1
|
Vigh-Larsen JF, Frangos SM, Overgaard K, Holloway GP, Mohr M. Fatiguing high-intensity intermittent exercise depresses maximal Na +-K +-ATPase activity in human skeletal muscle assessed using a novel NADH-coupled assay. Pflugers Arch 2025; 477:303-316. [PMID: 39540939 PMCID: PMC11761784 DOI: 10.1007/s00424-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Na+-K+-ATPase is a critical regulator of ion homeostasis during contraction, buffering interstitial K+ accumulation, which is linked to muscle fatigue during intense exercise. Within this context, we adopted a recently reported methodology to examine exercise-induced alterations in maximal Na+-K+-ATPase activity. Eighteen trained healthy young males completed a repeated high-intensity cycling protocol consisting of three periods (EX1-EX3) of intermittent exercise. Each period comprised 10 × 45-s cycling at ~ 105% Wmax and a repeated sprint test. Muscle biopsies were sampled at baseline and after EX3 for determination of maximal in vitro Na+-K+-ATPase activity. Blood was drawn after each period and in association with a 2-min cycling test at a standardized high intensity (~ 90% Wmax) performed before and after the session to assess plasma K+ accumulation. Further, a 5-h recovery period with the ingestion of carbohydrate or placebo supplementation was implemented to explore potential effects of carbohydrate availability before sampling a final biopsy and repeating all tests. A ~ 12% reduction in maximal Na+-K+-ATPase activity was demonstrated following EX3 compared to baseline (25.2 ± 3.9 vs. 22.4 ± 4.8 μmol·min-1·g-1 protein, P = 0.039), which was sustained at the recovery time point (~ 15% decrease compared to baseline to 21.6 ± 5.9 μmol·min-1·g-1 protein, P = 0.008). No significant effect of carbohydrate supplementation was observed on maximal Na+-K+-ATPase activity after recovery (P = 0.078). In conclusion, we demonstrate an exercise-induced depression of maximal Na+-K+-ATPase activity following high-intensity intermittent exercise, which was sustained during a 5-h recovery period and unrelated to carbohydrate availability under the present experimental conditions. This was shown using a novel NADH coupled assay and confirms previous findings using other methodological approaches.
Collapse
Affiliation(s)
- Jeppe F Vigh-Larsen
- Department of Public Health, Research Unit in Exercise Biology, Aarhus University, Aarhus, Denmark.
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| | - Sara M Frangos
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kristian Overgaard
- Department of Public Health, Research Unit in Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
- Centre of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands.
| |
Collapse
|
2
|
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol 2024; 124:2427-2438. [PMID: 38546844 PMCID: PMC11322397 DOI: 10.1007/s00421-024-05459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed 'durability'. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. METHODS On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg-1 min-1; training volume, 12 ± 2.1 h week-1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. RESULTS Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). CONCLUSION These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
Collapse
Affiliation(s)
- Kate Hamilton
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Tobias H Cox
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
3
|
Gallo G, Faelli EL, Ruggeri P, Filipas L, Codella R, Plews DJ, Maunder E. Power output at the moderate-to-heavy intensity transition decreases in a non-linear fashion during prolonged exercise. Eur J Appl Physiol 2024; 124:2353-2364. [PMID: 38483635 PMCID: PMC11322563 DOI: 10.1007/s00421-024-05440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The aims of this study were to: (i) describe the time course of the decrease in power output at the moderate-to-heavy intensity transition during prolonged exercise; (ii) investigate the association between durability of the moderate-to-heavy intensity transition and exercise capacity; and (iii) explore physiological correlates of durability of the moderate-to-heavy intensity transition. METHODS Twelve trained cyclists (age: 40 ± 8 y, V ˙ O2peak: 52.3 ± 5.2 mL·min-1·kg-1) performed an exhaustive cycling protocol involving alternating incremental exercise tests to determine power output at the moderate-to-heavy intensity transition via the first ventilatory threshold (VT1), and 30-min bouts at 90% of the power output at the previously estimated VT1 in the rested state. The individual time course of VT1 was modelled using linear and second-order polynomial functions, and time to a 5% decrease in VT1 (Δ5%VT1) was estimated using the best-fitting model. RESULTS Power output at VT1 decreased according to a second-order polynomial function in 11 of 12 participants. Time-to-task failure (234 ± 66 min) was correlated with Δ5%VT1 (139 ± 78 min, rs = 0.676, p = 0.016), and these were strongly correlated with absolute and relative rates of fat oxidation at specific exercise intensities measured during the incremental test performed in the rested state. CONCLUSIONS These data: (i) identify a non-linear time course of decreases in the moderate-to-heavy intensity transition during prolonged exercise; (ii) support the importance of durability of the moderate-to-heavy intensity transition in prolonged exercise capacity; and (iii) suggest durability of the moderate-to-heavy intensity transition is related to fat oxidation rates.
Collapse
Affiliation(s)
- Gabriele Gallo
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Department of Neuroscience, RehabilitationGenoa, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Viale Benedetto XV, 16100, Genoa, Italy
| | | | - Piero Ruggeri
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Filipas
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
4
|
Shatova OP, Shegay PV, Zabolotneva AA, Shestopalov AV, Kaprin AD. Lactate: a New Look at the Role of an Evolutionarily Ancient Metabolite. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302206028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Olesen JH, Herskind J, Pedersen KK, Overgaard K. Potassium-induced potentiation of subtetanic force in rat skeletal muscles: influences of β 2-activation, lactic acid, and temperature. Am J Physiol Cell Physiol 2021; 321:C884-C896. [PMID: 34613841 DOI: 10.1152/ajpcell.00120.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023]
Abstract
Moderate elevations of extracellular K+ concentration ([K+]o) occur during exercise and have been shown to potentiate force during contractions elicited with subtetanic frequencies. Here, we investigated whether lactic acid (reduced chloride conductance), β2-adrenoceptor activation, and increased temperature would influence the potentiating effect of potassium in slow- and fast-twitch muscles. Isometric contractions were elicited by electrical stimulation at various frequencies in isolated rat soleus and extensor digitorum longus (EDL) muscles incubated at normal (4 mM) or elevated K+, in combination with salbutamol (5 μM), lactic acid (18.1 mM), 9-anthracene-carboxylic acid (9-AC; 25 μM), or increased temperature (30-35°C). Elevating [K+]o from 4 mM to 7 mM (soleus) and 10 mM (EDL) potentiated isometric twitch and subtetanic force while slightly reducing tetanic force. In EDL, salbutamol further augmented twitch force (+27 ± 3%, P < 0.001) and subtetanic force (+22 ± 4%, P < 0.001). In contrast, salbutamol reduced subtetanic force (-28 ± 6%, P < 0.001) in soleus muscles. Lactic acid and 9-AC had no significant effects on isometric force of muscles already exposed to moderate elevations of [K+]o. The potentiating effect of elevated [K+]o was still well maintained at 35°C. Addition of salbutamol exerts a further force-potentiating effect in fast-twitch but not in slow-twitch muscles already potentiated by moderately elevated [K+]o, whereas lactic acid, 9-AC, or increased temperature does not exert any further augmentation. However, the potentiating effect of elevated [K+]o was still maintained in the presence of these, thus emphasizing the positive influence of moderately elevated [K+]o for contractile performance during exercise.
Collapse
Affiliation(s)
- Jonas H Olesen
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jon Herskind
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Katja K Pedersen
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Steward CH, Smith R, Stepto NK, Brown M, Ng I, McKenna MJ. A single oral glucose load decreases arterial plasma [K + ] during exercise and recovery. Physiol Rep 2021; 9:e14889. [PMID: 34110701 PMCID: PMC8191174 DOI: 10.14814/phy2.14889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
AIM We investigated whether acute carbohydrate ingestion reduced arterial potassium concentration ([K+ ]) during and after intense exercise and delayed fatigue. METHODS In a randomized, double-blind crossover design, eight males ingested 300 ml water containing 75 g glucose (CHO) or placebo (CON); rested for 60 min, then performed high-intensity intermittent cycling (HIIC) at 130% V ˙ O 2peak , comprising three 45-s exercise bouts (EB), then a fourth EB until fatigue. Radial arterial (a) and antecubital venous (v) blood was sampled at rest, before, during and after HIIC and analyzed for plasma ions and metabolites, with forearm arteriovenous differences (a-v diff) calculated to assess inactive forearm muscle effects. RESULTS Glucose ingestion elevated [glucose]a and [insulin]a above CON (p = .001), being, respectively, ~2- and ~5-fold higher during CHO at 60 min after ingestion (p = .001). Plasma [K+ ]a rose during and declined following each exercise bout in HIIC (p = .001), falling below baseline at 5 min post-exercise (p = .007). Both [K+ ]a and [K+ ]v were lower during CHO (p = .036, p = .001, respectively, treatment main effect). The [K+ ]a-v diff across the forearm widened during exercise (p = .001), returned to baseline during recovery, and was greater in CHO than CON during EB1, EB2 (p = .001) and EB3 (p = .005). Time to fatigue did not differ between trials. CONCLUSION Acute oral glucose ingestion, as used in a glucose tolerance test, induced a small, systemic K+ -lowering effect before, during, and after HIIC, that was detectable in both arterial and venous plasma. This likely reflects insulin-mediated, increased Na+ ,K+ -ATPase induced K+ uptake into non-contracting muscles. However, glucose ingestion did not delay fatigue.
Collapse
Affiliation(s)
| | - Robert Smith
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
- Department of AnaesthesiaWestern HospitalMelbourneVICAustralia
| | - Nigel K. Stepto
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
| | - Malcolm Brown
- Department of Biochemistry and PharmacologyUniversity of MelbourneMelbourneVICAustralia
| | - Irene Ng
- Department of Anaesthesia and Pain ManagementRoyal Melbourne HospitalMelbourneVICAustralia
| | | |
Collapse
|
7
|
Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med 2021; 51:1855-1874. [PMID: 33900579 DOI: 10.1007/s40279-021-01475-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Muscle glycogen is the main substrate during high-intensity exercise and large reductions can occur after relatively short durations. Moreover, muscle glycogen is stored heterogeneously and similarly displays a heterogeneous and fiber-type specific depletion pattern with utilization in both fast- and slow-twitch fibers during high-intensity exercise, with a higher degradation rate in the former. Thus, depletion of individual fast- and slow-twitch fibers has been demonstrated despite muscle glycogen at the whole-muscle level only being moderately lowered. In addition, muscle glycogen is stored in specific subcellular compartments, which have been demonstrated to be important for muscle function and should be considered as well as global muscle glycogen availability. In the present review, we discuss the importance of glycogen metabolism for single and intermittent bouts of high-intensity exercise and outline possible underlying mechanisms for a relationship between muscle glycogen and fatigue during these types of exercise. Traditionally this relationship has been attributed to a decreased ATP resynthesis rate due to inadequate substrate availability at the whole-muscle level, but emerging evidence points to a direct coupling between muscle glycogen and steps in the excitation-contraction coupling including altered muscle excitability and calcium kinetics.
Collapse
|
8
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
9
|
Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol 2021; 600:1229-1251. [PMID: 33566386 PMCID: PMC9188361 DOI: 10.1113/jp280955] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
After a century, it's time to turn the page on understanding of lactate metabolism and appreciate that lactate shuttling is an important component of intermediary metabolism in vivo. Cell‐cell and intracellular lactate shuttles fulfil purposes of energy substrate production and distribution, as well as cell signalling under fully aerobic conditions. Recognition of lactate shuttling came first in studies of physical exercise where the roles of driver (producer) and recipient (consumer) cells and tissues were obvious. Moreover, the presence of lactate shuttling as part of postprandial glucose disposal and satiety signalling has been recognized. Mitochondrial respiration creates the physiological sink for lactate disposal in vivo. Repeated lactate exposure from regular exercise results in adaptive processes such as mitochondrial biogenesis and other healthful circulatory and neurological characteristics such as improved physical work capacity, metabolic flexibility, learning, and memory. The importance of lactate and lactate shuttling in healthful living is further emphasized when lactate signalling and shuttling are dysregulated as occurs in particular illnesses and injuries. Like a phoenix, lactate has risen to major importance in 21st century biology.
![]()
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ashley P Tovar
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Brooks GA. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:446-460. [PMID: 32444344 PMCID: PMC7498672 DOI: 10.1016/j.jshs.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 05/11/2023]
Abstract
Once thought to be a waste product of oxygen limited (anaerobic) metabolism, lactate is now known to form continuously under fully oxygenated (aerobic) conditions. Lactate shuttling between producer (driver) and consumer cells fulfills at least 3 purposes; lactate is: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. The Lactate Shuttle theory is applicable to diverse fields such as sports nutrition and hydration, resuscitation from acidosis and Dengue, treatment of traumatic brain injury, maintenance of glycemia, reduction of inflammation, cardiac support in heart failure and following a myocardial infarction, and to improve cognition. Yet, dysregulated lactate shuttling disrupts metabolic flexibility, and worse, supports oncogenesis. Lactate production in cancer (the Warburg effect) is involved in all main sequela for carcinogenesis: angiogenesis, immune escape, cell migration, metastasis, and self-sufficient metabolism. The history of the tortuous path of discovery in lactate metabolism and shuttling was discussed in the 2019 American College of Sports Medicine Joseph B. Wolffe Lecture in Orlando, FL.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California Berkeley, CA 94720-3140, USA.
| |
Collapse
|
11
|
Pedersen KK, Cheng AJ, Westerblad H, Olesen JH, Overgaard K. Moderately elevated extracellular [K+] potentiates submaximal force and power in skeletal muscle via increased [Ca2+]i during contractions. Am J Physiol Cell Physiol 2019; 317:C900-C909. [DOI: 10.1152/ajpcell.00104.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular K+ concentration ([K+]o) increases during physical exercise. We here studied whether moderately elevated [K+]o may increase force and power output during contractions at in vivo-like subtetanic frequencies and whether such potentiation was associated with increased cytosolic free Ca2+ concentration ([Ca2+]i) during contractions. Isolated whole soleus and extensor digitorum longus (EDL) rat muscles were incubated at different levels of [K+]o, and isometric and dynamic contractility were tested at various stimulation frequencies. Furthermore, [Ca2+]i at rest and during contraction was measured along with isometric force in single mouse flexor digitorum brevis (FDB) fibers exposed to elevated [K+]o. Elevating [K+]o from 4 mM up to 8 mM (soleus) and 11 mM (EDL) increased isometric force at subtetanic frequencies, 2–15 Hz in soleus and up to 50 Hz in EDL, while inhibition was seen at tetanic frequency in both muscle types. Elevating [K+]o also increased peak power of dynamic subtetanic contractions, with potentiation being more pronounced in EDL than in soleus muscles. The force-potentiating effect of elevated [K+]o was transient in FDB single fibers, reaching peak after ~4 and 2.5 min in 9 and 11 mM [K+]o, respectively. At the time of peak potentiation, force and [Ca2+]i during 15-Hz contractions were significantly increased, whereas force was slightly decreased and [Ca2+]i unchanged during 50-Hz contractions. Moderate elevation of [K+]o can transiently potentiate force and power during contractions at subtetanic frequencies, which can be explained by a higher [Ca2+]i during contractions.
Collapse
Affiliation(s)
- Katja K. Pedersen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
| | - Arthur J. Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas H. Olesen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Ropka-Molik K, Stefaniuk-Szmukier M, Szmatoła T, Piórkowska K, Bugno-Poniewierska M. The use of the SLC16A1 gene as a potential marker to predict race performance in Arabian horses. BMC Genet 2019; 20:73. [PMID: 31510920 PMCID: PMC6740031 DOI: 10.1186/s12863-019-0774-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arabian horses are commonly believed to be one of the oldest and the most popular horse breeds in the world, characterized by favourable stamina traits and exercise phenotypes. During intensive training, the rates of lactate production and utilization are critical to avoid muscle fatigue and a decrease in exercise performance. The key factor determining transmembrane lactate transport is the monocarboxylate transporter 1 protein coded for by the SLC16A1 gene. The aim of the present research was to identify polymorphisms in the coding sequence and UTRs in the equine SLC16A1 gene and to evaluate their potential association with race performance traits in Arabian horses. Based on RNA-seq data, SNPs were identified and genotyped using PCR-RFLP or PCR-HRM methods in 254 Arabian horses that competed in flat races. An association analysis between polymorphisms and racing results was performed. RESULTS Novel polymorphisms in the equine SLC16A1 locus have been identified (missense and 5'UTR variants: g.55601543C > T and g.55589063 T > G). Analysis showed a significant association between the 5'UTR polymorphism and several racing results as follows: the possibility of winning first or second place, the number of races in which horses started and total financial benefits. The analysis also showed differences in genotype distribution depending on race distance. In the studied population, the shorter distance races were only won by TT horses. The GG and TG horses took first and second places in middle- and long-distance races, and the percentage of winning heterozygotes increased from 19.5 to 27% at the middle and long distances, respectively. The p.Val432Ile (g.55601543C > T) polymorphism was not significantly related to the analysed racing results. CONCLUSION Our results showed that g.55589063 T > G polymorphism affected the possibility of winning first or second place and of competing in more races. The different distribution of genotypes depending on race distance indicated the possibility of using a SNP in the SLC16A1 gene as a marker to predict the best race distance for a horse. The presented results provide a basis for further research to validate the use of the SLC16A1 gene as a potential marker associated with racing performance.
Collapse
Affiliation(s)
- Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Cracow, Cracow, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,University Centre of Veterinary Medicine, University of Agriculture in Cracow, Mickiewicza 24/28, 30-059, Cracow, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1,, 32-083, Balice, Poland.,Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Cracow, Cracow, Poland
| |
Collapse
|
13
|
Liang P, Mast J, Chen W. Synchronization Modulation of Na/K Pumps Induced Membrane Potential Hyperpolarization in Both Physiological and Hyperkalemic Conditions. J Membr Biol 2019; 252:577-586. [PMID: 31410502 DOI: 10.1007/s00232-019-00080-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022]
Abstract
The capability of the synchronization modulation (SM) technique in enhancing the function of Na/K pumps has been demonstrated in various cells and tissues, including cardiomyocytes, a monolayer of cultured MDCK kidney cells, peripheral blood vessels, and frog skeletal muscles. This study characterized the membrane potential hyperpolarization induced by SM in both physiological and high [K+]o conditions on single skeletal muscle fibers. The results showed that SM could consistently induce membrane potential hyperpolarization by a few millivolts, and this hyperpolarization was not possible in the presence of ouabain. In contrast, the same electrical pulses but with random frequencies, constant frequencies, or synchronization with backward-modulation could not hyperpolarize the membrane potential. Prolonged field application and higher field intensity enhanced the effects of SM-induced hyperpolarization. Finally, the effect of SM was tested on skeletal muscle fibers incubated in a solution with high external potassium. Results showed that the SM electric field could hyperpolarize the membrane potential even if the external K+ concentration was higher than the normal, which implied the therapeutic effects of the SM electric field on the hyperkalemic situation.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Physics, Cellular and Molecular Biophysics Lab, University of South Florida, Tampa, FL, 33620, USA
| | - Jason Mast
- Department of Physics, Cellular and Molecular Biophysics Lab, University of South Florida, Tampa, FL, 33620, USA
| | - Wei Chen
- Department of Physics, Cellular and Molecular Biophysics Lab, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
14
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
15
|
Mi W, Wu F, Quinonez M, DiFranco M, Cannon SC. Recovery from acidosis is a robust trigger for loss of force in murine hypokalemic periodic paralysis. J Gen Physiol 2019; 151:555-566. [PMID: 30733232 PMCID: PMC6445579 DOI: 10.1085/jgp.201812231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Hypokalemic periodic paralysis causes episodes of muscle weakness. Mi et al. investigate the rest-induced weakness that occurs after vigorous exercise and find that acidosis, as occurs with exercise, leads to accumulation of myoplasmic Cl−, which favors a depolarized resting potential when pH returns to normal. Periodic paralysis is an ion channelopathy of skeletal muscle in which recurrent episodes of weakness or paralysis are caused by sustained depolarization of the resting potential and thus reduction of fiber excitability. Episodes are often triggered by environmental stresses, such as changes in extracellular K+, cooling, or exercise. Rest after vigorous exercise is the most common trigger for weakness in periodic paralysis, but the mechanism is unknown. Here, we use knock-in mutant mouse models of hypokalemic periodic paralysis (HypoKPP; NaV1.4-R669H or CaV1.1-R528H) and hyperkalemic periodic paralysis (HyperKPP; NaV1.4-M1592V) to investigate whether the coupling between pH and susceptibility to loss of muscle force is a possible contributor to exercise-induced weakness. In both mouse models, acidosis (pH 6.7 in 25% CO2) is mildly protective, but a return to pH 7.4 (5% CO2) unexpectedly elicits a robust loss of force in HypoKPP but not HyperKPP muscle. Prolonged exposure to low pH (tens of minutes) is required to cause susceptibility to post-acidosis loss of force, and the force decrement can be prevented by maneuvers that impede Cl− entry. Based on these data, we propose a mechanism for post-acidosis loss of force wherein the reduced Cl− conductance in acidosis leads to a slow accumulation of myoplasmic Cl−. A rapid recovery of both pH and Cl− conductance, in the context of increased [Cl]in/[Cl]out, favors the anomalously depolarized state of the bistable resting potential in HypoKPP muscle, which reduces fiber excitability. This mechanism is consistent with the delayed onset of exercise-induced weakness that occurs with rest after vigorous activity.
Collapse
Affiliation(s)
- Wentao Mi
- Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
16
|
Thomassen M, Hostrup M, Murphy RM, Cromer BA, Skovgaard C, Gunnarsson TP, Christensen PM, Bangsbo J. Abundance of ClC-1 chloride channel in human skeletal muscle: fiber type specific differences and effect of training. J Appl Physiol (1985) 2018; 125:470-478. [DOI: 10.1152/japplphysiol.01042.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.
Collapse
Affiliation(s)
- Martin Thomassen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Robyn M. Murphy
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brett A. Cromer
- Department of Chemistry and Biotechnology, Swinburne University, Melbourne, Victoria, Australia
| | - Casper Skovgaard
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P. Gunnarsson
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter M. Christensen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
The Science and Translation of Lactate Shuttle Theory. Cell Metab 2018; 27:757-785. [PMID: 29617642 DOI: 10.1016/j.cmet.2018.03.008] [Citation(s) in RCA: 704] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Once thought to be a waste product of anaerobic metabolism, lactate is now known to form continuously under aerobic conditions. Shuttling between producer and consumer cells fulfills at least three purposes for lactate: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. "Lactate shuttle" (LS) concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signaling. In medicine, it has long been recognized that the elevation of blood lactate correlates with illness or injury severity. However, with lactate shuttle theory in mind, some clinicians are now appreciating lactatemia as a "strain" and not a "stress" biomarker. In fact, clinical studies are utilizing lactate to treat pro-inflammatory conditions and to deliver optimal fuel for working muscles in sports medicine. The above, as well as historic and recent studies of lactate metabolism and shuttling, are discussed in the following review.
Collapse
|
18
|
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 2018; 118:691-728. [PMID: 29322250 DOI: 10.1007/s00421-017-3795-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Lactate (La-) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La- has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La- in metabolism begin. The evidence for La- as a major player in the coordination of whole-body metabolism has since grown rapidly. La- is a readily combusted fuel that is shuttled throughout the body, and it is a potent signal for angiogenesis irrespective of oxygen tension. Despite this, many fundamental discoveries about La- are still working their way into mainstream research, clinical care, and practice. The purpose of this review is to synthesize current understanding of La- metabolism via an appraisal of its robust experimental history, particularly in exercise physiology. That La- production increases during dysoxia is beyond debate, but this condition is the exception rather than the rule. Fluctuations in blood [La-] in health and disease are not typically due to low oxygen tension, a principle first demonstrated with exercise and now understood to varying degrees across disciplines. From its role in coordinating whole-body metabolism as a fuel to its role as a signaling molecule in tumors, the study of La- metabolism continues to expand and holds potential for multiple clinical applications. This review highlights La-'s central role in metabolism and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, Canada
| | - Zachary Rightmire
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
19
|
Model MA, Petruccelli JC. Intracellular Macromolecules in Cell Volume Control and Methods of Their Quantification. CURRENT TOPICS IN MEMBRANES 2018; 81:237-289. [DOI: 10.1016/bs.ctm.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Bækgaard Nielsen O, de Paoli FV, Riisager A, Pedersen TH. Chloride Channels Take Center Stage in Acute Regulation of Excitability in Skeletal Muscle: Implications for Fatigue. Physiology (Bethesda) 2017; 32:425-434. [DOI: 10.1152/physiol.00006.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023] Open
Abstract
Initiation and propagation of action potentials in muscle fibers is a key element in the transmission of activating motor input from the central nervous system to their contractile apparatus, and maintenance of excitability is therefore paramount for their endurance during work. Here, we review current knowledge about the acute regulation of ClC-1 channels in active muscles and its importance for muscle excitability, function, and fatigue.
Collapse
Affiliation(s)
| | | | - Anders Riisager
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
|
22
|
Pedersen TH, Riisager A, de Paoli FV, Chen TY, Nielsen OB. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. ACTA ACUST UNITED AC 2016; 147:291-308. [PMID: 27022190 PMCID: PMC4810071 DOI: 10.1085/jgp.201611582] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all characterized by high resting membrane permeability for Cl− ions. Thus, in resting human muscle, ClC-1 Cl− ion channels account for ∼80% of the membrane conductance, and because active Cl− transport is limited in muscle fibers, the equilibrium potential for Cl− lies close to the resting membrane potential. These conditions—high membrane conductance and passive distribution—enable ClC-1 to conduct membrane current that inhibits muscle excitability. This depressing effect of ClC-1 current on muscle excitability has mostly been associated with skeletal muscle hyperexcitability in myotonia congenita, which arises from loss-of-function mutations in the CLCN1 gene. However, given that ClC-1 must be drastically inhibited (∼80%) before myotonia develops, more recent studies have explored whether acute and more subtle ClC-1 regulation contributes to controlling the excitability of working muscle. Methods were developed to measure ClC-1 function with subsecond temporal resolution in action potential firing muscle fibers. These and other techniques have revealed that ClC-1 function is controlled by multiple cellular signals during muscle activity. Thus, onset of muscle activity triggers ClC-1 inhibition via protein kinase C, intracellular acidosis, and lactate ions. This inhibition is important for preserving excitability of working muscle in the face of activity-induced elevation of extracellular K+ and accumulating inactivation of voltage-gated sodium channels. Furthermore, during prolonged activity, a marked ClC-1 activation can develop that compromises muscle excitability. Data from ClC-1 expression systems suggest that this ClC-1 activation may arise from loss of regulation by adenosine nucleotides and/or oxidation. The present review summarizes the current knowledge of the physiological factors that control ClC-1 function in active muscle.
Collapse
Affiliation(s)
| | - Anders Riisager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618 Center for Neuroscience and Department of Neurology, University of California, Davis, Davis, CA 95618
| | | |
Collapse
|
23
|
Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol 2016; 595:2897-2913. [PMID: 27673449 DOI: 10.1113/jp273218] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Mechanisms underlying fatigue development and limitations for performance during intense exercise have been intensively studied during the past couple of decades. Fatigue development may involve several interacting factors and depends on type of exercise undertaken and training level of the individual. Intense exercise (½-6 min) causes major ionic perturbations (Ca2+ , Cl- , H+ , K+ , lactate- and Na+ ) that may reduce sarcolemmal excitability, Ca2+ release and force production of skeletal muscle. Maintenance of ion homeostasis is thus essential to sustain force production and power output during intense exercise. Regular speed endurance training (SET), i.e. exercise performed at intensities above that corresponding to maximum oxygen consumption (V̇O2, max ), enhances intense exercise performance. However, most of the studies that have provided mechanistic insight into the beneficial effects of SET have been conducted in untrained and recreationally active individuals, making extrapolation towards athletes' performance difficult. Nevertheless, recent studies indicate that only a few weeks of SET enhances intense exercise performance in highly trained individuals. In these studies, the enhanced performance was not associated with changes in V̇O2, max and muscle oxidative capacity, but rather with adaptations in muscle ion handling, including lowered interstitial concentrations of K+ during and in recovery from intense exercise, improved lactate- -H+ transport and H+ regulation, and enhanced Ca2+ release function. The purpose of this Topical Review is to provide an overview of the effect of SET and to discuss potential mechanisms underlying enhancements in performance induced by SET in already well-trained individuals with special emphasis on ion handling in skeletal muscle.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Research, Bispebjerg University Hospital, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
24
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Camic CL, Kovacs AJ, Enquist EA, VanDusseldorp TA, Hill EC, Calantoni AM, Yemm AJ. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running. Physiol Meas 2014; 35:2401-13. [PMID: 25390736 DOI: 10.1088/0967-3334/35/12/2401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purposes of the present study were two fold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWCFT) from electromyographic (EMG) amplitude data during incremental cycle ergometry could be applied to treadmill running to derive a new neuromuscular fatigue threshold for running, and (2) to compare the running velocities associated with the PWCFT, ventilatory threshold (VT), and respiratory compensation point (RCP). Fifteen college-aged subjects (21.5 ± 1.3 y, 68.7 ± 10.5 kg, 175.9 ± 6.7 cm) performed an incremental treadmill test to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences in running velocities between the VT (11.3 ± 1.3 km h(-1)) and PWCFT (14.0 ± 2.3 km h(-1)), VT and RCP (14.0 ± 1.8 km h(-1)), but not the PWCFT and RCP. The findings of the present study indicated that the PWCFT model could be applied to a single continuous, incremental treadmill test to estimate the maximal running velocity that can be maintained prior to the onset of neuromuscular fatigue. In addition, these findings suggested that the PWCFT, like the RCP, may be used to differentiate the heavy from severe domains of exercise intensity.
Collapse
Affiliation(s)
- Clayton L Camic
- Human Performance Laboratory, Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishii H, Nishida Y. Effect of Lactate Accumulation during Exercise-induced Muscle Fatigue on the Sensorimotor Cortex. J Phys Ther Sci 2014; 25:1637-42. [PMID: 24409038 PMCID: PMC3885857 DOI: 10.1589/jpts.25.1637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
[Purpose] During exercise, skeletal muscle motor units are recruited based on afferent
sensory input following peripheral metabolic by-product accumulation. The purpose of this
study was to investigate whether lactate plays a role in conveying fatigue-related
information to the brain. [Subjects] Eleven healthy adults participated in this study.
[Methods] Subjects performed handgrip exercises at 10%, 30%, and 50% maximal voluntary
contraction for 120 s. They were monitored for brachial artery blood pressure, respiratory
quotient, muscle fatigue (integrated electromyogram, median power frequency), blood
lactate levels, muscle blood flow, and brain activity. [Results] The handgrip exercise
protocol caused significant muscle fatigue based on 28% and 37% reductions in median power
frequency detected at 30% and 50% maximal voluntary contraction, respectively. Subjects
exhibited intensity-dependent increases in blood pressure, respiratory quotient, muscle
blood flow, and circulating lactate concentrations. Furthermore, brain activity increased
at 30% and 50% maximal voluntary contraction. Multiple regression analysis identified
muscle blood flow at 30% maximal voluntary contraction and lactate at 50% maximal
voluntary contraction with standardized partial regression coefficients of −0.64 and 0.75,
respectively. [Conclusion] These data suggest that blood lactate concentration and muscle
blood flow, which reflect muscle metabolism, may convey load intensity information to the
brain during muscle fatigue.
Collapse
Affiliation(s)
- Hideaki Ishii
- Doctoral Program, Rehabilitation Sciences, Seirei Christopher University, Japan ; Department of Rehabilitation, Nursing Home Hamamatsu Jyujinosono, Japan
| | - Yusuke Nishida
- Doctoral Program, Rehabilitation Sciences, Seirei Christopher University, Japan
| |
Collapse
|
27
|
Gunnarsson TP, Christensen PM, Thomassen M, Nielsen LR, Bangsbo J. Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists. Am J Physiol Regul Integr Comp Physiol 2013; 305:R811-21. [DOI: 10.1152/ajpregu.00467.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of intensified training in combination with a reduced training volume on muscle ion kinetics, transporters, and work capacity were examined. Eight well-trained cyclists replaced their regular training with speed-endurance training (12 × 30 s sprints) 2–3 times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–100% of maximal heart rate) 1–2 times per week for 7 wk and reduced training volume by 70% (intervention period; IP). The duration of an intense exhaustive cycling bout (EX2; 368 ± 6 W), performed 2.5 min after a 2-min intense cycle bout (EX1), was longer ( P < 0.05) after than before IP (4:16 ± 0:34 vs. 3:37 ± 0:28 min:s), and mean and peak power during a repeated sprint test improved ( P < 0.05) by 4% and 3%, respectively. Femoral venous K+ concentration in recovery from EX1 and EX2 was lowered ( P < 0.05) after compared with before IP, whereas muscle interstitial K+ concentration and net muscle K+ release during exercise was unaltered. No changes in muscle lactate and H+ release during and after EX1 and EX2 were observed, but the in vivo buffer capacity was higher ( P < 0.05) after IP. Expression of the ATP-sensitive K+ (KATP) channel (Kir6.2) decreased by IP, with no change in the strong inward rectifying K+ channel (Kir2.1), muscle Na+-K+ pump subunits, monocarboxylate transporters 1 and 4 (MCT1 and MCT4), and Na+/H+ exchanger 1 (NHE1). In conclusion, 7 wk of intensified training with a reduced training volume improved performance during repeated intense exercise, which was associated with a greater muscle reuptake of K+ and muscle buffer capacity but not with the amount of muscle ion transporters.
Collapse
Affiliation(s)
- Thomas P. Gunnarsson
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Denmark
| | - Peter M. Christensen
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Denmark
| | - Martin Thomassen
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Denmark
| | - Lars R. Nielsen
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Denmark
| |
Collapse
|
28
|
Bergstrom HC, Housh TJ, Cochrane KC, Jenkins NDM, Lewis RW, Traylor DA, Zuniga JM, Schmidt RJ, Johnson GO, Cramer JT. An examination of neuromuscular and metabolic fatigue thresholds. Physiol Meas 2013; 34:1253-67. [PMID: 24021781 DOI: 10.1088/0967-3334/34/10/1253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the relationships among the physical working capacity at the fatigue threshold (PWCFT), the power outputs associated with the gas exchange threshold (PGET) and the respiratory compensation point (PRCP), and critical power (CP) to identify possible physiological mechanisms underlying the onset of neuromuscular fatigue. Ten participants (mean ± SD age: 20 ± 1 years) performed a maximal incremental cycle ergometer test to determine the PWCFT, PGET, and PRCP. CP was determined from the 3 min all-out test. The PWCFT (197 ± 55 W), PRCP (212 ± 50 W), and CP (208 ± 63 W) were significantly greater than the PGET (168 ± 40 W), but there were no significant differences among the PWCFT, PRCP, and CP. All thresholds were significantly inter-4 (r = 0.794-0.958). The 17% greater estimates for the PWCFT than PGET were likely related to differences in the physiological mechanisms that underlie these fatigue thresholds, while the non-significant difference and high correlation between the PWCFT and the PRCP suggested that hyperkalemia may underlie both thresholds. Furthermore, it is possible that the 5% lower estimate of the PWCFT than CP could more accurately reflect the demarcation of the heavy from severe exercise intensity domains.
Collapse
Affiliation(s)
- Haley C Bergstrom
- Human Performance Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pedersen KK, Nielsen OB, Overgaard K. Effects of high-frequency stimulation and doublets on dynamic contractions in rat soleus muscle exposed to normal and high extracellular [K(+)]. Physiol Rep 2013; 1:e00026. [PMID: 24303113 PMCID: PMC3831922 DOI: 10.1002/phy2.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/28/2013] [Accepted: 06/13/2013] [Indexed: 12/04/2022] Open
Abstract
The development of maximal velocity and power in muscle depends on the ability to transmit action potentials (AP) at very high frequencies up to about 400 Hz. However, for every AP there is a small loss of K+ to the interstitium, which during intense exercise, may build up to a point where excitability is reduced, thus limiting the intensity of further exercise. It is still unknown how the muscle responds to high-frequency stimulation when exposed to high [K+]. Contractile parameters of the muscles (force [F], velocity [V], power [P], rate of force development [RFD], and work) were examined during dynamic contractions, performed in vitro using rat soleus muscles incubated in buffers containing 4 or 8 mmol/L K+ and stimulated with constant trains of tetanic or supratetanic frequency or with trains initiated by a high-frequency doublet, followed by tetanic or subtetanic trains. At 4 mmol/L K+, an increase in frequency increased Pmax when using constant train stimulation. When stimulating with trains containing high-frequency doublets an increase in 120-msec work was seen, however, no increase in Pmax was observed. At 8 mmol/L K+, no differences were seen for either Pmax or 120-msec work when increasing frequency or introducing doublets. In all experiments where the frequency was increased or doublets applied, an increase in RFD was seen in both normal and high [K+]. The results indicate that stimulation with supratetanic frequencies can improve dynamic muscle contractility, but improvements are attenuated when muscles are exposed to high extracellular [K+].
Collapse
Affiliation(s)
- Katja K Pedersen
- Department of Public Health, Section of Sport Science, Aarhus University Aarhus, Denmark
| | | | | |
Collapse
|
30
|
Cairns SP. Holistic approaches to understanding mechanisms of fatigue in high-intensity sport. FATIGUE-BIOMEDICINE HEALTH AND BEHAVIOR 2013. [DOI: 10.1080/21641846.2013.765086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Skov M, Riisager A, Fraser JA, Nielsen OB, Pedersen TH. Extracellular magnesium and calcium reduce myotonia in ClC-1 inhibited rat muscle. Neuromuscul Disord 2013; 23:489-502. [PMID: 23623567 DOI: 10.1016/j.nmd.2013.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations in the ClC-1 Cl(-) channel trigger skeletal muscle hyperexcitability in myotonia congenita. For reasons that remain unclear, the severity of the myotonic symptoms can vary markedly even among patients with identical ClC-1 mutations, and may become exacerbated during pregnancy and with diuretic treatment. Since both these conditions are associated with hypomagnesemia and hypocalcemia, we explored whether extracellular Mg(2+) and Ca(2+) ([Mg(2+)]o and [Ca(2+)]o) can affect myotonia. Experimental myotonia was induced in isolated rat muscles by ClC-1 inhibition and effects of [Mg(2+)]o or [Ca(2+)]o on myotonic contractions were determined. Both cations dampened myotonia within their physiological concentration ranges. Thus, myotonic contractile activity was 6-fold larger at 0.3 than at 1.2 mM [Mg(2+)]o and 82-fold larger at 0.3 than at 1.27 mM [Ca(2+)]o. In intracellular recordings of action potentials, the threshold for action potential excitation was raised by 4-6 mV when [Mg(2+)]o was elevated from 0.6 to 3 mM, compatible with an increase in the depolarization of the membrane potential necessary to activate the Na(+) channels. Supporting this notion, mathematical simulations showed that myotonia went from appearing with normal Cl(-) channel function to disappearing in the absence of Cl(-) channel function when Na(+) channel activation was depolarized by 6 mV. In conclusion, variation in serum Mg(2+) and Ca(2+) may contribute to phenotypic variation in myotonia congenita patients.
Collapse
Affiliation(s)
- Martin Skov
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
32
|
de Paoli FV, Broch-Lips M, Pedersen TH, Nielsen OB. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles. J Physiol 2012; 591:531-45. [PMID: 23045345 DOI: 10.1113/jphysiol.2012.243246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Resting skeletal muscle fibres have a large membrane Cl(-) conductance (G(Cl)) that dampens their excitability. Recently, however, muscle activity was shown to induce PKC-mediated reduction in G(Cl) in rat muscles of 40-90%. To examine the physiological significance of this PKC-mediated G(Cl) reduction for the function of muscles, this study explored effects of G(Cl) reductions on contractile endurance in isolated rat muscles. Contractile endurance was assessed from the ability of muscle to maintain force during prolonged stimulation under conditions when G(Cl) was manipulated by: (i) inhibition of PKC, (ii) reduction of solution Cl(-) or (iii) inhibition of ClC-1 Cl(-) channels using 9-anthracene-carboxylic acid (9-AC). Experiments showed that contractile endurance was optimally preserved by reductions in G(Cl) similar to what occurs in active muscle. Contrastingly, further G(Cl) reductions compromised the endurance. The experiments thus show a biphasic relationship between G(Cl) and contractile endurance in which partial G(Cl) reduction improves endurance while further G(Cl) reduction compromises endurance. Intracellular recordings of trains of action potentials suggest that this biphasic dependency of contractile endurance on G(Cl) reflects that lowering G(Cl) enhances muscle excitability but low G(Cl) also increases the depolarisation of muscle fibres during excitation and reduces their ability to re-accumulate K(+) lost during excitation. If G(Cl) becomes very low, the latter actions dominate causing reduced endurance. It is concluded that the PKC-mediated ClC-1 channel inhibition in active muscle reduces G(Cl) to a level that optimises contractile endurance during intense exercise.
Collapse
Affiliation(s)
- Frank Vincenzo de Paoli
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
33
|
Hilbert M, Shushakov V, Maassen N. The influence of respiratory acid-base changes on muscle performance and excitability of the sarcolemma during strenuous intermittent hand grip exercise. J Appl Physiol (1985) 2012; 112:571-9. [DOI: 10.1152/japplphysiol.00869.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acidification has been reported to provide protective effects on force production in vitro. Thus, in this study, we tested if respiratory acid-base changes influence muscle function and excitability in vivo. Nine subjects performed strenuous, intermittent hand grip exercises (10 cycles of 15 s of work/45 s of rest) under respiratory acidosis by CO2 rebreathing, alkalosis by hyperventilation, or control. The Pco2, pH, K+ concentration ([K+]), and Na+ concentration were measured in venous and arterialized blood. Compound action potentials (M-wave) were elicited to examine the excitability of the sarcolemma. The surface electromyogram (EMG) was recorded to estimate the central drive to the muscle. The lowest venous pH during the exercise period was 7.24 ± 0.03 in controls, 7.31 ± 0.05 with alkalosis, and 7.17 ± 0.04 with acidosis ( P < 0.001). The venous [K+] rose to similar maximum values in all conditions (6.2 ± 0.8 mmol/l). The acidification reduced the decline in contraction speed ( P < 0.001) but decreased the M-wave area to 73.4 ± 19.8% ( P < 0.001) of the initial value. After the first exercise cycle, the M-wave area was smaller with acidosis than with alkalosis, and, after the second cycle, it was smaller with acidosis than with the control condition ( P < 0.001). The duration of the M-wave was not affected. Acidification diminished the reduction in performance, although the M-wave area during exercise was decreased. Respiratory alkalosis stabilized the M-wave area without influencing performance. Thus, we did not find a direct link between performance and alteration of excitability of the sarcolemma due to changes in pH in vivo.
Collapse
Affiliation(s)
- M. Hilbert
- Institute for Sports Medicine, Medical School Hannover, Hannover, Germany
| | - V. Shushakov
- Institute for Sports Medicine, Medical School Hannover, Hannover, Germany
| | - N. Maassen
- Institute for Sports Medicine, Medical School Hannover, Hannover, Germany
| |
Collapse
|
34
|
Overgaard K, Højfeldt GW, Nielsen OB. Effects of acidification and increased extracellular potassium on dynamic muscle contractions in isolated rat muscles. J Physiol 2010; 588:5065-76. [PMID: 20962010 DOI: 10.1113/jphysiol.2010.195727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Since accumulation of both H(+) and extracellular K(+) have been implicated in the reduction in dynamic contractile function during intense exercise, we investigated the effects of acidification and high K(+) on muscle power and the force-velocity relation in non-fatigued rat soleus muscles. Contractions were elicited by supramaximal electrical stimulation at 60 Hz. Force-velocity (FV) curves were obtained by fitting data on force and shortening velocity at different loads to the Hill equation. Acidification of the muscles by incubation with up to 24 mm lactic acid produced no significant changes in maximal power (P(max)) at 30 °C. More pronounced acidification, obtained by increasing CO(2) levels in the equilibration gas from 5% to 53%, markedly decreased P(max) and maximal isometric force (F(max)), increased the curvature of the FV relation, but left maximal shortening velocity (V(max)) unchanged. Increase of extracellular K(+) from 4 to 10 mm caused a depression of 58% in P(max) and 52% in F(max), but had no significant effect on V(max) or curvature of the FV curve. When muscles at 10 mM K(+) were acidified by 20 mm lactic acid, P(max) and F(max) recovered completely to the initial control level at 4 mm K(+). CO(2) acidification also induced significant recovery of dynamic contractions, but not entirely to control levels. These results demonstrate that in non-fatigued muscles severe acidification can be detrimental to dynamic contractile function, but in muscles depolarised by exposure to high extracellular [K(+)], approaching the [K(+)] level seen during intense fatiguing exercise, acidification can have positive protective effects on dynamic muscle function.
Collapse
Affiliation(s)
- Kristian Overgaard
- Department of Sport Science, Aarhus University, Dalgas Avenue 4, DK-8000 Århus C, Denmark.
| | | | | |
Collapse
|
35
|
Pedersen TH, Macdonald WA, de Paoli FV, de Paoli FV, Gurung IS, Nielsen OB. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle. ACTA ACUST UNITED AC 2010; 134:323-37. [PMID: 19786585 PMCID: PMC2757766 DOI: 10.1085/jgp.200910291] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In several pathological and experimental conditions, the passive membrane conductance of muscle fibers (Gm) and their excitability are inversely related. Despite this capacity of Gm to determine muscle excitability, its regulation in active muscle fibers is largely unexplored. In this issue, our previous study (Pedersen et al. 2009. J. Gen. Physiol. doi:10.1085/jgp.200910291) established a technique with which biphasic regulation of Gm in action potential (AP)-firing fast-twitch fibers of rat extensor digitorum longus muscles was identified and characterized with temporal resolution of seconds. This showed that AP firing initially reduced Gm via ClC-1 channel inhibition but after ∼1,800 APs, Gm rose substantially, causing AP excitation failure. This late increase of Gm reflected activation of ClC-1 and KATP channels. The present study has explored regulation of Gm in AP-firing slow-twitch fibers of soleus muscle and compared it to Gm dynamics in fast-twitch fibers. It further explored aspects of the cellular signaling that conveyed regulation of Gm in AP-firing fibers. Thus, in both fiber types, AP firing first triggered protein kinase C (PKC)-dependent ClC-1 channel inhibition that reduced Gm by ∼50%. Experiments with dantrolene showed that AP-triggered SR Ca2+ release activated this PKC-mediated ClC-1 channel inhibition that was associated with reduced rheobase current and improved function of depolarized muscles, indicating that the reduced Gm enhanced muscle fiber excitability. In fast-twitch fibers, the late rise in Gm was accelerated by glucose-free conditions, whereas it was postponed when intermittent resting periods were introduced during AP firing. Remarkably, elevation of Gm was never encountered in AP-firing slow-twitch fibers, even after 15,000 APs. These observations implicate metabolic depression in the elevation of Gm in AP-firing fast-twitch fibers. It is concluded that regulation of Gm is a general phenomenon in AP-firing muscle, and that differences in Gm regulation may contribute to the different phenotypes of fast- and slow-twitch muscle.
Collapse
|
36
|
Pedersen TH, de Paoli FV, de Paoli FV, Flatman JA, Nielsen OB. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers. ACTA ACUST UNITED AC 2010; 134:309-22. [PMID: 19786584 PMCID: PMC2757767 DOI: 10.1085/jgp.200910290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Action potential (AP) excitation requires a transient dominance of depolarizing membrane currents over the repolarizing membrane currents that stabilize the resting membrane potential. Such stabilizing currents, in turn, depend on passive membrane conductance (G(m)), which in skeletal muscle fibers covers membrane conductances for K(+) (G(K)) and Cl(-) (G(Cl)). Myotonic disorders and studies with metabolically poisoned muscle have revealed capacities of G(K) and G(Cl) to inversely interfere with muscle excitability. However, whether regulation of G(K) and G(Cl) occur in AP-firing muscle under normal physiological conditions is unknown. This study establishes a technique that allows the determination of G(Cl) and G(K) with a temporal resolution of seconds in AP-firing muscle fibers. With this approach, we have identified and quantified a biphasic regulation of G(m) in active fast-twitch extensor digitorum longus fibers of the rat. Thus, at the onset of AP firing, a reduction in G(Cl) of approximately 70% caused G(m) to decline by approximately 55% in a manner that is well described by a single exponential function characterized by a time constant of approximately 200 APs (phase 1). When stimulation was continued beyond approximately 1,800 APs, synchronized elevations in G(K) ( approximately 14-fold) and G(Cl) ( approximately 3-fold) caused G(m) to rise sigmoidally to approximately 400% of its level before AP firing (phase 2). Phase 2 was often associated with a failure to excite APs. When AP firing was ceased during phase 2, G(m) recovered to its level before AP firing in approximately 1 min. Experiments with glibenclamide (K(ATP) channel inhibitor) and 9-anthracene carboxylic acid (ClC-1 Cl(-) channel inhibitor) revealed that the decreased G(m) during phase 1 reflected ClC-1 channel inhibition, whereas the massively elevated G(m) during phase 2 reflected synchronized openings of ClC-1 and K(ATP) channels. In conclusion, G(Cl) and G(K) are acutely regulated in AP-firing fast-twitch muscle fibers. Such regulation may contribute to the physiological control of excitability in active muscle.
Collapse
|
37
|
ZHANG G, SHIRAI N, SUZUKI H, SHIMIZU E. Effect of Dietary Lipid Type on the Enhancement of Swimming Endurance of Mice by L-Lactic Acid. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2010. [DOI: 10.3136/fstr.16.447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Voss AA. Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors. J Physiol 2009; 587:5739-52. [PMID: 19805741 DOI: 10.1113/jphysiol.2009.179275] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ATP is released from skeletal muscle during exercise, a discovery dating back to 1969. Surprisingly, few studies have examined the effects of extracellular ATP on mature mammalian skeletal muscle. This electrophysiological study examined the effects of extracellular ATP on fully innervated rat levator auris longus using two intracellular microelectrodes. The effects of ATP were determined by measuring the relative changes of miniature endplate potentials (mEPPs) and voltage responses to step current pulses in individual muscle fibres. Exposure to ATP (20 microm) prolonged the mEPP falling phase by 31 +/- 7.5% (values +/- s.d., n = 3 fibres). Concurrently, the input resistance increased by 31 +/- 2.0% and the time course of the voltage responses increased by 59 +/- 3.0%. Analogous effects were observed using 2 and 5 microm ATP, and on regions distal from the neuromuscular junction, indicating that physiologically relevant levels of ATP enhanced electrical signalling over the entire muscle fibre. The effects of extracellular ATP were blocked by 200 microm anthracene-9-carboxylic acid, a chloride channel inhibitor, and reduced concentrations of extracellular chloride, indicating that ATP inhibited chloride channels. A high affinity agonist for P2Y receptors, 2-methylthioadenosine-5-O-diphosphate (2MeSADP), induced similar effects to ATP with an EC(50) of 160 +/- 30 nm. The effects of 250 nm2MeSADP were blocked by 500 nmMRS2179, a specific P2Y(1) receptor inhibitor, suggesting that ATP acts on P2Y(1) receptors to inhibit chloride channels. The inhibition of chloride channels by extracellular ATP has implications for muscle excitability and fatigue, and the pathophysiology of myotonias.
Collapse
Affiliation(s)
- Andrew A Voss
- California State Polytechnic University, Pomona, Biological Sciences, 3801 West Temple Avenue, Pomona, CA 91768-4032, USA.
| |
Collapse
|
39
|
Cairns SP, Lindinger MI. Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 2008; 586:4039-54. [PMID: 18591187 DOI: 10.1113/jphysiol.2008.155424] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K(+) gradient per se can reduce maximal force in non-fatigued muscle suggesting that K(+) causes fatigue. However, this effect requires extremely large, although physiological, K(+) shifts. In contrast, moderate elevations of extracellular [K(+)] ([K(+)](o)) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na(+), Ca(2+), Cl(-) and H(+) gradients are insufficient by themselves to cause much fatigue but each ion can interact with K(+) effects. Lowered Na(+), Ca(2+) and Cl(-) gradients further impair force by modulating the peak tetanic force-[K(+)](o) and peak tetanic force-resting membrane potential relationships. In contrast, raised [Ca(2+)](o), acidosis and reduced Cl(-) conductance during late fatigue provide resistance against K(+)-induced force depression. The detrimental effects of K(+) are exacerbated by metabolic changes such as lowered [ATP](i), depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K(+) gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.
Collapse
Affiliation(s)
- S P Cairns
- Institute of Sport and Recreation Research New Zealand, Faculty of Health and Environmental Sciences, AUT University, Auckland 1020, New Zealand.
| | | |
Collapse
|
40
|
Abstract
The advent of balanced solutions for i.v. fluid resuscitation and replacement is imminent and will affect any specialty involved in fluid management. Part of the background to their introduction has focused on the non-physiological nature of 'normal' saline solution and the developing science about the potential problems of hyperchloraemic acidosis. This review assesses the physiological significance of hyperchloraemic acidosis and of acidosis in general. It aims to differentiate the effects of the causes of acidosis from the physiological consequences of acidosis. It is intended to provide an assessment of the importance of hyperchloraemic acidosis and thereby the likely benefits of balanced solutions.
Collapse
Affiliation(s)
- J M Handy
- Chelsea and Westminster NHS Foundation Trust, Imperial College London, 369 Fulham Road, London SW10 9NH, UK.
| | | |
Collapse
|
41
|
Clausen T. Clearance of extracellular K+ during muscle contraction--roles of membrane transport and diffusion. ACTA ACUST UNITED AC 2008; 131:473-81. [PMID: 18411333 PMCID: PMC2346564 DOI: 10.1085/jgp.200809971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Excitation of muscle often leads to a net loss of cellular K+ and a rise in extracellular K+ ([ K+ ]o), which in turn inhibits excitability and contractility. It is important, therefore, to determine how this K+ is cleared by diffusion into the surroundings or by reaccumulation into the muscle cells. The inhibitory effects of the rise in [K+ ]o may be assessed from the time course of changes in tetanic force in isolated muscles where diffusional clearance of K+ is eliminated by removing the incubation medium and allowing the muscles to contract in air. Measurements of tetanic force, endurance, and force recovery showed that in rat soleus and extensor digitorum longus (EDL) muscles there was no significant difference between the performance of muscles contracting in buffer or in air for up to 8 min. Ouabain-induced inhibition of K+ clearance via the Na+,K+ pumps markedly reduced contractile endurance and force recovery in air. Incubation in buffer containing 10 mM K+ clearly inhibited force development and endurance, and these effects were considerably reduced by stimulating Na+,K+ pumps with the β2-agonist salbutamol. Following 30–60 s of continuous stimulation at 60 Hz, the amount of K+ released into the extracellular space was assessed from washout experiments. The release of intracellular K+ per pulse was fourfold larger in EDL than in soleus, and in the two muscles, the average [K+ ]o reached 52.4 and 26.0 mM, respectively, appreciably higher than previously detected. In conclusion, prevention of diffusion of K+ from the extracellular space of isolated working muscles causes only modest interference with contractile performance. The Na+,K+ pumps play a major role in the clearance of K+ and the maintenance of force. This new information is important for the evaluation of K+-induced inhibition in muscles, where diffusional clearance of K+ is reduced by tension development sufficient to suppress circulation.
Collapse
Affiliation(s)
- Torben Clausen
- Institute of Physiology and Biophysics, University of Aarhus, DK-8000 Arhus C, Denmark.
| |
Collapse
|
42
|
Tricarico D, Lovaglio S, Mele A, Rotondo G, Mancinelli E, Meola G, Camerino DC. Acetazolamide prevents vacuolar myopathy in skeletal muscle of K(+) -depleted rats. Br J Pharmacol 2008; 154:183-90. [PMID: 18345024 DOI: 10.1038/bjp.2008.42] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Acetazolamide and dichlorphenamide are carbonic anhydrase (CA) inhibitors effective in the clinical condition of hypokalemic periodic paralysis (hypoPP). Whether these drugs prevent vacuolar myopathy, which is a pathogenic factor in hypoPP, is unknown. The effects of these drugs on the efflux of lactate from skeletal muscle were also investigated. EXPERIMENTAL APPROACH For 10 days, K(+)-depleted rats, a model of hypoPP, were administered 5.6 mg kg(-1) day(-1) of acetazolamide, dichlorphenamide or bendroflumethiazide (the last is not an inhibitor of CA). Histological analysis of vacuolar myopathy and in vitro lactate efflux measurements were performed in skeletal muscles from treated and untreated K(+)-depleted rats, and also from normokalemic rats. KEY RESULTS About three times as many vacuoles were found in the type II fibres of tibialis anterioris muscle sections from K(+)-depleted rats as were found in the same muscle from normokalemic rats. In ex vivo experiments, a higher efflux of lactate on in vitro incubation was found in muscles of K(+)-depleted rats compared with that found in muscles from normokalemic rats. After treatment of K(+)-depleted rats with acetazolamide, the numbers of vacuoles in tibialis anterioris muscle decreased to near normal values. Incubation with acetazolamide in vitro inhibited efflux of lactate from muscles of K(+)-depleted rats. In contrast, bendroflumethiazide and dichlorphenamide failed to prevent vacuolar myopathy after treatment in vivo and failed to inhibit lactate efflux in vitro. CONCLUSIONS AND IMPLICATIONS Acetazolamide prevents vacuolar myopathy in K(+)-depleted rats. This effect was associated with inhibition of lactate transport, rather than inhibition of CA.
Collapse
Affiliation(s)
- D Tricarico
- Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Clausen T. Role of Na+,K+-pumps and transmembrane Na+,K+-distribution in muscle function. The FEPS lecture - Bratislava 2007. Acta Physiol (Oxf) 2008; 192:339-49. [PMID: 17988242 DOI: 10.1111/j.1748-1716.2007.01798.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Na(+),K(+)-ATPase situated in the plasma membrane mediates active extrusion of Na(+) and intracellular accumulation of K(+). This transport system the Na(+),K(+)-pump is the major regulator of the transmembrane distribution of Na(+) and K(+), and is itself subject to regulation by a wide variety of factors in skeletal muscles. The excitation of skeletal muscles is elicited by a rapid influx of Na(+), followed by an equivalent efflux of K(+) across sarcolemmal and t-tubular membranes. Due to their size and sudden onset, these events constitute the major transport challenge for the Na(+),K(+)-pumps. Skeletal muscles contain the largest single pool of K(+) in the organism. During intense exercise, the Na(+),K(+)-pumps cannot readily reaccumulate K(+) into the muscle cells. Therefore, the working muscles undergo a net loss of K(+), causing up to a doubling of the K(+) concentration in the arterial blood plasma in less than 1 min and even larger increases in interstitial K(+). This may induce depolarization, loss of excitability and force, in particular in muscles, where the excitation-induced passive Na(+),K(+)-fluxes are large. During continuous stimulation of isolated rat muscles, there is a highly significant correlation between the rise in extracellular K(+) and the rate of force decline. Fortunately, excitation increases the Na(+),K(+)-pumping rate within seconds. Thus, maximum activation of up to 20-fold above the resting transport rate may be reached in 10 s, with utilization of all available Na(+),K(+)-pumps. In muscles, where excitability is reduced by pre-exposure to high [K(+)]o, acute activation of the Na(+),K(+)-pumps by hormones or intermittent electrical stimulation restores excitability and contractility. In working muscles, the Na(+),K(+)-pumps, due to rapid activation of their large transport capacity, play a dynamic regulatory role in the from second to second ongoing restoration and maintenance of excitability and force. Excitation is a self-limiting process that depends on the leak/pump ratio for Na(+) and K(+). Acute inhibition of the Na(+),K(+)-pumps with ouabain or downregulation of the Na(+),K(+)-pump capacity clearly reduces contractile endurance in isolated muscles. The Na(+),K(+)-pumps are a limiting factor for contractile force and endurance. This is in particular noted if their capacity is reduced because of inactivity or disease. For these reasons, tight regulation of the Na(+),K(+)-pumps is crucial for the maintenance of plasma K(+), membrane potential and excitability in skeletal muscle. This is achieved by: (1) acute activation of the Na(+),K(+)-pumps elicited by excitation, catecholamines, insulin, insulin-like growth factor I, calcitonins and amylin; and (2) long-term regulation of the content of Na(+),K(+)-pumps exerted by thyroid hormones, adrenal steroids, insulin, training, inactivity, fasting, K(+)-deficiency or K(+)-overload. In conclusion, the Na(+),K(+)-pump is a central target for regulation of Na(+),K(+)-distribution, important for the contractile performance of skeletal muscles, the pathophysiology of several diseases and for therapeutic intervention.
Collapse
Affiliation(s)
- T Clausen
- Institute of Physiology and Biophysics, University of Aarhus, Arhus C, Denmark.
| |
Collapse
|
44
|
Burnes LA, Kolker SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1347-55. [PMID: 18305024 DOI: 10.1152/ajpregu.00687.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fatigue is associated with a number of clinical diseases, including chronic pain conditions. Decreases in extracellular pH activates acid-sensing ion channel 3 (ASIC3), depolarizes muscle, protects against fatigue, and produces pain. We examined whether ASIC3-/- mice were more fatigable than ASIC3+/+ mice in a task-dependent manner. We developed two exercise protocols to measure exercise-induced muscle fatigue: (fatigue task 1, three 1-h runs; fatigue task 2, three 30-min runs). In fatigue task 1, male ASIC3+/+ mice muscle showed less fatigue than male ASIC3-/- mice and female ASIC3+/+ mice. No differences in fatigue were observed in fatigue task 2. We then tested whether the development of muscle fatigue was dependent on sex and modulated by testosterone. Female ASIC3+/+ mice that were ovariectomized and administered testosterone developed less muscle fatigue than female ASIC3+/+ mice and behaved similarly to male ASIC3+/+ mice. However, testosterone was unable to rescue the muscle fatigue responses in ovariectomized ASIC3-/- mice. Plasma levels of testosterone from male ASIC3-/- mice were significantly lower than in male ASIC3+/+ mice and were similar to female ASIC3+/+ mice. Muscle fiber types, measured by counting ATPase-stained whole muscle sections, were similar in calf muscles from male and female ASIC3+/+ mice. These data suggest that both ASIC3 and testosterone are necessary to protect against muscle fatigue in a task-dependent manner. Also, differences in expression of ASIC3 and the development of exercise-induced fatigue could explain the female predominance in clinical syndromes of pain that include muscle fatigue.
Collapse
Affiliation(s)
- Lynn A Burnes
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, Neuroscience Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
45
|
McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl− disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985) 2008; 104:288-95. [DOI: 10.1152/japplphysiol.01037.2007] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K+ efflux and Na+ and Cl− influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K+ and Na+ concentrations. Muscle interstitial K+ concentration may increase 1- to 2-fold to 11–13 mM and intracellular K+ concentration fall by 1.3- to 1.7-fold; interstitial Na+ concentration may decline by 10 mM and intracellular Na+ concentration rise by 1.5- to 2.0-fold. Muscle Cl− concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl− concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na+-K+-ATPase activity during exercise stabilizes Na+ and K+ concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na+-K+ pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.
Collapse
|
46
|
Nielsen OB, de Paoli FV. Regulation of Na+–K+ homeostasis and excitability in contracting muscles: implications for fatigue. Appl Physiol Nutr Metab 2007; 32:974-84. [DOI: 10.1139/h07-099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The performance of skeletal muscles depends on their ability to initiate and propagate action potentials along their outer membranes in response to motor signals from the central nervous system. This excitability of muscle fibres is related to the function of Na+ and K+ and Cl– channels and to steep chemical gradients for the ions across the cell membranes, i.e., the sarcolemma and T-tubular membranes. At rest, the chemical gradients for Na+ and K+ are maintained within close limits by the action of the Na+–K+ pump. During contractile activity, however, the muscles lose K+, which causes an increase in the concentration of K+ in the extracellular compartments of the body, the magnitude of which depends on the intensity of the exercise and the size of the muscle groups involved. Since the ensuing reduction in the chemical K+ gradient can have adverse effects on muscle excitability, it has repeatedly been suggested that, during intense exercise, the loss of K+ from muscle fibres can contribute to the complex set of mechanisms that leads to the development of muscle fatigue. In this review, aspects of the regulation of Na+–K+ homeostasis and excitability in contracting muscles is discussed within this context, together with the implications for the contractile function of skeletal muscles.
Collapse
Affiliation(s)
- Ole Bækgaard Nielsen
- Institute of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 160, 8000 Århus C, Denmark
| | - Frank Vincenzo de Paoli
- Institute of Physiology and Biophysics, University of Aarhus, Ole Worms Allé 160, 8000 Århus C, Denmark
| |
Collapse
|
47
|
Andersen JB. LACTATE: GOOD, BAD OR BOTH? J Exp Biol 2007. [DOI: 10.1242/jeb.001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Affiliation(s)
- M I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|