1
|
Marcella BM, Hockey BL, Braun JL, Whitley KC, Geromella MS, Baranowski RW, Watson CJF, Silvera S, Hamstra SI, Wasilewicz LJ, Crozier RWE, Marais AAT, Kim KH, Lee G, Vandenboom R, Roy BD, MacNeil AJ, MacPherson REK, Fajardo VA. GSK3 inhibition improves skeletal muscle function and whole-body metabolism in male mouse models of Duchenne muscular dystrophy. Nat Commun 2024; 15:10210. [PMID: 39587049 PMCID: PMC11589163 DOI: 10.1038/s41467-024-53886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inhibiting glycogen synthase kinase 3 (GSK3) improves muscle function, metabolism, and bone health in many diseases and conditions; however, whether GSK3 should be targeted for Duchenne muscular dystrophy (DMD), a severe muscle wasting disorder with no cure, remains unknown. Here, we show the effects of GSK3 inhibition in male DBA/2J (D2) and C57BL/10 (C57) mdx mice. Treating D2 mdx mice with GSK3 inhibitors alone or in combination with aerobic exercise improves muscle strength, endurance, and morphology, attenuates the hypermetabolic phenotype, and enhances insulin sensitivity. GSK3 inhibition in C57 mdx mice also improves muscle fatigue resistance and increases cage ambulation. Moreover, muscle-specific GSK3 knockdown in mdx mice augments muscle force production and endurance. In both mdx strains, GSK3 inhibition increases bone mineral content and density. Overall, these improvements to muscle, metabolic, and bone health with GSK3 inhibition in mdx mice may have clinical implications for patients with DMD, where the current standard of care, glucocorticoids, delay the loss of ambulation but increase the risk for insulin resistance and osteoporosis. Along with our observation of lowered β-catenin content in DMD myoblasts, a known cellular target for GSK3, this study provides ample evidence in support of inhibiting GSK3 for this disease.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/pathology
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Mice, Inbred mdx
- Mice, Inbred C57BL
- Mice
- Disease Models, Animal
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3/antagonists & inhibitors
- Muscle Strength/drug effects
- Mice, Inbred DBA
- Physical Conditioning, Animal
- Bone Density/drug effects
- Insulin Resistance
Collapse
Affiliation(s)
- Bianca M Marcella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Briana L Hockey
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Kennedy C Whitley
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan W Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Sebastian Silvera
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Luc J Wasilewicz
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Amélie A T Marais
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kun Ho Kim
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabsang Lee
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Adam J MacNeil
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
2
|
Sharlo KA, Lvova ID, Tyganov SA, Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. The Effect of SERCA Activation on Functional Characteristics and Signaling of Rat Soleus Muscle upon 7 Days of Unloading. Biomolecules 2023; 13:1354. [PMID: 37759754 PMCID: PMC10526198 DOI: 10.3390/biom13091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Skeletal muscle abnormalities and atrophy during unloading are accompanied by the accumulation of excess calcium in the sarcoplasm. We hypothesized that calcium accumulation may occur, among other mechanisms, due to the inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity. Consequently, the use of the SERCA activator will reduce the level of calcium in the sarcoplasm and prevent the negative consequences of muscle unloading. Wistar rats were randomly assigned into one of three groups (eight rats per group): control rats with placebo (C), 7 days of unloading/hindlimb suspension with placebo (7HS), and 7 days of unloading treated with SERCA activator CDN1163 (7HSC). After seven days of unloading the soleus muscle, the 7HS group displayed increased fatigue in the ex vivo test, a significant increase in the level of calcium-dependent CaMK II phosphorylation and the level of tropomyosin oxidation, as well as a decrease in the content of mitochondrial DNA and protein, slow-type myosin mRNA, and the percentage of slow-type muscle fibers. All of these changes were prevented in the 7HSC group. Moreover, treatment with CDN1163 blocked a decrease in the phosphorylation of p70S6k, an increase in eEF2 phosphorylation, and an increase in MuRF-1 mRNA expression. Nevertheless, there were no differences in the degree of fast and slow muscle fiber atrophy between the 7HS and 7HSC groups. Conclusion: SERCA activation during 7 days of unloading prevented an increase in soleus fatigue, the decrease of slow-type myosin, mitochondrial markers, and markers of calcium homeostasis but had no effect on muscle atrophy.
Collapse
Affiliation(s)
- Kristina A. Sharlo
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Irina D. Lvova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Ksenia A. Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Svetlana P. Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46202, USA;
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| |
Collapse
|
3
|
Geromella MS, Ryan CR, Braun JL, Finch MS, Maddalena LA, Bagshaw O, Hockey BL, Moradi F, Fenech RK, Ryoo J, Marko DM, Dhaliwal R, Sweezey-Munroe J, Hamstra SI, Gardner G, Silvera S, Vandenboom R, Roy BD, Stuart JA, MacPherson RE, Fajardo VA. Low-dose lithium supplementation promotes adipose tissue browning and sarco(endo)plasmic reticulum Ca2+ ATPase uncoupling in muscle. J Biol Chem 2022; 298:102568. [DOI: 10.1016/j.jbc.2022.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
|
4
|
Shenkman BS, Sharlo KA. How Muscle Activity Controls Slow
Myosin Expression. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 2021; 22:ijms22105081. [PMID: 34064895 PMCID: PMC8151958 DOI: 10.3390/ijms22105081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles, being one of the most abundant tissues in the body, are involved in many vital processes, such as locomotion, posture maintenance, respiration, glucose homeostasis, etc. Hence, the maintenance of skeletal muscle mass is crucial for overall health, prevention of various diseases, and contributes to an individual’s quality of life. Prolonged muscle inactivity/disuse (due to limb immobilization, mechanical ventilation, bedrest, spaceflight) represents one of the typical causes, leading to the loss of muscle mass and function. This disuse-induced muscle loss primarily results from repressed protein synthesis and increased proteolysis. Further, prolonged disuse results in slow-to-fast fiber-type transition, mitochondrial dysfunction and reduced oxidative capacity. Glycogen synthase kinase 3β (GSK-3β) is a key enzyme standing at the crossroads of various signaling pathways regulating a wide range of cellular processes. This review discusses various important roles of GSK-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscles under disuse/unloading conditions and subsequent recovery. According to its vital functions, GSK-3β may represent a perspective therapeutic target in the treatment of muscle wasting induced by chronic disuse, aging, and a number of diseases.
Collapse
|
6
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
7
|
Whitley KC, Hamstra SI, Baranowski RW, Watson CJF, MacPherson REK, MacNeil AJ, Roy BD, Vandenboom R, Fajardo VA. GSK3 inhibition with low dose lithium supplementation augments murine muscle fatigue resistance and specific force production. Physiol Rep 2020; 8:e14517. [PMID: 32729236 PMCID: PMC7390913 DOI: 10.14814/phy2.14517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Calcineurin is a Ca2+ -dependent serine/threonine phosphatase that dephosphorylates nuclear factor of activated T cells (NFAT), allowing for NFAT entry into the nucleus. In skeletal muscle, calcineurin signaling and NFAT activation increases the expression of proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) and slow myosin heavy chain (MHC) I ultimately promoting fatigue resistance. Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that antagonizes calcineurin by re-phosphorylating NFAT preventing its entry into the nucleus. Here, we tested whether GSK3 inhibition in vivo with low dose lithium chloride (LiCl) supplementation (10 mg kg-1 day-1 for 6 weeks) in male C57BL/6J mice would enhance muscle fatigue resistance in soleus and extensor digitorum longus (EDL) muscles by activating NFAT and augmenting PGC-1α and MHC I expression. LiCl treatment inhibited GSK3 by elevating Ser9 phosphorylation in soleus (+1.8-fold, p = .007) and EDL (+1.3-fold p = .04) muscles. This was associated with a significant reduction in NFAT phosphorylation (-50%, p = .04) and a significant increase in PGC-1α (+1.5-fold, p = .05) in the soleus but not the EDL. MHC isoform analyses in the soleus also revealed a 1.2-fold increase in MHC I (p = .04) with no change in MHC IIa. In turn, a significant enhancement in soleus muscle fatigue (p = .04), but not EDL (p = .26) was found with LiCl supplementation. Lastly, LiCl enhanced specific force production in both soleus (p < .0001) and EDL (p = .002) muscles. Altogether, our findings show the skleletal muscle contractile benefits of LiCl-mediated GSK3 inhibition in mice.
Collapse
Affiliation(s)
- Kennedy C. Whitley
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| | - Sophie I. Hamstra
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| | - Ryan W. Baranowski
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| | | | | | - Adam J. MacNeil
- Department of Health SciencesBrock UniversitySt. CatharinesONCanada
| | - Brian D. Roy
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| | - Rene Vandenboom
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesONCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesONCanada
| |
Collapse
|
8
|
Ozay EI, Shanthalingam S, Sherman HL, Torres JA, Osborne BA, Tew GN, Minter LM. Cell-Penetrating Anti-Protein Kinase C Theta Antibodies Act Intracellularly to Generate Stable, Highly Suppressive Regulatory T Cells. Mol Ther 2020; 28:1987-2006. [PMID: 32492367 PMCID: PMC7474270 DOI: 10.1016/j.ymthe.2020.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023] Open
Abstract
Regulatory T cells maintain immunological tolerance and dampen inflammatory responses. Administering regulatory T cells can prevent the immune-mediated tissue destruction of graft-versus-host disease, which frequently accompanies hematopoietic stem cell transfer. Neutralizing the T cell-specific kinase, protein kinase C theta, which promotes T cell effector functions and represses regulatory T cell differentiation, augments regulatory T cell immunosuppression and stability. We used a synthetic, cell-penetrating peptide mimic to deliver antibodies recognizing protein kinase C theta into primary human CD4 T cells. When differentiated ex vivo into induced regulatory T cells, treated cells expressed elevated levels of the regulatory T cell transcriptional regulator forkhead box P3, the surface-bound immune checkpoint receptor programmed death receptor-1, and pro-inflammatory interferon gamma, previously ascribed to a specific population of stable, highly suppressive human induced regulatory T cells. The in vitro suppressive capacity of these induced regulatory T cells was 10-fold greater than that of T cells differentiated without antibody delivery. When administered at the time of graft-versus-host disease induction, using a humanized mouse model, antibody-treated regulatory T cells were superior to non-treated T cells in attenuating lethal outcomes. This antibody delivery approach may overcome obstacles currently encountered using patient-derived regulatory T cells as a cell-based therapy for immune modulation.
Collapse
Affiliation(s)
- E Ilker Ozay
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Heather L Sherman
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joe A Torres
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Barbara A Osborne
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Lisa M Minter
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Sharlo K, Paramonova I, Turtikova O, Tyganov S, Shenkman B. Plantar mechanical stimulation prevents calcineurin-NFATc1 inactivation and slow-to-fast fiber type shift in rat soleus muscle under hindlimb unloading. J Appl Physiol (1985) 2019; 126:1769-1781. [PMID: 31046517 DOI: 10.1152/japplphysiol.00029.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The prevailing myosin isoform [myosin heavy chain (MyHC)] in a skeletal muscle determines contractile properties of the muscle. Under actual or simulated microgravity conditions such as human bed rest or rat hindlimb unloading, decrease in expression of MyHC of the slow type [MyHC I(β)] has been observed. It was demonstrated that increasing sensory input by performing plantar mechanical stimulation (PMS) on the soles of the feet results in an increase in neuromuscular activation of the lower limb muscles and may prevent slow-to-fast fiber type shift. The calcineurin-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway is the main cascade regulating MyHC I(β) expression. The present study was aimed to analyze the states of the calcineurin-NFATc1 signaling cascade under conditions of PMS during rat hindlimb unloading. Male Wistar rats were randomly assigned to vivarium control groups and 1-day unloading (1HS), 3-day unloading (3HS), 1HS+PMS, and 3HS+PMS groups. We found that both 1 day and 3 days of unloading caused decrease in MyHC I(β) mRNA expression and decrease in glycogen synthase kinase-3β phosphorylation (Ser 9) that brought about the kinase activation, and these effects of unloading were prevented by PMS. Three days of unloading also caused increase in expression of calsarcin-2 (myozenin-I), which was found to be the endogenous calcineurin inhibitor. The level of calsarcin-2 expression in the 3HS+PMS group did not differ from the control group. Therefore, we conclude that PMS upregulates the calcineurin-NFATc1 signaling pathway and prevents unloading-induced MyHC I(β) decrease. NEW & NOTEWORTHY It is widely accepted that changes in the myosin phenotype during functional unloading (disuse) are determined by a decreased expression of the myosin heavy chain (MyHC) I(β) gene, and this decrease leads to changes of contractile and fatigue characteristics of soleus muscle. The calcineurin-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) pathway is one of the most important signaling cascades regulating slow MyHC isoform expression. The present study is the first to show that plantar mechanical stimulation upregulates calcineurin-NFATc1 signaling in soleus muscles of hindlimb-unloaded rats.
Collapse
Affiliation(s)
- Kristina Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences , Moscow , Russia
| | - Inna Paramonova
- Institute of Biomedical Problems, Russian Academy of Sciences , Moscow , Russia
| | - Olga Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences , Moscow , Russia
| | - Sergey Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences , Moscow , Russia
| | - Boris Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
10
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Mosole S, Zampieri S, Furlan S, Carraro U, Löefler S, Kern H, Volpe P, Nori A. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People. Gerontol Geriatr Med 2018; 4:2333721418768998. [PMID: 29662923 PMCID: PMC5896842 DOI: 10.1177/2333721418768998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023] Open
Abstract
Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins.
Collapse
Affiliation(s)
- Simone Mosole
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Zampieri
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Ugo Carraro
- IRRCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Stefan Löefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria.,Institute of Physical Medicine and Rehabilitation, St. Pölten, Austria
| | | | | |
Collapse
|
12
|
Sharlo CA, Lomonosova YN, Turtikova OV, Mitrofanova OV, Kalamkarov GR, Bugrova AE, Shevchenko TF, Shenkman BS. The Role of GSK-3β Phosphorylation in the Regulation of Slow Myosin Expression in Soleus Muscle during Functional Unloading. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Vilchinskaya NA, Mochalova EP, Nemirovskaya TL, Mirzoev TM, Turtikova OV, Shenkman BS. Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J Physiol 2017; 595:7123-7134. [PMID: 28975644 DOI: 10.1113/jp275184] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Inactivation of a skeletal muscle results in slow to fast myosin heavy chain (MyHC) shift. AMP-activated protein kinase (AMPK) can be implicated in the regulation of genes encoding the slow MyHC isoform. Here we report that AMPK dephosphorylation after 24 h of mechanical unloading can contribute to histone deacetylase (HDAC) nuclear translocation; activation of AMPK prevents HDAC4 nuclear accumulation after 24 h of unloading and AMPK dephosphorylation inhibits slow MyHC expression following 24 h of unloading. Our data indicate that AMPK dephosphorylation during the first 24 h of mechanical unloading has a significant impact on the expression of MyHC isoforms in rat soleus causing a decrease in MyHC I(β) pre-mRNA and mRNA expression as well as MyHC IIa mRNA expression. ABSTRACT One of the key events that occurs during skeletal muscle inactivation is a change in myosin phenotype, i.e. increased expression of fast isoforms and decreased expression of the slow isoform of myosin heavy chain (MyHC). It is known that calcineurin/nuclear factor of activated T-cells and AMP-activated protein kinase (AMPK) can regulate the expression of genes encoding MyHC slow isoform. Earlier, we found a significant decrease in phosphorylated AMPK in rat soleus after 24 h of hindlimb unloading (HU). We hypothesized that a decrease in AMPK phosphorylation and subsequent histone deacetylase (HDAC) nuclear translocation can be one of the triggering events leading to a reduced expression of slow MyHC. To test this hypothesis, Wistar rats were treated with AMPK activator (AICAR) for 6 days before HU as well as during 24 h of HU. We discovered that AICAR treatment prevented a decrease in pre-mRNA and mRNA expression of MyHC I as well as MyHC IIa mRNA expression. Twenty-four hours of hindlimb suspension resulted in HDAC4 accumulation in the nuclei of rat soleus but AICAR pretreatment prevented this accumulation. The results of the study indicate that AMPK dephosphorylation after 24 h of HU had a significant impact on the MyHC I and MyHC IIa mRNA expression in rat soleus. AMPK dephosphorylation also contributed to HDAC4 translocation to the nuclei of soleus muscle fibres, suggesting an important role of HDAC4 as an epigenetic regulator in the process of myosin phenotype transformation.
Collapse
Affiliation(s)
| | | | - Tatiana L Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V Turtikova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia
| |
Collapse
|
14
|
Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev 2017; 18:647-659. [PMID: 28391659 DOI: 10.1111/obr.12530] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Mammalian skeletal muscles are composed of two major fibre types (I and II) that differ in terms of size, metabolism and contractile properties. In general, slow-twitch type I fibres are rich in mitochondria and have a greater insulin sensitivity than fast-twitch type II skeletal muscles. Although not widely appreciated, a forced induction of the slow skeletal muscle phenotype may inhibit the progress of obesity and diabetes. This potentially forms the basis for targeting slow/oxidative myofibers in the treatment of obesity. In this context, a better understanding of the molecular basis of fibre-type specification and plasticity may help to identify potential therapeutic targets for obesity and diabetes.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| |
Collapse
|
15
|
Shenkman BS. From Slow to Fast: Hypogravity-Induced Remodeling of Muscle Fiber Myosin Phenotype. Acta Naturae 2016; 8:47-59. [PMID: 28050266 PMCID: PMC5199206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/11/2022] Open
Abstract
Skeletal muscle consists of different fiber types arranged in a mosaic pattern. These fiber types are characterized by specific functional properties. Slow-type fibers demonstrate a high level of fatigue resistance and prolonged contraction duration, but decreased maximum contraction force and velocity. Fast-type fibers demonstrate high contraction force and velocity, but profound fatigability. During the last decades, it has been discovered that all these properties are determined by the predominance of slow or fast myosin-heavy-chain (MyHC) isoforms. It was observed that gravitational unloading during space missions and simulated microgravity in ground-based experiments leads to the transformation of some slow-twitch muscle fibers into fast-twitch ones due to changes in the patterns of MyHC gene expression in the postural soleus muscle. The present review covers the facts and mechanistic speculations regarding myosin phenotype remodeling under conditions of gravitational unloading. The review considers the neuronal mechanisms of muscle fiber control and molecular mechanisms of regulation of myosin gene expression, such as inhibition of the calcineurin/NFATc1 signaling pathway, epigenomic changes, and the behavior of specific microRNAs. In the final portion of the review, we discuss the adaptive role of myosin phenotype transformations.
Collapse
Affiliation(s)
- B. S. Shenkman
- State Scientific Center of the Russian Federation – Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse, 76A, Moscow, 123007, Russia
| |
Collapse
|
16
|
Yokoyama S, Ohno Y, Egawa T, Yasuhara K, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Okita M, Origuchi T, Goto K. Heat shock transcription factor 1-associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading. Acta Physiol (Oxf) 2016; 217:325-37. [PMID: 27084024 DOI: 10.1111/apha.12692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/28/2015] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
AIM The effects of heat shock transcription factor 1 (HSF1) deficiency on the fibre type composition and the expression level of nuclear factor of activated T cells (NFAT) family members (NFATc1, NFATc2, NFATc3 and NFATc4), phosphorylated glycogen synthase kinase 3α (p-GSK3α) and p-GSK3β, microRNA-208b (miR-208b), miR-499 and slow myosin heavy chain (MyHC) mRNAs (Myh7 and Myh7b) of antigravitational soleus muscle in response to unloading with or without reloading were investigated. METHODS HSF1-null and wild-type mice were subjected to continuous 2-week hindlimb suspension followed by 2- or 4-week ambulation recovery. RESULTS In wild-type mice, the relative population of slow type I fibres, the expression level of NFATc2, p-GSK3 (α and β), miR-208b, miR-499 and slow MyHC mRNAs (Myh7 and Myh7b) were all decreased with hindlimb suspension, but recovered after it. Significant interactions between train and time (the relative population of slow type I fibres; P = 0.01, the expression level of NFATc2; P = 0.001, p-GSKβ; P = 0.009, miR-208b; P = 0.002, miR-499; P = 0.04) suggested that these responses were suppressed in HSF1-null mice. CONCLUSION HSF1 may be a molecule in the regulation of the expression of slow MyHC as well as miR-208b, miR-499, NFATc2 and p-GSK3 (α and β) in mouse soleus muscle.
Collapse
Affiliation(s)
- S. Yokoyama
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - Y. Ohno
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - K. Yasuhara
- Department of Orthopaedic Surgery; St. Marianna University School of Medicine; Kawasaki Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Faculty and Graduate School of Health and Sports Sciences; Doshisha University; Kyotanabe Japan
| | | | - M. Okita
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - T. Origuchi
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - K. Goto
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
17
|
Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway. J Muscle Res Cell Motil 2015; 37:7-16. [PMID: 26589960 DOI: 10.1007/s10974-015-9428-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Under muscle disuse conditions decrease of expression of MyHC of slow type, and sometimes of type IIa, as well as upregulation of expression of IIb and IId/x isoforms were observed. Through dephosphorylation and entry of NFAT molecules to the nucleus calcineurin/NFATc1 signaling pathway promotes upregulation of the slow MyHC expression. We supposed that downregulation of calcineurin pathway took place during unloading. The study was aimed to analyze the states of the myonuclear NFAT inhibitors calsarcin I (CSI) and calsarcin II (CSII) (also referred to as myozenin II and I) and GSK3β in rat soleus during hindlimb suspension (HS). Male Wistar rats were subjected to 3, 7 and 14 day of HS. We found that after 3 days of HS the content of CSII mRNA twofold increased in soleus as compared to the controls. This level was increased by more than fivefold (as compared to control) after 2 weeks of HS. The increase of CSII mRNA expression may be explained as the mechanism of stabilization of fast phenotype. We found that from the 3 day till 14 day of HS the content of MuRF-1 and MuRF-2 in the nuclear fraction fourfold to fivefold increased in HS soleus. We supposed that nuclear import of the MuRFs allows to promote CSII expression during unloading. We also observed the decline of the phosphorylated GSK3β content in the nuclear extract of the soleus tissue. Thus decline of slow MyHC expression characteristic for the unloading conditions is accompanied with the increased expression and activation of the factors known to prevent NFAT accumulation in the myonuclei.
Collapse
|
18
|
Zanotti S, Canalis E. Activation of Nfatc2 in osteoblasts causes osteopenia. J Cell Physiol 2015; 230:1689-95. [PMID: 25573264 DOI: 10.1002/jcp.24928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
Abstract
Nuclear factor of activated T-cells (Nfat) c1 to c4 are transcription factors that play an undisputable role in osteoclastogenesis. However, Nfat function in osteoblastic cells is controversial. Constitutive activation of Nfatc1 and c2 in osteoblasts suppresses cell function, although the study of Nfat in vivo has yielded conflicting results. To establish the consequences of Nfatc2 activation in osteoblasts, we generated transgenic mice where a 3.6 kb fragment of the collagen type I α1 promoter directs expression of a constitutively active Nfatc2 mutant (Col3.6-Nfatc2). The skeletal phenotype of Col3.6-Nfatc2 mice of both sexes and of sex-matched littermate controls was investigated by microcomputed tomography and histomorphometry. Col3.6- Nfatc2 mice were born at the expected Mendelian ratio and appeared normal. Nfatc2 expression was confirmed in parietal bones from 1 and 3 month old transgenic mice. One month old Col3.6-Nfatc2 female mice exhibited cancellous bone compartment osteopenia secondary to a 30% reduction in bone formation. In contrast, cancellous femoral bone volume and bone formation were not altered in male transgenics, whereas osteoblast number was higher, suggesting incomplete osteoblast maturation. Indices of bone resorption were not affected in either sex. At 3 months of age, the skeletal phenotype evolved; and Col3.6-Nfatc2 male mice exhibited vertebral osteopenia, whereas femoral cancellous bone was not affected in either sex. Nfatc2 activation in osteoblasts had no impact on cortical bone structure. Nfatc2 activation inhibited alkaline phosphatase activity and mineralized nodule formation in bone marrow stromal cell cultures. In conclusion, Nfatc2 activation in osteoblasts inhibits bone formation and causes cancellous bone osteopenia.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Health Center, Farmington, Connecticut
| | | |
Collapse
|
19
|
Savineau JP, Marthan R, Dumas de la Roque E. Role of DHEA in cardiovascular diseases. Biochem Pharmacol 2012; 85:718-26. [PMID: 23270992 DOI: 10.1016/j.bcp.2012.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Dehydroepiandrosterone (DHEA) is a steroid hormone derived from cholesterol synthesized by the adrenal glands. DHEA and its 3β-sulphate ester (DHEA-S) are the most abundant circulating steroid hormones. In human, there is a clear age-related decline in serum DHEA and DHEA-S and this has suggested that a relative deficiency in these steroids may be causally related to the development of a series of diseases associated with aging including cardiovascular diseases (CVD). This commentary aims to highlight the action of DHEA in CVD and its beneficial effect in therapy. We thus discuss the possible impact of serum DHEA decline and DHEA supplementation in diseases such as hypertension, coronary artery disease and atherosclerosis. More specifically, we provide evidence for a beneficial action of DHEA in the main disease of the pulmonary circulation: pulmonary hypertension. We also examine the potential cellular mechanism of action of DHEA in terms of receptors (membrane/nuclear) and associated signaling pathways (ion channels, calcium signaling, PI3K/AKT/eNos pathway, cGMP, RhoA/RhoK pathway). We show that DHEA acts as an anti-remodeling and vasorelaxant drug. Since it is a well-tolerated and inexpensive drug, DHEA may prove to be a valuable molecule in CVD but it deserves further studies both at the molecular level and in large clinical trials.
Collapse
|
20
|
Martins KJB, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, Putman CT, Michel RN. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol 2012; 590:1427-42. [PMID: 22219342 DOI: 10.1113/jphysiol.2011.223370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering L-NAME (0.75 mg ml(−1)) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day(−1)) of rat fast-twitch muscles (L+Stim; n = 30) and outcomes were compared with control rats receiving only CLFS (Stim; n = 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling.
Collapse
Affiliation(s)
- Karen J B Martins
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
23
|
Zanotti S, Smerdel-Ramoya A, Canalis E. Reciprocal regulation of Notch and nuclear factor of activated T-cells (NFAT) c1 transactivation in osteoblasts. J Biol Chem 2010; 286:4576-88. [PMID: 21131365 DOI: 10.1074/jbc.m110.161893] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch are transmembrane receptors involved in the determination of cell fate. Nuclear factor of activated T-cells (NFAT)c are transcription factors that control cell differentiation and function. We tested whether Notch and NFAT signaling pathways interacted in osteoblastic cells. Notch signaling was induced in ST-2 cells using vectors expressing Notch1 intracellular domain (NICD), and in Rosa(Notch) osteoblastic cells by Cre recombinase-mediated excision of a loxP-flanked STOP cassette cloned between the Rosa26 promoter and NICD. NFATc1 was induced in Rosa(Notch) osteoblastic cells by transducing an adenoviral vector expressing constitutively active NFATc1. Notch inhibited NFAT transactivation and NFATc1 transcription. In ST-2 cells, suppression of NFAT transactivation by Notch was reversed by constitutively active cGMP-dependent protein kinase type II. NFATc1 inhibited the transactivation of Notch target genes, and competed for binding to DNA with the Notch interacting protein Epstein-Barr virus latency C promoter binding factor-1, suppressor of hairless, Lag-1 (CSL). Co-immunoprecipitation and confocal microscopy demonstrated that NFATc1 and CSL interacted. Studies on the effects of NICD and NFATc1 on the differentiation and function of osteoblastic cells demonstrated that NICD and NFATc1 inhibited expression of osteoblast gene markers in Rosa(Notch) osteoblasts, but only NICD suppressed the commitment of bone marrow stromal cells to the osteoblastic lineage. In conclusion, NICD and NFATc1 reciprocally inhibit their signaling pathways, and form a regulatory network to control their activity in osteoblasts.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105, USA
| | | | | |
Collapse
|
24
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
25
|
DNA binding sites target nuclear NFATc1 to heterochromatin regions in adult skeletal muscle fibers. Histochem Cell Biol 2010; 134:387-402. [PMID: 20865272 DOI: 10.1007/s00418-010-0744-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
We have previously demonstrated that Ca²+/calcineurin-dependent dephosphorylation of the transcription factor nuclear factor of activated T cells subtype 1 (NFATc1) during repetitive skeletal muscle activity causes NFAT nuclear translocation and concentration in subnuclear NFAT foci. We now show that NFAT nuclear foci colocalize with heterochromatin regions of intense staining by DAPI or TO-PRO-3 that are present in the nucleus prior to NFATc1 nuclear entry. Nuclear NFATc1 also colocalizes with the heterochromatin markers trimethyl-histone H3 (Lys9) and heterochromatin protein 1α. Mutation of the NFATc1 DNA binding sites prevents entry and localization of NFATc1 in heterochromatin regions. However, fluorescence in situ hybridization shows that the NFAT-regulated genes for slow and fast myosin heavy chains are not localized within the heterochromatin regions. Fluorescence recovery after photobleaching shows that within a given nucleus, NFATc1 redistributes relatively rapidly (t(¹/₂) < 1 min) between NFAT foci. Nuclear export of an NFATc1 mutant not concentrated in NFAT foci is accelerated following nuclear entry during fiber activity, indicating buffering of free nuclear NFATc1 by NFATc1 within the NFAT foci. Taken together, our results suggest that NFAT foci serve as nuclear storage sites for NFATc1, allowing it to rapidly mobilize to other nuclear regions as required.
Collapse
|
26
|
Smerdel-Ramoya A, Zanotti S, Canalis E. Connective tissue growth factor (CTGF) transactivates nuclear factor of activated T-cells (NFAT) in cells of the osteoblastic lineage. J Cell Biochem 2010; 110:477-83. [PMID: 20235153 DOI: 10.1002/jcb.22561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Connective tissue growth factor (CTGF), a member of the Cyr 61, CTGF, Nov (CCN) family of proteins, regulates multiple cellular functions. Overexpression of CTGF in vivo causes osteopenia, but in vitro CTGF can induce osteoblastogenesis. To investigate mechanisms involved in the effects of CTGF on osteoblastic cell differentiation, we examined whether CTGF modifies the activity of nuclear factor of activated T-cells (NFATc) 1, a transcription factor that cooperates with osterix in the formation of new bone. CTGF increased the transactivation of a transiently transfected reporter construct, where 9 NFAT binding sites direct the expression of luciferase (9xNFAT-Luc) and the activity of the Regulators of calcineurin 1 exon 4 (Rcan1.4) promoter, an NFAT target gene. We postulated that CTGF could modify the phosphorylation of NFAT by regulating glycogen synthase kinase 3beta (GSK3beta). CTGF increased the mRNA levels of Protein kinase cyclic guanosine monophosphate (cGMP) dependent type II (Prkg2), the gene encoding for cGMP dependent protein kinase II (cGKII) which phosphorylates GSK3beta. Accordingly, CTGF induced GSK3beta phosphorylation and decreased the active pool of GSK3beta, a kinase that phosphorylates NFAT and leads to its nuclear export. As a consequence, CTGF favored the nuclear localization of NFATc1. Downregulation of PRKG2 by RNA interference reversed the effect of CTGF on the transactivation of the 9xNFAT reporter construct and the Rcan 1.4 promoter, confirming the role of cGKII in the activation of NFAT by CTGF. In conclusion, CTGF enhances NFAT signaling through the induction of cGKII and the phosphorylation of GSK3beta.
Collapse
Affiliation(s)
- Anna Smerdel-Ramoya
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut, USA
| | | | | |
Collapse
|
27
|
Drenning JA, Lira VA, Soltow QA, Canon CN, Valera LM, Brown DL, Criswell DS. Endothelial nitric oxide synthase is involved in calcium-induced Akt signaling in mouse skeletal muscle. Nitric Oxide 2009; 21:192-200. [PMID: 19682597 DOI: 10.1016/j.niox.2009.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/20/2009] [Accepted: 08/06/2009] [Indexed: 11/17/2022]
Abstract
We hypothesized that targeted mutation of the endothelial nitric oxide synthase (eNOS) gene would reduce Akt-related signaling events in skeletal muscle cells, compared to wild type (WT) controls. Results show that slow myosin heavy chain (type I/beta) expression and the abundance of slow-twitch fibers are reduced in plantaris muscle of eNOS(-/-) mice, compared to WT. Further, basal phosphorylation of Akt (p-Akt (Ser-473)/total Akt) and GSK-3beta (GSK-3beta (Ser-9)/total GSK-3beta) are reduced 60-70% in primary myotubes from eNOS(-/-) mice. Treatment with the calcium ionophore, A23187 (0.4 microM, 1 h), increased phosphorylation of Akt and GSK-3beta by approximately 2-fold (P<0.05) in myotubes from WT mice, but had no effect on phosphorylation of these proteins in eNOS(-/-) myotubes. Additionally, A23187 treatment failed to induce nuclear translocation of the transcription factor, NFATc1, in eNOS(-/-) myotubes. Treatment with the nitric oxide donor, propylamine propylamine NONOate (PAPA-NO; 1 microM for 1 h) increased Akt and GSK-3beta phosphorylation, and induced NFATc1 nuclear translocation in WT and eNOS(-/-) myotubes, and eliminated differences from WT in the NOS knockout cultures. Parallel experiments in C2C12 myotubes found that Akt phosphorylation induced by NO or the guanylate cyclase activator, YC-1, is prevented by co-treatment with either a guanylate cyclase or PI3K inhibitor (10 microM ODQ or 25 microM LY2904002, respectively). These data suggest that eNOS activity is necessary for calcium-induced activation of the Akt pathway, and that nitric oxide is sufficient to elevate Akt activity in primary myotubes. NO appears to influence Akt signaling through a cGMP, PI3K-dependent pathway.
Collapse
Affiliation(s)
- Jason A Drenning
- Center for Exercise Science, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cooling MT, Hunter P, Crampin EJ. Sensitivity of NFAT cycling to cytosolic calcium concentration: implications for hypertrophic signals in cardiac myocytes. Biophys J 2009; 96:2095-104. [PMID: 19289036 PMCID: PMC2717350 DOI: 10.1016/j.bpj.2008.11.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022] Open
Abstract
The nuclear factor of activated T-cell (NFAT) transcription factors play an important role in many biological processes, including pathological cardiac hypertrophy. Stimulated by calcium signals, NFAT is translocated to the nucleus where it can regulate hypertrophic genes (excitation-transcription coupling). In excitable cells, such as myocytes, calcium is a key second messenger for multiple signaling events, including excitation-contraction coupling. Whether the calcium signals due to excitation-contraction and excitation-transcription coupling coincide or how they can be differentiated is currently unclear. Here we construct a mathematical model of NFAT cycling fitted to skeletal myocyte and baby hamster kidney cell data. The model replicates key behavior with respect to sensitivity to calcineurin overexpression and to calcium oscillations. Finally, we measure the sensitivity of the system to a simulated hypertrophic calcium signal, against a background excitation-contraction coupling calcium oscillation. We find that NFAT cycling is sensitive to excitation-transcription coupling even when both calcium signals are in the same cellular compartment, thus showing that separation of the signals may not be necessary in vitro.
Collapse
Affiliation(s)
- Michael T Cooling
- Auckland Bioengineering Institute, The University of Auckland, New Zealand.
| | | | | |
Collapse
|
29
|
Mallinson J, Meissner J, Chang KC. Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:67-101. [PMID: 19766967 DOI: 10.1016/s1937-6448(09)77002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Collapse
Affiliation(s)
- Joanne Mallinson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | | | | |
Collapse
|
30
|
Tsika RW, Schramm C, Simmer G, Fitzsimons DP, Moss RL, Ji J. Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype. J Biol Chem 2008; 283:36154-67. [PMID: 18978355 DOI: 10.1074/jbc.m807461200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
TEA domain (TEAD) transcription factors serve important functional roles during embryonic development and in striated muscle gene expression. Our previous work has implicated a role for TEAD-1 in the fast-to-slow fiber-type transition in response to mechanical overload. To investigate whether TEAD-1 is a modulator of slow muscle gene expression in vivo, we developed transgenic mice expressing hemagglutinin (HA)-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that striated muscle-restricted HA-TEAD-1 expression induced a transition toward a slow muscle contractile protein phenotype, slower shortening velocity (Vmax), and longer contraction and relaxation times in adult fast twitch extensor digitalis longus muscle. Notably, HA-TEAD-1 overexpression resulted in an unexpected activation of GSK-3alpha/beta and decreased nuclear beta-catenin and NFATc1/c3 protein. These effects could be reversed in vivo by mechanical overload, which decreased muscle creatine kinase-driven TEAD-1 transgene expression, and in cultured satellite cells by TEAD-1-specific small interfering RNA. These novel in vivo data support a role for TEAD-1 in modulating slow muscle gene expression.
Collapse
Affiliation(s)
- Richard W Tsika
- Department of Biochemistry, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS. Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Physiol Cell Physiol 2008; 294:C1088-95. [PMID: 18272817 DOI: 10.1152/ajpcell.00523.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium transients in skeletal muscle cells initiate phenotypic adaptations via activation of calcineurin and its effector nuclear factor of activated t-cells (NFAT). Furthermore, endogenous production of nitric oxide (NO) via calcium-calmodulin-dependent NO synthase (NOS) is involved in skeletal muscle phenotypic plasticity. Here, we provide evidence that NO enhances calcium-dependent nuclear accumulation and transcriptional activity of NFAT and induces phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) in C2C12 myotubes. The calcium ionophore A23187 (1 microM for 9 h) or thapsigargin (2 microM for 4 h) increased NFAT transcriptional activity by seven- and fourfold, respectively, in myotubes transiently transfected with an NFAT-dependent reporter plasmid (pNFAT-luc, Stratagene). Cotreatment with the NOS-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 5 mM) or the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM) prevented the calcium effects on NFAT activity. The NO donor diethylenetriamine-NONO (DETA-NO; 10 microM) augmented the effects of A23187 on NFAT-dependent transcription. Similarly, A23187 (0.4 microM for 4 h) caused nuclear accumulation of NFAT and increased phosphorylation (i.e., inactivation) of GSK-3beta, whereas cotreatment with L-NAME or ODQ inhibited these responses. Finally, the NO donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA-NO; 1 microM for 1 h) increased phosphorylation of GSK-3beta in a manner dependent on guanylate cyclase activity. We conclude that NOS activity mediates calcium-induced phosphorylation of GSK-3beta and activation of NFAT-dependent transcription in myotubes. Furthermore, these effects of NO are guanylate cyclase-dependent.
Collapse
Affiliation(s)
- Jason A Drenning
- Center for Exercise Science, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schiaffino S, Sandri M, Murgia M. Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 2007; 22:269-78. [PMID: 17699880 DOI: 10.1152/physiol.00009.2007] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A variety of fiber types with different contractile and metabolic properties is present in mammalian skeletal muscle. The fiber-type profile is controlled by nerve activity via specific signaling pathways, whose identification may provide potential therapeutic targets for the prevention and treatment of metabolic and neuromuscular diseases.
Collapse
|