal slices. Puffer application of GABA evoked robust responses, but, surprisingly, spontaneous GABAA receptor-mediated postsynaptic currents were not observed, neither under control conditions nor following application of high-K+ solution to facilitate release. To investigate the biophysical and pharmacological properties of GABAA receptors in AIIs, we therefore used nucleated patches and a fast application system. Both brief and long pulses of GABA (3 mM) evoked GABAA receptor-mediated currents with slow, multi-exponential decay kinetics. The average weighted time constant (τw) of deactivation was ~163 ms. Desensitization was even slower, with τw ~330 ms. Non-stationary noise analysis of patch responses and directly observed channel gating yielded a single-channel conductance of ~23 pS. Pharmacological investigation suggested the presence of α2 and/or α3 subunits, as well as the γ2 subunit. Such subunit combinations are typical of GABAA receptors with slow kinetics. If synaptic GABAA receptors of AII amacrines have similar functional properties, the slow deactivation and desensitization kinetics will facilitate temporal summation of GABAergic inputs, allowing effective summation and synaptic integration to occur even for relatively low frequencies of inhibitory inputs.
Collapse
Affiliation(s)
| | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
2
|
Beltrán-Matas P, Castilho Á, Tencer B, Veruki ML, Hartveit E. Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA A receptors of A17 amacrine cells in the rat retina. Eur J Neurosci 2022; 55:1442-1470. [PMID: 35236011 PMCID: PMC9314042 DOI: 10.1111/ejn.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Amacrine cells constitute a large and heterogenous group of inhibitory interneurons in the retina. The A17 amacrine plays an important role for visual signaling in the rod pathway microcircuit of the mammalian retina. It receives excitatory input from rod bipolar cells and provides feedback inhibition to the same cells. However, from ultrastructural investigations, there is evidence for input to A17s from other types of amacrine cells, presumably inhibitory, but there is a lack of information about the identity and functional properties of the synaptic receptors and how inhibition contributes to the integrative properties of A17s. Here, we studied the biophysical and pharmacological properties of GABAergic spontaneous inhibitory postsynaptic currents (spIPSCs) and GABAA receptors of A17 amacrines, using whole-cell and outside-out patch recordings from rat retinal slices. The spIPSCs displayed fast onsets (10-90% rise time ~740 μs) and double-exponential decays (τfast ~4.5 ms [43% of amplitude]; τslow ~22 ms). Ultrafast application of brief pulses of GABA (3 mM) to patches evoked responses with deactivation kinetics best fitted by a triple-exponential function (τ1 ~5.3 ms [55% of amplitude]; τ2 ~48 ms [32% amplitude]; τ3 ~187 ms). Non-stationary noise analysis of spIPSCs and patch responses yielded single-channel conductances of ~21 and ~25 pS, respectively. Pharmacological analysis suggested that the spIPSCs are mediated by receptors with an α1βγ2 subunit composition and the somatic receptors have an α2βγ2 and/or α3βγ2 composition. These results demonstrate the presence of synaptic GABAA receptors on A17s, which may play an important role in signal integration in these cells.
Collapse
Affiliation(s)
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Barbora Tencer
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Glycinergic Inhibition Targets Specific Off Cone Bipolar Cells in Primate Retina. eNeuro 2021; 8:ENEURO.0432-20.2020. [PMID: 33188005 PMCID: PMC7920536 DOI: 10.1523/eneuro.0432-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Adapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells (CBCs), that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). AII-ACs also provide On-pathway-driven crossover inhibition to Off-CBCs under photopic conditions. In primates, it is not known whether all Off-bipolar cell types receive functional inputs from AII-ACs. Here, we show that select Off-CBC types receive significantly higher levels of On-pathway-driven glycinergic input than others. The rise and decay kinetics of the glycinergic events are consistent with involvement of the α1 glycine receptor (GlyR) subunit, a result supported by a higher level of GLRA1 transcript in these cells. The Off-bipolar types that receive glycinergic input have sustained physiological properties and include the flat midget bipolar (FMB) cells, which provide excitatory input to the Off-midget ganglion cells (GCs; parvocellular pathway). Our results suggest that only a subset of Off-bipolar cells have the requisite receptors to respond to AII-AC input. Taken together with results in mouse retina, our findings suggest a conserved motif whereby signal output from AII-ACs is preferentially routed into sustained Off-bipolar signaling pathways.
Collapse
|
4
|
Pena RFO, Ceballos CC, De Deus JL, Roque AC, Garcia-Cairasco N, Leão RM, Cunha AOS. Modeling Hippocampal CA1 Gabaergic Synapses of Audiogenic Rats. Int J Neural Syst 2020; 30:2050022. [PMID: 32285725 DOI: 10.1142/s0129065720500227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wistar Audiogenic Rats (WARs) are genetically susceptible to sound-induced seizures that start in the brainstem and, in response to repetitive stimulation, spread to limbic areas, such as hippocampus. Analysis of the distribution of interevent intervals of GABAergic inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells showed a monoexponential trend in Wistar rats, suggestive of a homogeneous population of synapses, but a biexponential trend in WARs. Based on this, we hypothesize that there are two populations of GABAergic synaptic release sites in CA1 pyramidal neurons from WARs. To address this hypothesis, we used a well-established neuronal computational model of a CA1 pyramidal neuron previously developed to replicate physiological properties of these cells. Our simulations replicated the biexponential trend only when we decreased the release frequency of synaptic currents by a factor of six in at least 40% of distal synapses. Our results suggest that almost half of the GABAergic synapses of WARs have a drastically reduced spontaneous release frequency. The computational model was able to reproduce the temporal dynamics of GABAergic inhibition that could underlie susceptibility to the spread of seizures.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara De Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
5
|
Principal Neurons in the Anteroventral Cochlear Nucleus Express Cell-Type Specific Glycine Receptor α Subunits. Neuroscience 2019; 415:77-88. [PMID: 31325562 DOI: 10.1016/j.neuroscience.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022]
Abstract
Signal processing in the principal neurons of the anteroventral cochlear nucleus (AVCN) is modulated by glycinergic inhibition. The kinetics of IPSCs are specific to the target neurons. It remains unclear what glycine receptor subunits are involved in generating such target-specific IPSC kinetics in AVCN principal neurons. We investigated the expression patterns of glycine receptor α (GlyRα) subunits in AVCN using immunohistochemical labeling of four isoforms of GlyRα subunits (GlyRα1-α4), and found that AVCN neurons express GlyRα1 and GlyRα4, but not GlyRα2 and GlyRα3 subunits. To further identify the cell type-specific expression patterns of GlyRα subunits, we combined whole-cell patch clamp recording with immunohistochemistry by recording from all three types of AVCN principal neurons, characterizing the synaptic properties of their glycinergic inhibition, dye-filling the neurons, and processing the slice for immunostaining of different GlyRα subunits. We found that AVCN bushy neurons express both GlyRα1 and GlyRα4 subunits that underlie their slow IPSC kinetics, whereas both T-stellate and D-stellate neurons express only GlyRα1 subunit that underlies their fast IPSC kinetics. In conclusion, AVCN principal neurons express cell-type specific GlyRα subunits that underlie their distinct IPSC kinetics, which enables glycinergic inhibition from the same source to exert target cell-specific modulation of activity to support the unique physiological function of these neurons.
Collapse
|
6
|
Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron. Brain Struct Funct 2018; 223:3383-3410. [PMID: 29948192 DOI: 10.1007/s00429-018-1696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amacrine cells are critical for processing of visual signals, but little is known about their electrotonic structure and passive membrane properties. AII amacrine cells are multifunctional interneurons in the mammalian retina and essential for both rod- and cone-mediated vision. Their dendrites are the site of both input and output chemical synapses and gap junctions that form electrically coupled networks. This electrical coupling is a challenge for developing realistic computer models of single neurons. Here, we combined multiphoton microscopy and electrophysiological recording from dye-filled AII amacrine cells in rat retinal slices to develop morphologically accurate compartmental models. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses, obtained after blocking electrical coupling. The average best-fit parameters (obtained at - 60 mV and ~ 25 °C) were 0.91 µF cm-2 for specific membrane capacitance, 198 Ω cm for cytoplasmic resistivity, and 30 kΩ cm2 for specific membrane resistance. We examined the passive signal transmission between the cell body and the dendrites by the electrotonic transform and quantified the frequency-dependent voltage attenuation in response to sinusoidal current stimuli. There was significant frequency-dependent attenuation, most pronounced for signals generated at the arboreal dendrites and propagating towards the soma and lobular dendrites. In addition, we explored the consequences of the electrotonic structure for interpreting currents in somatic, whole-cell voltage-clamp recordings. The results indicate that AII amacrines cannot be characterized as electrotonically compact and suggest that their morphology and passive properties can contribute significantly to signal integration and processing.
Collapse
|
7
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
8
|
Plested AJR. Single-Channel Recording of Ligand-Gated Ion Channels. Cold Spring Harb Protoc 2016; 2016:2016/8/pdb.top087239. [PMID: 27480725 DOI: 10.1101/pdb.top087239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons.
Collapse
Affiliation(s)
- Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
9
|
Zhou Y, Tencerová B, Hartveit E, Veruki ML. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. J Neurophysiol 2016; 115:389-403. [PMID: 26561610 PMCID: PMC4760463 DOI: 10.1152/jn.00947.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022] Open
Abstract
At many glutamatergic synapses, non-N-methyl-d-aspartate (NMDA) and NMDA receptors are coexpressed postsynaptically. In the mammalian retina, glutamatergic rod bipolar cells are presynaptic to two rod amacrine cells (AII and A17) that constitute dyad postsynaptic partners opposite each presynaptic active zone. Whereas there is strong evidence for expression of non-NMDA receptors by both AII and A17 amacrines, the expression of NMDA receptors by the pre- and postsynaptic neurons in this microcircuit has not been resolved. In this study, using patch-clamp recording from visually identified cells in rat retinal slices, we investigated the expression and functional properties of NMDA receptors in these cells with a combination of pharmacological and biophysical methods. Pressure application of NMDA did not evoke a response in rod bipolar cells, but for both AII and A17 amacrines, NMDA evoked responses that were blocked by a competitive antagonist (CPP) applied extracellularly and an open channel blocker (MK-801) applied intracellularly. NMDA-evoked responses also displayed strong Mg(2+)-dependent voltage block and were independent of gap junction coupling. With low-frequency application (60-s intervals), NMDA-evoked responses remained stable for up to 50 min, but with higher-frequency stimulation (10- to 20-s intervals), NMDA responses were strongly and reversibly suppressed. We observed strong potentiation when NMDA was applied in nominally Ca(2+)-free extracellular solution, potentially reflecting Ca(2+)-dependent NMDA receptor inactivation. These results indicate that expression of functional (i.e., conductance-increasing) NMDA receptors is common to both AII and A17 amacrine cells and suggest that these receptors could play an important role for synaptic signaling, integration, or plasticity in the rod pathway.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
10
|
Zhang C, Rompani SB, Roska B, McCall MA. Adeno-associated virus-RNAi of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. J Neurophysiol 2014; 112:3125-37. [PMID: 25231618 DOI: 10.1152/jn.00505.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFα(Transient)) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABA(A)ergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABA(A)ergic inhibition.
Collapse
Affiliation(s)
- C Zhang
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - S B Rompani
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - B Roska
- Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - M A McCall
- Department of Ophthalmology and Visual Science, University of Louisville, Louisville, Kentucky; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
11
|
Pandit S, Song JG, Kim YJ, Jeong JA, Jo JY, Lee GS, Kim HW, Jeon BH, Lee JU, Park JB. Attenuated benzodiazepine-sensitive tonic GABAA currents of supraoptic magnocellular neuroendocrine cells in 24-h water-deprived rats. J Neuroendocrinol 2014; 26:26-34. [PMID: 24313753 DOI: 10.1111/jne.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/05/2013] [Accepted: 12/01/2013] [Indexed: 11/26/2022]
Abstract
In supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs), γ-GABA, via activation of GABAA receptors (GABAA Rs), mediates persistent tonic inhibitory currents (Itonic ), as well as conventional inhibitory postsynaptic currents (IPSCs, Iphasic ). In the present study, we examined the functional significance of Itonic in SON MNCs challenged by 24-h water deprivation (24WD). Although the main characteristics of spontaneous IPSCs were similar in 24WD compared to euhydrated (EU) rats, Itonic , measured by bicuculline (BIC)-induced Iholding shifts, was significantly smaller in 24WD compared to EU rats (P < 0.05). Propofol and diazepam prolonged IPSC decay time to a similar extent in both groups but induced less Itonic in 24WD compared to EU rats, suggesting a selective decrease in GABAA receptors mediating Itonic over Iphasic in 24WD rats. THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), a preferential δ subunit agonist, and L-655,708, a GABAA receptor α5 subunit selective imidazobenzodiazepine, caused a significantly smaller inward and outward shift in Iholding , respectively, in 24WD compared to EU rats (P < 0.05 in both cases), suggesting an overall decrease in the α5 subunit-containing GABAA Rs and the δ subunit-containing receptors mediating Itonic in 24WD animals. Consistent with a decrease in 24WD Itonic , bath application of GABA induced significantly less inhibition of the neuronal firing activity in 24WD compared to EU SON MNCs (P < 0.05). Taken together, the results of the present study indicate a selective decrease in GABAA Rs functions mediating Itonic as opposed to those mediating Iphasic in SON MNCs, demonstrating the functional significance of Itonic with respect to increasing neuronal excitability and hormone secretion in 24WD rats.
Collapse
Affiliation(s)
- S Pandit
- Department of Physiology, School of Medicine, Brain Research Institute, Chungnam National University, Jung-gu, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mazade RE, Eggers ED. Light adaptation alters the source of inhibition to the mouse retinal OFF pathway. J Neurophysiol 2013; 110:2113-28. [PMID: 23926034 DOI: 10.1152/jn.00384.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light.
Collapse
Affiliation(s)
- Reece E Mazade
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
13
|
Marabelli A, Moroni M, Lape R, Sivilotti LG. The kinetic properties of the α3 rat glycine receptor make it suitable for mediating fast synaptic inhibition. J Physiol 2013; 591:3289-308. [PMID: 23613537 DOI: 10.1113/jphysiol.2013.252189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine receptors mediate fast synaptic inhibition in spinal cord and brainstem. Two α subunits are present in adult neurones, α1, which forms most of the synaptic glycine receptors, and α3. The physiological role of α3 is not known, despite the fact that α3 expression is concentrated in areas involved in nociceptive processing, such as the superficial dorsal horn. In the present study, we characterized the kinetic properties of rat homomeric α3 glycine receptors heterologously expressed in HEK293 cells. We analysed steady state single channel activity at a range of different glycine concentrations by fitting kinetic schemes and found that α3 channels resemble α1 receptors in their high maximum open probability (99.1% cf. 98% for α1), but differ in that maximum open probability is reached when all five binding sites are occupied by glycine (cf. three out of five sites for α1). α3 activation was best described by kinetic schemes that allow the channel to open also when partially liganded and that contain more than the minimum number of shut states, either as desensitized distal states (Jones and Westbrook scheme) or as pre-open gating intermediates (flip scheme). We recorded also synaptic-like α3 currents elicited by the rapid application of 1 ms pulses of high concentration glycine to outside-out patches. These currents had fast deactivation, with a time constant of decay of 9 ms. Thus, if native synaptic currents can be mediated by α3 glycine receptors, they are likely to be very close in their kinetics to α1-mediated synaptic events.
Collapse
Affiliation(s)
- Alessandro Marabelli
- Department of Neuroscience, Physiology and Pharmacology, Medical Sciences Building, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
14
|
Target-specific IPSC kinetics promote temporal processing in auditory parallel pathways. J Neurosci 2013; 33:1598-614. [PMID: 23345233 DOI: 10.1523/jneurosci.2541-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The acoustic environment contains biologically relevant information on timescales from microseconds to tens of seconds. The auditory brainstem nuclei process this temporal information through parallel pathways that originate in the cochlear nucleus from different classes of cells. Although the roles of ion channels and excitatory synapses in temporal processing have been well studied, the contribution of inhibition is less well understood. Here, we show in CBA/CaJ mice that the two major projection neurons of the ventral cochlear nucleus, the bushy and T-stellate cells, receive glycinergic inhibition with different synaptic conductance time courses. Bushy cells, which provide precisely timed spike trains used in sound localization and pitch identification, receive slow inhibitory inputs. In contrast, T-stellate cells, which encode slower envelope information, receive inhibition that is eightfold faster. Both types of inhibition improved the precision of spike timing but engage different cellular mechanisms and operate on different timescales. Computer models reveal that slow IPSCs in bushy cells can improve spike timing on the scale of tens of microseconds. Although fast and slow IPSCs in T-stellate cells improve spike timing on the scale of milliseconds, only fast IPSCs can enhance the detection of narrowband acoustic signals in a complex background. Our results suggest that target-specific IPSC kinetics are critical for the segregated parallel processing of temporal information from the sensory environment.
Collapse
|
15
|
Hartveit E, Veruki ML. Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Res 2012; 1487:160-72. [PMID: 22776293 DOI: 10.1016/j.brainres.2012.05.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022]
Abstract
Adaptation enables the visual system to operate across a large range of background light intensities. There is evidence that one component of this adaptation is mediated by modulation of gap junctions functioning as electrical synapses, thereby tuning and functionally optimizing specific retinal microcircuits and pathways. The AII amacrine cell is an interneuron found in most mammalian retinas and plays a crucial role for processing visual signals in starlight, twilight and daylight. AII amacrine cells are connected to each other by gap junctions, potentially serving as a substrate for signal averaging and noise reduction, and there is evidence that the strength of electrical coupling is modulated by the level of background light. Whereas there is extensive knowledge concerning the retinal microcircuits that involve the AII amacrine cell, it is less clear which signaling pathways and intracellular transduction mechanisms are involved in modulating the junctional conductance between electrically coupled AII amacrine cells. Here we review the current state of knowledge, with a focus on the recent evidence that suggests that the modulatory control involves activity-dependent changes in the phosphorylation of the gap junction channels between AII amacrine cells, potentially linked to their intracellular Ca(2+) dynamics. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway.
| | | |
Collapse
|
16
|
Abstract
Amacrine cells are a morphologically and functionally diverse group of inhibitory interneurons. Morphologically, they have been divided into approximately 30 types. Although this diversity is probably important to the fine structure and function of the retinal circuit, the amacrine cells have been more generally divided into two subclasses. Glycinergic narrow-field amacrine cells have dendrites that ramify close to their somas, cross the sublaminae of the inner plexiform layer, and create cross talk between its parallel ON and OFF pathways. GABAergic wide-field amacrine cells have dendrites that stretch long distances from their soma but ramify narrowly within an inner plexiform layer sublamina. These wide-field cells are thought to mediate inhibition within a sublamina and thus within the ON or OFF pathway. The postsynaptic targets of all amacrine cell types include bipolar, ganglion, and other amacrine cells. Almost all amacrine cells use GABA or glycine as their primary neurotransmitter, and their postsynaptic receptor targets include the most common GABA(A), GABA(C), and glycine subunit receptor configurations. This review addresses the diversity of amacrine cells, the postsynaptic receptors on their target cells in the inner plexiform layer of the retina, and some of the inhibitory mechanisms that arise as a result. When possible, the effects of GABAergic and glycinergic inputs on the visually evoked responses of their postsynaptic targets are discussed.
Collapse
|
17
|
The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci 2012; 32:1336-52. [PMID: 22279218 DOI: 10.1523/jneurosci.4346-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss-of-function mutations in human glycine receptors cause hyperekplexia, a rare inherited disease associated with an exaggerated startle response. We have studied a human disease mutation in the M2-M3 loop of the glycine receptor α1 subunit (K276E) using direct fitting of mechanisms to single-channel recordings with the program HJCFIT. Whole-cell recordings from HEK293 cells showed the mutation reduced the receptor glycine sensitivity. In single-channel recordings, rat homomeric α1 K276E receptors were barely active, even at 200 mM glycine. Coexpression of the β subunit partially rescued channel function. Heteromeric mutant channels opened in brief bursts at 300 μM glycine (a concentration that is near-maximal for wild type) and reached a maximum one-channel open probability of about 45% at 100 mm glycine (compared to 96% for wild type). Distributions of apparent open times contained more than one component in high glycine and, therefore, could not be described by mechanisms with only one fully liganded open state. Fits to the data were much better with mechanisms in which opening can also occur from more than one fully liganded intermediate (e.g., "primed" models). Brief pulses of glycine (∼3 ms, 30 mM) applied to mutant channels in outside-out patches activated currents with a slower rise time (1.5 ms) than those of wild-type channels (0.2 ms) and a much faster decay. These features were predicted reasonably well by the mechanisms obtained from fitting single-channel data. Our results show that, by slowing and impairing channel gating, the K276E mutation facilitates the detection of closed reaction intermediates in the activation pathway of glycine channels.
Collapse
|
18
|
Jeong JA, Kim EJ, Jo JY, Song JG, Lee KS, Kim HW, Lee SD, Jeon BH, Lee JU, Park JB. Major role of GABAA-receptor mediated tonic inhibition in propofol suppression of supraoptic magnocellular neurons. Neurosci Lett 2011; 494:119-23. [DOI: 10.1016/j.neulet.2011.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/20/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
|
19
|
Kainate receptor modulation by sodium and chloride. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 717:93-113. [PMID: 21713670 DOI: 10.1007/978-1-4419-9557-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kainate-type glutamate receptor displays strong modulation by monovalent anions and cations. This modulation is independent of permeation of the ion channel. Instead, structural, computational and biophysical evidence shows that receptor activity is controlled by binding of sodium and chloride ions at sites that stabilize active dimers of glutamate binding domains. Modulation by monovalent ions is a surprisingly general property across ion channel families. However, evidence of a physiological role for ion-dependent effects on glutamate receptors is lacking, perhaps reflecting the adventitious use of ions as structural components of the kainate receptor. "ergo, Hercules, vita humanior sine sale non quit degree […]" "Heaven known, a civilized life is impossible without salt" -Pliny the Elder, Natural History XXXI 88.
Collapse
|
20
|
Veruki ML, Oltedal L, Hartveit E. Electrical Coupling and Passive Membrane Properties of AII Amacrine Cells. J Neurophysiol 2010; 103:1456-66. [DOI: 10.1152/jn.01105.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AII amacrine cells in the mammalian retina are connected via electrical synapses to on-cone bipolar cells and to other AII amacrine cells. To understand synaptic integration in these interneurons, we need information about the junctional conductance ( gj), the membrane resistance ( rm), the membrane capacitance ( Cm), and the cytoplasmic resistivity ( Ri). Due to the extensive electrical coupling, it is difficult to obtain estimates of rm, as well as the relative contribution of the junctional and nonjunctional conductances to the total input resistance of an AII amacrine cell. Here we used dual voltage-clamp recording of pairs of electrically coupled AII amacrine cells in an in vitro slice preparation from rat retina and applied meclofenamic acid (MFA) to block the electrical coupling and isolate single AII amacrines electrically. In the control condition, the input resistance ( Rin) was ∼620 MΩ and the apparent rm was ∼760 MΩ. After block of electrical coupling, determined by estimating gj in the dual recordings, Rin and rm were ∼4,400 MΩ, suggesting that the nongap junctional conductance of an AII amacrine cell is ∼16% of the total input conductance. Control experiments with nucleated patches from AII amacrine cells suggested that MFA had no effect on the nongap junctional membrane of these cells. From morphological reconstructions of AII amacrine cells filled with biocytin, we obtained a surface area of ∼900 μm2 which, with a standard value for Cm of 0.01 pF/μm2, corresponds to an average capacitance of ∼9 pF and a specific membrane resistance of ∼41 kΩ cm2. Together with information concerning synaptic connectivity, these data will be important for developing realistic compartmental models of the network of AII amacrine cells.
Collapse
Affiliation(s)
| | - Leif Oltedal
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | - Espen Hartveit
- University of Bergen, Department of Biomedicine, Bergen, Norway
| |
Collapse
|
21
|
Korinek M, Sedlacek M, Cais O, Dittert I, Vyklicky L. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience 2009; 165:736-48. [PMID: 19883737 DOI: 10.1016/j.neuroscience.2009.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/18/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q(10)=1.7-2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q(10)=2.7-3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by approximately 50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs.
Collapse
Affiliation(s)
- M Korinek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
22
|
Wässle H, Heinze L, Ivanova E, Majumdar S, Weiss J, Harvey RJ, Haverkamp S. Glycinergic transmission in the Mammalian retina. Front Mol Neurosci 2009; 2:6. [PMID: 19924257 PMCID: PMC2777502 DOI: 10.3389/neuro.02.006.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/21/2009] [Indexed: 11/24/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major inhibitory neurotransmitters in the retina. Approximately half of the amacrine cells release glycine at their synapses with bipolar, other amacrine, and ganglion cells. Glycinergic amacrine cells are small-field amacrine cells with vertically oriented dendrites and comprise more than 10 different morphological types. The retinal distributions of glycine receptor (GlyR) α1, α2, α3 and α4 subtypes have been mapped with subunit-specific antibodies. GlyRs were clustered at postsynaptic hot spots which showed selective distributions for the different subunits. As a rule, only one α subunit was expressed at a given postsynaptic site. The kinetic properties of GlyRs were measured by recording spontaneous inhibitory postsynaptic currents (sIPSCs) from identified retinal neurons in wild-type, Glra1spd-ot, Glra2 and Glra3 knockout mice. From observed differences of sIPSCs in wild-type and mutant mice, the cell-type specific subunit composition of GlyRs could be defined. OFF-cone bipolar cells and A-type ganglion cells receive prominent glycinergic input with fast kinetics that is mainly mediated by α1β GlyRs (decay time constant τ ∼ 5 ms). By contrast, AII amacrine cells express α3β GlyRs with medium fast kinetics (τ ∼ 11 ms). Narrow-field (NF) and wide-field amacrine cells contain predominantly α2β GlyRs with slow kinetics (τ ∼ 27 ms). Lastly, ON-starburst, narrow-field and wide-field amacrine cells in Glra2 knockout mice express α4β GlyRs with very slow kinetics (τ ∼ 70 ms).
Collapse
Affiliation(s)
- Heinz Wässle
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Mørkve SH, Hartveit E. Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. J Physiol 2009; 587:3813-30. [PMID: 19528247 DOI: 10.1113/jphysiol.2009.173583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The excitability of presynaptic terminals can be controlled by synaptic input that directly targets the terminals. Retinal rod bipolar axon terminals receive presynaptic input from different types of amacrine cells, some of which are glycinergic. Here, we have performed patch-clamp recordings from rod bipolar axon terminals in rat retinal slices. We used whole-cell recordings to study glycinergic inhibitory postsynaptic currents (IPSCs) under conditions of adequate local voltage clamp and outside-out patch recordings to study biophysical and pharmacological properties of the glycine receptors with ultrafast application. Glycinergic IPSCs, recorded in both intact cells and isolated terminals, were strychnine sensitive and displayed fast kinetics with a double-exponential decay. Ultrafast application of brief (approximately 1 ms) pulses of glycine (3 mM) to patches evoked responses with fast, double-exponential deactivation kinetics, no evidence of desensitization in double-pulse experiments, relatively low apparent affinity (EC(50) approximately 100 microM), and high maximum open probability (0.9). Longer pulses evoked slow, double-exponential desensitization and double-pulse experiments indicated slow, double-exponential recovery from desensitization. Non-stationary noise analysis of IPSCs and patch responses yielded single-channel conductances of approximately 41 pS and approximately 64 pS, respectively. Directly observed single-channel gating occurred at approximately 40-50 pS and approximately 80-90 pS in both types of responses, suggesting a mixture of heteromeric and homomeric receptors. Synaptic release of glycine leads to transient receptor activation, with about eight receptors available to bind transmitter after release of a single vesicle. With a low intracellular chloride concentration, this leads to either hyperpolarizing or shunting inhibition that will counteract passive and regenerative depolarization and depolarization-evoked transmitter release.
Collapse
Affiliation(s)
- Svein Harald Mørkve
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
24
|
Majumdar S, Weiss J, Wässle H. Glycinergic input of widefield, displaced amacrine cells of the mouse retina. J Physiol 2009; 587:3831-49. [PMID: 19528249 DOI: 10.1113/jphysiol.2009.171207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine receptors (GlyRs) of displaced amacrine cells of the mouse retina were analysed using whole cell recordings and immunocytochemical staining with subunit-specific antibodies. During the recordings the cells were filled with a fluorescent tracer and 11 different morphological types could be identified. The studies were performed in wild-type mice and in mutant mice deficient in the GlyRalpha1 (Glra1(spd-ot), 'oscillator' mouse), the GlyRalpha2 (Glra2(-/-)) and the GlyRalpha3 subunit (Glra3(-/-)). Based on their responses to the application of exogenous glycine in the retinas of wild-type and mutant mice, the cells were grouped into three major classes: group I cells (comprising the morphological types MA-S5, MA-S1, MA-S1/S5, A17, PA-S1, PA-S5 and WA-S1), group II cells (comprising the morphological types PA-S4, WA-S3 and WA-multi) and ON-starburst cells. For further analysis, spontaneous inhibitory postsynaptic currents (sIPSCs) were measured both in wild-type and mutant mouse retinas. Glycinergic sIPSCs and glycine induced currents of group I cells remained unaltered across wild-type and the three mutant mice (mean decay time constant of sIPSCs, tau approximately 25 ms). Group II cells showed glycinergic sIPSCs and glycine induced currents in wild-type, Glra1(spd-ot) and Glra3(-/-) mice (tau approximately 25 ms); however, glycinergic currents were absent in group II cells of Glra2(-/-) mice. Glycine induced currents and sIPSCs recorded from ON-starburst amacrine cells did not differ significantly between wild-type and the mutant mouse retinas (tau approximately 50-70 ms). We propose that GlyRs of group II cells are dominated by the alpha2 subunit; GlyRs of ON-starburst amacrine cells appear to be dominated by the alpha4 subunit.
Collapse
Affiliation(s)
- Sriparna Majumdar
- Max-Planck-Institut für Hirnforschung, Deutschordenstr. 46, D-60528 Frankfurt/Main, Germany
| | | | | |
Collapse
|
25
|
Jin X, Covey DF, Steinbach JH. Kinetic analysis of voltage-dependent potentiation and block of the glycine alpha 3 receptor by a neuroactive steroid analogue. J Physiol 2009; 587:981-97. [PMID: 19124545 DOI: 10.1113/jphysiol.2008.159343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the actions of a carboxylated analogue of pregnanolone ((3alpha,5beta)-20-oxopregnane-3-carboxylic acid; 3alphaCOOH5betaP) on receptors composed of glycine receptor alpha3 subunits, expressed in Xenopus oocytes. This analogue both inhibits and potentiates this receptor; potentiation increases with more negative membrane potentials while block increases with less negative membrane potentials. We used a second analogue ((3alpha,5beta)-3-hydroxymethylpregnan-20-one; 3alphaCH(2)OH5betaP) to examine the mechanism for voltage-dependent potentiation. This analogue potentiates but does not block the glycine alpha3 receptor. Steady-state responses and current relaxations following voltage jumps support the idea that the voltage dependence of potentiation indirectly arises from a voltage dependence for channel activation by glycine, rather than an intrinsic voltage dependence for potentiation. Potentiation results from a slowing of the channel deactivation rate. In the absence of steroid, at a low [glycine] current relaxations after a voltage jump show two exponential components, with a weighted average time constant of approximately 425 ms (-50 mV, 22 degrees C). The rate for channel deactivation increases at more negative potentials (e-fold per 170 mV) whereas activation decreases (e-fold per 230 mV). The probability a channel is active at a high [glycine] is greater than 0.9. The addition of 10 microM 3alphaCH(2)OH5betaP decreases the deactivation rate by 6.3-fold (-50 mV). Voltage-dependent block by 3alphaCOOH5betaP is consistent with simple open-channel block, with voltage dependence reflecting interactions of the charge on the analogue with the electrical field. Block and unblock have equal but opposite dependence on membrane potential, and the charge on 3alphaCOOH5betaP senses approximately 70% of the membrane field at the blocking site. The apparent forward rate for block, however, is very slow (2 x 10(5) m(-1) s(-1)).
Collapse
Affiliation(s)
- Xiaochun Jin
- Department of Anesthesiology, Washington University, 660 South Euclid Ave, St Louis, MO 63110, USA
| | | | | |
Collapse
|
26
|
Hsueh HA, Molnar A, Werblin FS. Amacrine-to-amacrine cell inhibition in the rabbit retina. J Neurophysiol 2008; 100:2077-88. [PMID: 18667544 DOI: 10.1152/jn.90417.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the interactions between excitation and inhibition in morphologically identified amacrine cells in the light-adapted rabbit retinal slice under patch clamp. The majority of on amacrine cells received glycinergic off inhibition. About half of the off amacrine cells received glycinergic on inhibition. Neither class received any GABAergic inhibition. A minority of on, off, and on-off amacrine cells received both glycinergic on and GABAergic off inhibition. These interactions were found in cells with diverse morphologies having both wide and narrow processes that stratify in single or multiple layers of the inner plexiform layer (IPL). Most on-off amacrine cells received no inhibition and have monostratified processes confined to the middle of the IPL. The most common interaction between amacrine cells that we measured was "crossover inhibition," where off inhibits on and on inhibits off. Although the morphology of amacrine cells is diverse, the interactions between excitation and inhibition appear to be relatively limited and specific.
Collapse
Affiliation(s)
- Hain-Ann Hsueh
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
27
|
Lee KS, Han TH, Jo JY, Kang G, Lee SY, Ryu PD, Im JH, Jeon BH, Park JB. Serotonin inhibits GABA synaptic transmission in presympathetic paraventricular nucleus neurons. Neurosci Lett 2008; 439:138-42. [PMID: 18524490 DOI: 10.1016/j.neulet.2008.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 04/19/2008] [Accepted: 05/05/2008] [Indexed: 11/16/2022]
Abstract
Activation of serotonin (5-hydroxytryptamine, 5-HT) receptors produces various autonomic and neuroendocrine responses in the hypothalamic paraventricular nucleus (PVN), including increased blood pressure and heart rate. However, the role(s) of 5-HT on the local GABA synaptic circuit have not been well understood in the PVN, where the inhibitory neurotransmitter GABA plays a key role in the modulation of sympathoexcitatory outflow. In the present study, we examined the effects of 5-HT on GABA synaptic transmission in presympathetic PVN neurons projecting to spinal cord using patch-clamp electrophysiology combined with tract-tracing techniques. Bath application of 5-HT (0.01-100 microM) reversibly decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSC) in a concentration dependent manner (IC50, 0.07 microM), with no significant changes in the amplitudes and decay kinetics of sIPSC. The sIPSC inhibition of 5-HT was mimicked by 5-HT1A agonist, 8-OH-DPAT (8-hydroxy-2(di-n-propylamino)tetralin, 10 microM), and blocked by 5-HT1A antagonist WAY-100635 but not by 5-HT1B antagonist SB224289. 5-HT also reduced the frequency of miniature IPSC (mIPSC) (2.59+/-0.51 Hz, control vs. 1.25+/-0.31 Hz, 5-HT, n=16) in similar extent with 5-HT induced reduction of sIPSC frequency (sIPSCs, 55.8+/-6.2%, n=11 vs. mIPSCs, 52.30+/-5.85%, n=16; p>0.5). All together, our results indicate that 5-HT can inhibit presynaptic GABA release via presynaptic 5-HT1A receptors in presympathetic PVN neurons projecting to spinal cord.
Collapse
Affiliation(s)
- Kyu Seung Lee
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Joong-gu, Daejeon, 301-131, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Weiss J, O'Sullivan G, Heinze L, Chen HX, Betz H, Wässle H. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Mol Cell Neurosci 2008; 37:40-55. [DOI: 10.1016/j.mcn.2007.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022] Open
|
29
|
Majumdar S, Heinze L, Haverkamp S, Ivanova E, Wässle H. Glycine receptors of A-type ganglion cells of the mouse retina. Vis Neurosci 2007; 24:471-87. [PMID: 17550639 DOI: 10.1017/s0952523807070174] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/14/2007] [Indexed: 11/06/2022]
Abstract
A-type ganglion cells of the mouse retina represent the visual channel that transfers temporal changes of the outside world very fast and with high fidelity. In this study we combined anatomical and physiological methods in order to study the glycinergic, inhibitory input of A-type ganglion cells. Immunocytochemical studies were performed in a transgenic mouse line whose ganglion cells express green fluorescent protein (GFP). The cells were double labeled for GFP and the four alpha subunits of the glycine receptor (GlyR). It was found that most of the glycinergic input of A-type cells is through fast, alpha1-expressing synapses. Whole-cell currents were recorded from A-type ganglion cells in retinal whole mounts. The response to exogenous application of glycine and spontaneous inhibitory postsynaptic currents (sIPSCs) were measured. By comparing glycinergic currents recorded in wildtype mice and in mice with specific deletions of GlyRalpha subunits (Glra1spd-ot, Glra2-/-, Glra3-/-), the subunit composition of GlyRs of A-type ganglion cells could be further defined. Glycinergic sIPSCs of A-type ganglion cells have fast kinetics (decay time constant tau = 3.9 +/- 2.5 ms, mean +/- SD). Glycinergic sIPSCs recorded in Glra2-/- and Glra3-/- mice did not differ from those of wildtype mice. However, the number of glycinergic sIPSCs was significantly reduced in Glra1spd-ot mice and the remaining sIPSCs had slower kinetics than in wildtype mice. The results show that A-type ganglion cells receive preferentially kinetically fast glycinergic inputs, mediated by GlyRs composed of alpha1 and beta subunits.
Collapse
Affiliation(s)
- Sriparna Majumdar
- Department of Neuroanatomy, Max-Planck-Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
30
|
Hartveit E, Veruki ML. Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nat Protoc 2007; 2:434-48. [PMID: 17406605 DOI: 10.1038/nprot.2007.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical synaptic transmission depends on neurotransmitter-gated ion channels concentrated in the postsynaptic membrane of specialized synaptic contacts. The functional characteristics of these neurotransmitter receptor channels are important for determining the properties of synaptic transmission. Whole-cell recording of postsynaptic currents (PSCs) and outside-out patch recording of transmitter-evoked currents are important tools for estimating the single-channel conductance and the number of receptors contributing to the PSC activated by a single transmitter quantum. When single-channel activity cannot be directly resolved, non-stationary noise analysis is a valuable tool for determining these parameters. Peak-scaled non-stationary noise analysis can be used to compensate for quantal variability in synaptic currents. Here, we present detailed protocols for conventional and peak-scaled non-stationary noise analysis of spontaneous PSCs and responses in outside-out patches. In addition, we include examples of computer code for individual functions used in the different stages of non-stationary noise analysis. These analysis procedures require 3-8 h.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | |
Collapse
|
31
|
Plested AJR, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG. Single-channel study of the spasmodic mutation alpha1A52S in recombinant rat glycine receptors. J Physiol 2007; 581:51-73. [PMID: 17331994 PMCID: PMC2075205 DOI: 10.1113/jphysiol.2006.126920] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inherited defects in glycine receptors lead to hyperekplexia, or startle disease. A mutant mouse, spasmodic, that has a startle phenotype, has a point mutation (A52S) in the glycine receptor alpha1 subunit. This mutation reduces the sensitivity of the receptor to glycine, but the mechanism by which this occurs is not known. We investigated the properties of A52S recombinant receptors by cell-attached patch-clamp recording of single-channel currents elicited by 30-10000 microM glycine. We used heteromeric receptors, which resemble those found at adult inhibitory synapses. Activation mechanisms were fitted directly to single channel data using the HJCFIT method, which includes an exact correction for missed events. In common with wild-type receptors, only mechanisms with three binding sites and extra shut states could describe the observations. The most physically plausible of these, the 'flip' mechanism, suggests that preopening isomerization to the flipped conformation that follows binding is less favoured in mutant than in wild-type receptors, and, especially, that the flipped conformation has a 100-fold lower affinity for glycine than in wild-type receptors. In contrast, the efficacy of the gating reaction was similar to that of wild-type heteromeric receptors. The reduction in affinity for the flipped conformation accounts for the reduction in apparent cooperativity seen in the mutant receptor (without having to postulate interaction between the binding sites) and it accounts for the increased EC50 for responses to glycine that is seen in mutant receptors. This mechanism also predicts accurately the faster decay of synaptic currents that is observed in spasmodic mice.
Collapse
Affiliation(s)
- Andrew J R Plested
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
32
|
Veruki ML, Gill SB, Hartveit E. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina. J Physiol 2007; 581:203-19. [PMID: 17331993 PMCID: PMC2075214 DOI: 10.1113/jphysiol.2006.127316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The functional properties of glycine receptors were analysed in different types of wide-field amacrine cells, narrowly stratifying cells considered to play a role in larger-scale integration across the retina. The patch-clamp technique was used to record spontaneous IPSCs (spIPSCs) and glycine-evoked patch responses from mature rat retinal slices (4-7 weeks postnatal). Glycinergic spIPSCs were blocked reversibly by strychnine (300 nM). Compared to previously described spIPSCs in AII amacrine cells, the spIPSCs in wide-field amacrine cells displayed a very slow decay time course (tau(fast) approximately 15 ms; tau(slow) approximately 57 ms). The kinetic properties of spIPSCs in whole-cell recordings were paralleled by even slower deactivation kinetics of responses evoked by brief pulses of glycine (3 mm) to outside-out patches from wide-field amacrine cells (tau(fast) approximately 45 ms; tau(slow) approximately 350 ms). Non-stationary noise analysis of patch responses and spIPSCs yielded similar average single-channel conductances (approximately 31 and approximately 34 pS, respectively). Similar, as well as both lower- and higher-conductance levels could be identified from directly observed single-channel gating during the decay phase of spIPSCs and patch responses. These results suggest that the slow glycinergic spIPSCs in wide-field amacrine cells involve alpha2beta heteromeric receptors. Taken together with previous work, the kinetic properties of glycine receptors in different types of amacrine cells display a considerable range that is probably a direct consequence of differential expression of receptor subunits. Unique kinetic properties are likely to differentially shape the glycinergic input to different types of amacrine cells and thereby contribute to distinct integrative properties among these cells.
Collapse
Affiliation(s)
- Margaret Lin Veruki
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
33
|
Beato M, Sivilotti LG. Single-channel properties of glycine receptors of juvenile rat spinal motoneurones in vitro. J Physiol 2007; 580:497-506. [PMID: 17272347 PMCID: PMC2075563 DOI: 10.1113/jphysiol.2006.125740] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An essential step in understanding fast synaptic transmission is to establish the activation mechanism of synaptic receptors. The purpose of this work was to extend our detailed single-channel kinetic characterization of α1β glycine channels from rat recombinant receptors to native channels from juvenile (postnatal day 12–16) rat spinal cord slices. In cell-attached patches from ventral horn neurones, 1 mm glycine elicited clusters of channel openings to a single conductance level (41 ± 1 pS, n=12). This is similar to that of recombinant heteromers. However, fewer than 1 in 100 cell-attached patches from spinal neurones contained glycine channels. Outside-out patches gave a much higher success rate, but glycine channels recorded in this configuration appeared different, in that clusters opened to three conductance levels (28 ± 2, 38 ± 1 and 46 ± 1 pS, n=7, one level per cluster, all levels being detected in each patch). Furthermore, open period properties were different for the different conductances. As a consequence of this, the only recordings suitable for kinetic analysis were the cell-attached ones. Low channel density precluded recording at glycine concentrations other than 1 mm, but the 1 mm data allowed us to estimate the fully bound gating constants by global model fitting of the ‘flip’ mechanism of Burzomato and co-workers. Our results suggest that glycine receptors on ventral horn neurones in the juvenile rat are heteromers and have fast gating, similar to that of recombinant α1β receptors.
Collapse
Affiliation(s)
- Marco Beato
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|