1
|
McMahon DB, Carey RM, Kohanski MA, Adappa ND, Palmer JN, Lee RJ. PAR-2-activated secretion by airway gland serous cells: role for CFTR and inhibition by Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2021; 320:L845-L879. [PMID: 33655758 DOI: 10.1152/ajplung.00411.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway submucosal gland serous cells are important sites of fluid secretion in conducting airways. Serous cells also express the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor that activates secretion from intact airway glands. We tested if and how human nasal serous cells secrete fluid in response to PAR-2 stimulation using Ca2+ imaging and simultaneous differential interference contrast imaging to track isosmotic cell shrinking and swelling reflecting activation of solute efflux and influx pathways, respectively. During stimulation of PAR-2, serous cells exhibited dose-dependent increases in intracellular Ca2+. At stimulation levels >EC50 for Ca2+, serous cells simultaneously shrank ∼20% over ∼90 s due to KCl efflux reflecting Ca2+-activated Cl- channel (CaCC, likely TMEM16A)-dependent secretion. At lower levels of PAR-2 stimulation (<EC50 for Ca2+), shrinkage was not evident due to failure to activate CaCC. Low levels of cAMP-elevating VIP receptor (VIPR) stimulation, also insufficient to activate secretion alone, synergized with low-level PAR-2 stimulation to elicit fluid secretion dependent on both cAMP and Ca2+ to activate CFTR and K+ channels, respectively. Polarized cultures of primary serous cells also exhibited synergistic fluid secretion. Pre-exposure to Pseudomonas aeruginosa conditioned media inhibited PAR-2 activation by proteases but not peptide agonists in primary nasal serous cells, Calu-3 bronchial cells, and primary nasal ciliated cells. Disruption of synergistic CFTR-dependent PAR-2/VIPR secretion may contribute to reduced airway surface liquid in CF. Further disruption of the CFTR-independent component of PAR-2-activated secretion by P. aeruginosa may also be important to CF pathophysiology.
Collapse
Affiliation(s)
- Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Kohanski
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Gamo S, Tamada T, Murakami K, Muramatsu S, Aritake H, Nara M, Kazama I, Okazaki T, Sugiura H, Ichinose M. TLR7 agonist attenuates acetylcholine-induced, Ca 2+ -dependent ionic currents in swine tracheal submucosal gland cells. Exp Physiol 2018; 103:1543-1559. [PMID: 30194882 DOI: 10.1113/ep087221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/04/2018] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does Toll-like receptor 7 (TLR7) have any direct effects on Ca2+ -dependent physiological function of tracheal submucosal gland cells? What is the main finding and its importance? TLR7 is co-localized with SERCA2 in tracheal submucosal gland cells and causes a rapid attenuation of acetylcholine (ACh)-induced, Ca2+ -dependent ionic currents through the activation of SERCA2-dependent Ca2+ clearance. TLR7 is abundantly expressed in the airways of both swine and healthy human subjects, but is significantly downregulated in chronic obstructive pulmonary disease (COPD) airways. These findings suggest that a dysfunction of TLR7 in COPD removes the brake on ACh-induced serous secretion during viral infections, resulting in prolonged airway hypersecretion, and that it is one of the triggers of COPD exacerbations. ABSTRACT Airway surface fluids are mainly secreted from submucosal glands (SMGs) and play important roles in the defence of airways via the activation of mucociliary transport. Toll-like receptor 7 (TLR7) recognizes and eliminates single stranded RNA (ssRNA) viruses through the induction of innate immunity. However, there is no obvious connection between TLR7 and mucus secretion, aside from TLR7 recognizing ssRNA viruses, which are often associated with airway hypersecretion in chronic obstructive pulmonary disease (COPD). Here, we investigated whether TLR7 has any direct effects on the Ca2+ -dependent physiological function of tracheal SMG cells. Patch-clamp analyses revealed that TLR7 ligand inhibited the acetylcholine (ACh)-induced ionic currents in isolated tracheal SMG cells. Intracellular calcium assays and pharmacological analyses revealed that TLR7 attenuated the transient rises in the intracellular calcium concentration evoked by ACh by activating sarco/endoplasmic reticulum Ca2+ -ATPase 2 (SERCA2). Immunofluorescence staining and immunohistochemical staining revealed that TLR7 was co-localized with SERCA2. These findings suggest that the activation of TLR7 during viral infections contributes to the rapid attenuation of ACh-induced ionic currents through an increase in SERCA2-dependent Ca2+ clearance in healthy airway SMG cells. Our study also revealed that TLR7 expression was significantly downregulated in COPD airways. Based on these findings, we speculate that a dysfunction of TLR7 may not only have an adverse effect on the elimination of these viruses but also remove the brake on ACh-induced serous secretion, resulting in prolonged hypersecretion and acting as one of the triggers of COPD exacerbations.
Collapse
Affiliation(s)
- Shunichi Gamo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Soshi Muramatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Hidemi Aritake
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Masayuki Nara
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Itsuro Kazama
- Miyagi University, School of Nursing, 1-1 Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, 981-3298, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi 980-8574, Aoba-ku, Sendai, Japan
| |
Collapse
|
3
|
Alaiwa MHA, Launspach JL, Grogan B, Carter S, Zabner J, Stoltz DA, Singh PK, McKone EF, Welsh MJ. Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis. JCI Insight 2018; 3:121468. [PMID: 30089726 PMCID: PMC6129116 DOI: 10.1172/jci.insight.121468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss of CFTR-mediated HCO3- secretion reduces the pH of airway surface liquid (ASL) in vitro and in neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH and also that increasing CFTR activity would correlate with increases in ASL pH. METHODS To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured changes in sweat Cl- concentration immediately before and 48 hours after starting ivacaftor. RESULTS Compared with that in the newborn period, ASL pH increased by 6 months of age. In people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; however reductions in sweat Cl- concentration correlated with elevations of ASL pH. Reductions in sweat Cl- concentration also correlated with improvements in pulmonary function. CONCLUSIONS Our results suggest that CFTR-independent mechanisms increase ASL pH in people with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the adaptation. FUNDING Vertex Inc., the NIH (P30DK089507, 1K08HL135433, HL091842, HL136813, K24HL102246), the Cystic Fibrosis Foundation (SINGH17A0 and SINGH15R0), and the Burroughs Wellcome Fund.
Collapse
Affiliation(s)
- Mahmoud H. Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jan L. Launspach
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brenda Grogan
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Suzanne Carter
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David A. Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Pradeep K. Singh
- Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Edward F. McKone
- National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland
| | - Michael J. Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic-AMP, and nitric oxide signaling. J Biol Chem 2018; 293:9824-9840. [PMID: 29748385 DOI: 10.1074/jbc.ra117.001005] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
Bitter taste receptors (taste family 2 bitter receptor proteins; T2Rs), discovered in many tissues outside the tongue, have recently become potential therapeutic targets. We have shown previously that airway epithelial cells express several T2Rs that activate innate immune responses that may be important for treatment of airway diseases such as chronic rhinosinusitis. It is imperative to more clearly understand what compounds activate airway T2Rs as well as their full range of functions. T2R isoforms in airway motile cilia (T2R4, -14, -16, and -38) produce bactericidal levels of nitric oxide (NO) that also increase ciliary beating, promoting clearance of mucus and trapped pathogens. Bacterial quorum-sensing acyl-homoserine lactones activate T2Rs and stimulate these responses in primary airway cells. Quinolones are another type of quorum-sensing molecule used by Pseudomonas aeruginosa To elucidate whether bacterial quinolones activate airway T2Rs, we analyzed calcium, cAMP, and NO dynamics using a combination of fluorescent indicator dyes and FRET-based protein biosensors. T2R-transfected HEK293T cells, several lung epithelial cell lines, and primary sinonasal cells grown and differentiated at the air-liquid interface were tested with 2-heptyl-3-hydroxy-4-quinolone (known as Pseudomonas quinolone signal; PQS), 2,4-dihydroxyquinolone, and 4-hydroxy-2-heptylquinolone (HHQ). In HEK293T cells, PQS activated T2R4, -16, and -38, whereas HHQ activated T2R14. 2,4-Dihydroxyquinolone had no effect. PQS and HHQ increased calcium and decreased both baseline and stimulated cAMP levels in cultured and primary airway cells. In primary cells, PQS and HHQ activated levels of NO synthesis previously shown to be bactericidal. This study suggests that airway T2R-mediated immune responses are activated by bacterial quinolones as well as acyl-homoserine lactones.
Collapse
Affiliation(s)
- Jenna R Freund
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | | | | | - Nithin D Adappa
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - James N Palmer
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - David W Kennedy
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and
| | - Danielle R Reed
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- the Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- From the Departments of Otorhinolaryngology-Head and Neck Surgery and .,Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
5
|
Hariri BM, McMahon DB, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLoS One 2017; 12:e0185203. [PMID: 28931063 PMCID: PMC5607194 DOI: 10.1371/journal.pone.0185203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO) production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.
Collapse
Affiliation(s)
- Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Derek B. McMahon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bei Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David W. Kennedy
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
McMahon DB, Workman AD, Kohanski MA, Carey RM, Freund JR, Hariri BM, Chen B, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Lee RJ. Protease-activated receptor 2 activates airway apical membrane chloride permeability and increases ciliary beating. FASEB J 2017; 32:155-167. [PMID: 28874459 DOI: 10.1096/fj.201700114rrr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
Mucociliary clearance, driven by the engine of ciliary beating, is the primary physical airway defense against inhaled pathogens and irritants. A better understanding of the regulation of ciliary beating and mucociliary transport is necessary for identifying new receptor targets to stimulate improved clearance in airway diseases, such as cystic fibrosis and chronic rhinosinusitis. In this study, we examined the protease-activated receptor (PAR)-2, a GPCR previously shown to regulate airway cell cytokine and mucus secretion, and transepithelial Cl- current. PAR-2 is activated by proteases secreted by airway neutrophils and pathogens. We cultured various airway cell lines, primary human and mouse sinonasal cells, and human bronchial cells at air-liquid interface and examined them using molecular biology, biochemistry, and live-cell imaging. We found that PAR-2 is expressed basolaterally, where it stimulates both intracellular Ca2+ release and Ca2+ influx, which activates low-level nitric oxide production, increases apical membrane Cl- permeability ∼3-5-fold, and increases ciliary beating ∼20-50%. No molecular or functional evidence of PAR-4 was observed. These data suggest a novel and previously overlooked role of PAR-2 in airway physiology, adding to our understanding of the role of this receptor in airway Ca2+ signaling and innate immunity.-McMahon, D. B., Workman, A. D., Kohanski, M. A., Carey, R. M., Freund, J. R., Hariri, B. M., Chen, B., Doghramji, L. J., Adappa, N. D., Palmer, J. N., Kennedy, D. W., Lee, R. J. Protease-activated receptor 2 activates airway apical membrane chloride permeability and increases ciliary beating.
Collapse
Affiliation(s)
- Derek B McMahon
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jenna R Freund
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin M Hariri
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel J Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Kang JW, Lee YH, Kang MJ, Lee HJ, Oh R, Min HJ, Namkung W, Choi JY, Lee SN, Kim CH, Yoon JH, Cho HJ. Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2017; 313:L466-L476. [PMID: 28546154 DOI: 10.1152/ajplung.00103.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022] Open
Abstract
Histamine is an important mediator of allergic reactions, and mucus hypersecretion is a major allergic symptom. However, the direct effect of histamine on mucus secretion from airway mucosal epithelia has not been clearly demonstrated. TMEM16A is a Ca2+-activated chloride channel, and it is closely related to fluid secretion in airway mucosal epithelia. We investigated whether histamine directly induces fluid secretion from epithelial cells or submucosal glands (SMG) and mechanisms related, therewith, in allergic airway diseases. In pig airway tissues from the nose or trachea, histamine was a potent secretagogue that directly induced strong responses. However, gland secretion from human nasal tissue was not induced by histamine, even in allergic rhinitis patients. Histamine type 1 receptor (H1R) and histamine type 2 receptor (H2R) were not noted in SMG by in situ hybridization. Cultured primary human nasal epithelial (NHE) cells were used for the measurement of short-circuit current changes with the Ussing chamber. Histamine-induced slight responses of anion secretions under normal conditions. The response was enhanced by IL-4 stimulation through TMEM16A, which might be related to fluid hypersecretion in allergic rhinitis. Pretreatment with IL-4 augmented the histamine response that was suppressed by a TMEM16A inhibitor. TMEM16A expression was enhanced by 24-h treatment of IL-4 in human nasal epithelial cells. The expression of TMEM16A was significantly elevated in an allergic rhinitis group, compared with a control group. We elucidated histamine-induced fluid secretions in synergy with IL-4 through TMEM16A in the human airway epithelium. In addition, we observed species differences between pigs and humans in terms of gland secretion of histamine.
Collapse
Affiliation(s)
- Ju Wan Kang
- Department of Otorhinolaryngology, Jeju National University College of Medicine, Jeju, Korea; and.,Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Yong Hyuk Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jeong Kang
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jae Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Ryung Oh
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jin Min
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Nam Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea; .,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Hariri BM, McMahon DB, Chen B, Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR, Jiang P, Lee RJ. Flavones modulate respiratory epithelial innate immunity: Anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem 2017; 292:8484-8497. [PMID: 28373278 DOI: 10.1074/jbc.m116.771949] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/21/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic rhinosinusitis has a significant impact on patient quality of life, creates billions of dollars of annual healthcare costs, and accounts for ∼20% of adult antibiotic prescriptions in the United States. Because of the rise of resistant microorganisms, there is a critical need to better understand how to stimulate and/or enhance innate immune responses as a therapeutic modality to treat respiratory infections. We recently identified bitter taste receptors (taste family type 2 receptors, or T2Rs) as important regulators of sinonasal immune responses and potentially important therapeutic targets. Here, we examined the immunomodulatory potential of flavones, a class of flavonoids previously demonstrated to have antibacterial and anti-inflammatory effects. Some flavones are also T2R agonists. We found that several flavones inhibit Muc5AC and inducible NOS up-regulation as well as cytokine release in primary and cultured airway cells in response to several inflammatory stimuli. This occurs at least partly through inhibition of protein kinase C and receptor tyrosine kinase activity. We also demonstrate that sinonasal ciliated epithelial cells express T2R14, which closely co-localizes (<7 nm) with the T2R38 isoform. Heterologously expressed T2R14 responds to multiple flavones. These flavones also activate T2R14-driven calcium signals in primary cells that activate nitric oxide production to increase ciliary beating and mucociliary clearance. TAS2R38 polymorphisms encode functional (PAV: proline, alanine, and valine at positions 49, 262, and 296, respectively) or non-functional (AVI: alanine, valine, isoleucine at positions 49, 262, and 296, respectively) T2R38. Our data demonstrate that T2R14 in sinonasal cilia is a potential therapeutic target for upper respiratory infections and that flavones may have clinical potential as topical therapeutics, particularly in T2R38 AVI/AVI individuals.
Collapse
Affiliation(s)
| | | | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery
| | | | | | | | | | | | | | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia.
| |
Collapse
|
9
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
10
|
Jung J, Lee MG. Role of calcium signaling in epithelial bicarbonate secretion. Cell Calcium 2014; 55:376-84. [PMID: 24598807 DOI: 10.1016/j.ceca.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
11
|
Lee RJ, Foskett JK. Ca²⁺ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium 2014; 55:325-36. [PMID: 24703093 DOI: 10.1016/j.ceca.2014.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic Ca(2+) is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca(2+) in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca(2+). Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca(2+) as a second messenger. Changes in intracellular Ca(2+) concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca(2+)-activated K(+) channels and Cl(-) channels. We also review evidence of interactions of Ca(2+) signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca(2+) signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
12
|
Lee RJ, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA. Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB J 2013; 27:5094-103. [PMID: 23934280 DOI: 10.1096/fj.13-234476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mucociliary clearance (MCC) is the primary physical airway defense against inhaled pathogens and particulates. MCC depends on both proper fluid/mucus homeostasis and epithelial ciliary beating. Vasoactive intestinal peptide (VIP) is a neurotransmitter expressed in the sinonasal epithelium that is up-regulated in allergy. However, the effects of VIP on human sinonasal physiology are unknown, as are VIP's interactions with histamine, a major regulator of allergic disease. We imaged ciliary beat frequency, mucociliary transport, apical Cl(-) permeability, and airway surface liquid (ASL) height in primary human sinonasal air-liquid-interface cultures to investigate the effects of VIP and histamine. VIP stimulated an increase in ciliary beat frequency (EC50 0.5 μM; maximal increase ∼40% compared with control) and cystic fibrosis transmembrane conductance regulator (CFTR)-dependent and Na(+)K(+)2Cl(-) cotransporter-dependent fluid secretion, all requiring cAMP/PKA signaling. Histamine activated Ca(2+) signaling that increased ASL height but not ciliary beating. Low concentrations of VIP and histamine had synergistic effects on CFTR-dependent fluid secretion, revealed by increased ASL heights. An up-regulation of VIP in histamine-driven allergic rhinitis would likely enhance mucosal fluid secretion and contribute to allergic rhinorrhea. Conversely, a loss of VIP-activated secretion in patients with CF may impair mucociliary transport, contributing to increased incidences of sinonasal infections and rhinosinusitis.
Collapse
Affiliation(s)
- Robert J Lee
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, Ravdin Bldg, 5th Floor, 3400 Spruce St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lee RJ, Foskett JK. Why mouse airway submucosal gland serous cells do not secrete fluid in response to cAMP stimulation. J Biol Chem 2012; 287:38316-26. [PMID: 22989883 DOI: 10.1074/jbc.m112.412817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Airway submucosal glands are important sites of cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl(-)) channel expression and fluid secretion in the airway. Whereas both mouse and human submucosal glands and their serous acinar cells express CFTR, human glands and serous cells secrete much more robustly than mouse cells/glands in response to cAMP-generating agonists such as forskolin and vasoactive intestinal peptide. In this study, we examined mouse and human serous acinar cells to explain this difference and reveal further insights into the mechanisms of serous cell secretion. We found that mouse serous cells possess a robust cAMP-activated CFTR-dependent Cl(-) permeability, but they lack cAMP-activated calcium (Ca(2+)) signaling observed in human cells. Similar to human cells, basal K(+) conductance is extremely small in mouse acinar cells. Lack of cAMP-activated Ca(2+) signaling in mouse cells results in the absence of K(+) conductances required for secretion. However, cAMP activates CFTR-dependent fluid secretion during low-level cholinergic stimulation that fails to activate secretion on its own. Robust CFTR-dependent fluid secretion was also observed when cAMP stimulation was combined with direct pharmacological activation of epithelial K(+) channels with 1-ethyl-2-benzimidazolinone (EBIO). Our data suggest that mouse serous cells lack cAMP-mediated Ca(2+) signaling to activate basolateral membrane K(+) conductance, resulting in weak cAMP-driven serous cell fluid secretion, providing the likely explanation for reduced cAMP-driven secretion observed in mouse compared with human glands.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
14
|
Finkbeiner WE, Zlock LT, Morikawa M, Lao AY, Dasari V, Widdicombe JH. Cystic fibrosis and the relationship between mucin and chloride secretion by cultures of human airway gland mucous cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L402-14. [PMID: 21724859 DOI: 10.1152/ajplung.00210.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated how cystic fibrosis (CF) alters the relationship between Cl(-) and mucin secretion in cultures of non-CF and CF human tracheobronchial gland mucous (HTGM and CFTGM, respectively) cells. Biochemical studies showed that HTMG cells secreted typical airway mucins, and immunohistochemical studies showed that these cells expressed MUC1, MUC4, MUC5B, MUC8, MUC13, MUC16, and MUC20. Effects of cumulative doses of methacholine (MCh), phenylephrine (Phe), isoproterenol (Iso), and ATP on mucin and Cl(-) secretion were studied on HTGM and CFTGM cultures. Baseline mucin secretion was not significantly altered in CFTGM cells, and the increases in mucin secretion induced by mediators were unaltered (Iso, Phe) or slightly decreased (MCh, ATP). Across mediators, there was no correlation between the maximal increases in Cl(-) secretion and mucin secretion. In HTGM cells, the Cl(-) channel blocker, diphenylamine-2-carboxylic acid, greatly inhibited Cl(-) secretion but did not alter mucin release. In HTGM cells, mediators (10(-5) M) increased mucin secretion in the rank order ATP > Phe = Iso > MCh. They increased Cl(-) secretion in the sequence ATP > MCh ≈ Iso > Phe. The responses in Cl(-) secretion to MCh, ATP, and Phe were unaltered by CF, but the response to Iso was greatly reduced. We conclude that mucin secretion by cultures of human tracheobronchial gland cells is independent of Cl(-) secretion, at baseline, and is unaltered in CF; that the ratio of Cl(-) secretion to mucus secretion varies markedly depending on mediator; and that secretions induced by stimulation of β-adrenergic receptors will be abnormally concentrated in CF.
Collapse
Affiliation(s)
- Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, 94110, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Khansaheb M, Choi JY, Joo NS, Yang YM, Krouse M, Wine JJ. Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2011; 300:L370-9. [DOI: 10.1152/ajplung.00372.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161–3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC50 = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTRinh-172, but not by niflumic acid. Serosal SubP (EC50 = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a Vmax similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO3−, and 85% by bumetanide + removal of HCO3−; it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca2+-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca2+ concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca2+-activated Cl− channels.
Collapse
Affiliation(s)
- Monal Khansaheb
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jae Young Choi
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
- Department of Otorhinolaryngology, Yonsei University, and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Yu-Mi Yang
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Mauri Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
16
|
Fischer H, Illek B, Sachs L, Finkbeiner WE, Widdicombe JH. CFTR and calcium-activated chloride channels in primary cultures of human airway gland cells of serous or mucous phenotype. Am J Physiol Lung Cell Mol Physiol 2010; 299:L585-94. [PMID: 20675434 PMCID: PMC2957417 DOI: 10.1152/ajplung.00421.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 07/30/2010] [Indexed: 11/22/2022] Open
Abstract
Using cell culture models, we have investigated the relative importance of cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCC) in Cl secretion by mucous and serous cells of human airway glands. In transepithelial recordings in Ussing chambers, the CFTR inhibitor CFTR(inh)-172 abolished 60% of baseline Cl secretion in serous cells and 70% in mucous. Flufenamic acid (FFA), an inhibitor of CaCC, reduced baseline Cl secretion by ∼20% in both cell types. Methacholine and ATP stimulated Cl secretion in both cell types, which was largely blocked by treatment with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and partially by mucosal FFA or CFTR(inh)-172 with the exception of methacholine responses in mucous cells, which were not blocked by FFA and partially (∼60%) by CFTR(inh)-172. The effects of ionomycin on short-circuit current (I(sc)) were less than those of ATP or methacholine. Forskolin stimulated Cl secretion only if Cl in the mucosal medium was replaced by gluconate. In whole cell patch-clamp studies of single isolated cells, cAMP-induced Cl currents were ∼3-fold greater in serous than mucous cells. Ionomycin-induced Cl currents were 13 times (serous) or 26 times (mucous) greater than those generated by cAMP and were blocked by FFA. In serous cells, mRNA for transmembrane protein 16A (TMEM16A) was ∼10 times more abundant than mRNA for CFTR. In mucous cells it was ∼100 times more abundant. We conclude: 1) serous and mucous cells both make significant contributions to gland fluid secretion; 2) baseline Cl secretion in both cell types is mediated predominantly by CFTR, but CaCC becomes increasingly important after mediator-induced elevations of intracellular Ca; and 3) the high CaCC currents seen in patch-clamp studies and the high TMEM16A expression in intact polarized cells sheets are not reflected in transepithelial current recordings.
Collapse
Affiliation(s)
- Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, California, USA
| | | | | | | | | |
Collapse
|
17
|
Lee RJ, Foskett JK. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 2010; 120:3137-48. [PMID: 20739756 DOI: 10.1172/jci42992] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | |
Collapse
|
18
|
Abstract
Neurons in the developing auditory system fire bursts of action potentials before the onset of hearing. This spontaneous activity promotes the survival and maturation of auditory neurons and the refinement of synaptic connections in auditory nuclei; however, the mechanisms responsible for initiating this activity remain uncertain. Previous studies indicate that inner supporting cells (ISCs) in the developing cochlea periodically release ATP, which depolarizes inner hair cells (IHCs), leading to bursts of action potentials in postsynaptic spiral ganglion neurons (SGNs). To determine when purinergic signaling appears in the developing cochlea and whether it is responsible for initiating auditory neuron activity throughout the prehearing period, we examined spontaneous activity from ISCs, IHCs, and SGNs in cochleae acutely isolated from rats during the first three postnatal weeks. We found that ATP was released from ISCs within the cochlea from birth until the onset of hearing, which led to periodic inward currents, Ca(2+) transients, and morphological changes in these supporting cells. This spontaneous release of ATP also depolarized IHCs and triggered bursts of action potentials in SGNs for most of the postnatal prehearing period, beginning a few days after birth as IHCs became responsive to ATP, until the onset of hearing when ATP was no longer released from ISCs. When IHCs were not subject to purinergic excitation, SGNs exhibited little or no activity. These results suggest that supporting cells in the cochlea provide the primary excitatory stimulus responsible for initiating bursts of action potentials in auditory nerve fibers before the onset of hearing.
Collapse
|
19
|
Cho HJ, Joo NS, Wine JJ. Mucus secretion from individual submucosal glands of the ferret trachea. Am J Physiol Lung Cell Mol Physiol 2010; 299:L124-36. [PMID: 20435689 DOI: 10.1152/ajplung.00049.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucus secretion from individual tracheal glands in adult ferrets was studied with time-lapse optical imaging of mucus droplets under an oil layer. Density of functional glands (determined by responses to 1 muM carbachol) was 1.5 +/- 0.3 per mm(2) (n = 6). Secretion rates (in pl.min(-1).gland(-1)) were as follows: 4.1 +/- 0.7 basal (unstimulated; n = 27, 669 glands), 338 +/- 70 to 10 microM forskolin (n = 8, 90 glands), 234 +/- 13 to 1 microM VIP (n = 6, 57 glands), 183 +/- 92 to 10 microM isoproterenol (n = 3, 33 glands), 978 +/- 145 to 1 microM carbachol (n = 11, 131 glands), and 1,348 +/- 325 to 10 muM phenylephrine (n = 7, 74 glands). The potency (EC(50), in microM) and efficacy (V(max), in pl x min(-1) x gland(-1)) were 7.6 (EC(50)) and 338 +/- 16 (V(max)) to forskolin, 1.0 (EC(50)) and 479 +/- 19 (V(max)) to VIP, 0.6 (EC(50)) and 1,817 +/- 268 (V(max)) to carbachol, and 3.7 (EC(50)) and 1,801 +/- 95 (V(max)) to phenylephrine. Although carbachol and phenylephrine were equally effective secretagogues, only carbachol caused contractions of the trachealis muscle. Synergy was demonstrated between 300 nM isoproterenol and 100 nM carbachol, which, when combined, produced a secretion rate almost fourfold greater than predicted from their additive effect. The dependence of fluid secretion on Cl(-) and HCO(3)(-) varied depending on the mode of stimulation. Secretion stimulated by VIP or forskolin was reduced by approximately 60% by blocking either anion, while carbachol-stimulated secretion was blocked 68% by bumetanide and only 32% by HEPES replacement of HCO(3)(-). These results provide parametric data for comparison with fluid secretion from glands in ferrets lacking CFTR.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | |
Collapse
|
20
|
Lee RJ, Foskett JK. Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells. Am J Physiol Lung Cell Mol Physiol 2009; 298:L210-31. [PMID: 19965983 DOI: 10.1152/ajplung.00342.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The serous acini of airway submucosal glands are important for fluid secretion in the lung. Serous cells are also sites of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. However, the mechanisms of serous cell fluid secretion remain poorly defined. In this study, serous acinar cells were isolated from porcine bronchi and studied using optical techniques previously used to examine fluid secretion in rat parotid and murine nasal acinar cells. When stimulated with the cholinergic agonist carbachol, porcine serous cells shrank by approximately 20% (observed via DIC microscopy) after a profound elevation of intracellular [Ca(2+)] ([Ca(2+)](i); measured by simultaneous fura 2 fluorescence imaging). Upon removal of agonist and relaxation of [Ca(2+)](i) to resting levels, cells swelled back to resting volume. Similar results were observed during stimulation with histamine and ATP, and elevation of [Ca(2+)](i) was found to be necessary and sufficient to activate shrinkage. Cell volume changes were associated with changes in [Cl(-)](i) (measured using SPQ fluorescence), suggesting that shrinkage and swelling are caused by loss and gain of intracellular solute content, respectively, likely reflecting changes in the secretory state of the cells. Shrinkage was inhibited by niflumic acid but not by GlyH-101, suggesting Ca(2+)-activated secretion is mediated by alternative non-CFTR Cl(-) channels, possibly including Ano1 (TMEM16A), expressed on the apical membrane of porcine serous cells. Optimal cell swelling/solute uptake required activity of the Na(+)K(+)2Cl(-) cotransporter and Na(+)/H(+) exchanger, both of which are expressed on the basolateral membrane of serous acini and likely contribute to sustaining transepithelial secretion.
Collapse
Affiliation(s)
- Robert J Lee
- Departments of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
21
|
Choi JY, Khansaheb M, Joo NS, Krouse ME, Robbins RC, Weill D, Wine JJ. Substance P stimulates human airway submucosal gland secretion mainly via a CFTR-dependent process. J Clin Invest 2009; 119:1189-200. [PMID: 19381016 DOI: 10.1172/jci37284] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/25/2009] [Indexed: 11/17/2022] Open
Abstract
Chronic bacterial airway infections are the major cause of mortality in cystic fibrosis (CF). Normal airway defenses include reflex stimulation of submucosal gland mucus secretion by sensory neurons that release substance P (SubP). CFTR is an anion channel involved in fluid secretion and mutated in CF; the role of CFTR in secretions stimulated by SubP is unknown. We used optical methods to measure SubP-mediated secretion from human submucosal glands in lung transplant tissue. Glands from control but not CF subjects responded to mucosal chili oil. Similarly, serosal SubP stimulated secretion in more than 60% of control glands but only 4% of CF glands. Secretion triggered by SubP was synergistic with vasoactive intestinal peptide and/or forskolin but not with carbachol; synergy was absent in CF glands. Pig glands demonstrated a nearly 10-fold greater response to SubP. In 10 of 11 control glands isolated by fine dissection, SubP caused cell volume loss, lumen expansion, and mucus flow, but in 3 of 4 CF glands, it induced lumen narrowing. Thus, in CF, the reduced ability of mucosal irritants to stimulate airway gland secretion via SubP may be another factor that predisposes the airways to infections.
Collapse
|
22
|
Burrowes KS, Swan AJ, Warren NJ, Tawhai MH. Towards a virtual lung: multi-scale, multi-physics modelling of the pulmonary system. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:3247-63. [PMID: 18593661 PMCID: PMC3268218 DOI: 10.1098/rsta.2008.0073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential function of the lung, gas exchange, is dependent on adequate matching of ventilation and perfusion, where air and blood are delivered through complex branching systems exposed to regionally varying transpulmonary and transmural pressures. Structure and function in the lung are intimately related, yet computational models in pulmonary physiology usually simplify or neglect structure. The geometries of the airway and vascular systems and their interaction with parenchymal tissue have an important bearing on regional distributions of air and blood, and therefore on whole lung gas exchange, but this has not yet been addressed by modelling studies. Models for gas exchange have typically incorporated considerable detail at the level of chemical reactions, with little thought for the influence of structure. To date, relatively little attention has been paid to modelling at the cellular or subcellular level in the lung, or to linking information from the protein structure/interaction and cellular levels to the operation of the whole lung. We review previous work in developing anatomically based models of the lung, airways, parenchyma and pulmonary vasculature, and some functional studies in which these models have been used. Models for gas exchange at several spatial scales are briefly reviewed, and the challenges and benefits from modelling cellular function in the lung are discussed.
Collapse
Affiliation(s)
- K S Burrowes
- Oxford University Computing Laboratory, Parks Road, Oxford OX1 3QD, UK.
| | | | | | | |
Collapse
|
23
|
Lee RJ, Harlow JM, Limberis MP, Wilson JM, Foskett JK. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion. ACTA ACUST UNITED AC 2008; 132:161-83. [PMID: 18591422 PMCID: PMC2442172 DOI: 10.1085/jgp.200810017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca2+-activated Cl− secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca2+-activated Cl− secretion was accompanied by secretion of HCO3−, possibly a critical ASL component, by simultaneous measurements of intracellular pH (pHi) and cell volume. Resting pHi was 7.17 ± 0.01 in physiological medium (5% CO2–25 mM HCO3−). During carbachol (CCh) stimulation, pHi fell transiently by 0.08 ± 0.01 U concomitantly with a fall in Cl− content revealed by cell shrinkage, reflecting Cl− secretion. A subsequent alkalinization elevated pHi to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO2–HCO3−-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO3− efflux by ion substitution or exposure to the Cl− channel inhibitor niflumic acid (100 μM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na+/H+ exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1–4 and 6–9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pHi recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO3− during Ca2+-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl− channel, with HCO3− secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na+-dependent pHi regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na+-free media.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, Division of Medical Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Fukuda N, Shirasu M, Sato K, Ebisui E, Touhara K, Mikoshiba K. Decreased olfactory mucus secretion and nasal abnormality in mice lacking type 2 and type 3 IP3 receptors. Eur J Neurosci 2008; 27:2665-75. [PMID: 18547250 DOI: 10.1111/j.1460-9568.2008.06240.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although nasal mucus is thought to play important roles in the mammalian olfactory system, the mechanisms of secretion of it and its physiological roles are poorly understood. Here we show that type 2 and type 3 IP3 receptors (IP3R2 and IP3R3) play critical roles in olfactory mucus secretion. Histological studies showed that IP3R2 and IP3R3 are predominantly expressed in two types of nasal glands, the anterior glands of the nasal septum and the lateral nasal glands (LNG), which contain mucosal proteins secreted to the main olfactory epithelium. We therefore examined LNG acinar cells, and found that acetylcholine-mediated calcium responses and fluid- and protein- secretion in the acinar cells were markedly decreased in IP3R2-R3 double-knockout (KO) mice. We also found nasal inflammation and a decrease in olfactory capacity in IP3R2-R3 KO mice. Despite intact signal transduction in the olfactory epithelium, IP3R2-R3 KO mice exhibited elevated threshold sensitivity to odorants on in vivo imaging of olfactory glomerular responses and behavioral tests. Our findings suggest that IP3R2 and IP3R3 mediate nasal mucus secretion, which is important for the maintenance of nasal tissue as well as the perception of odors.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Substance P stimulates CFTR-dependent fluid secretion by mouse tracheal submucosal glands. Pflugers Arch 2008; 457:529-37. [DOI: 10.1007/s00424-008-0527-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 05/07/2008] [Indexed: 11/24/2022]
|
26
|
Rocha-González HI, Mao S, Alvarez-Leefmans FJ. Na+,K+,2Cl- cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects. J Neurophysiol 2008; 100:169-84. [PMID: 18385481 DOI: 10.1152/jn.01007.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult primary afferent neurons are depolarized by GABA throughout their entire surface, including their somata located in dorsal root ganglia (DRG). Primary afferent depolarization (PAD) mediated by GABA released from spinal interneurons determines presynaptic inhibition, a key mechanism in somatosensory processing. The depolarization is due to Cl(-) efflux through GABA(A) channels; the outward Cl(-) gradient is generated by a Na+,K+,2Cl(-) cotransporter (NKCC) as first established in amphibians. Using fluorescence imaging microscopy we measured [Cl(-)]i and cell water volume (CWV) in dissociated rat DRG cells (P0-P21) loaded with N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide and calcein, respectively. Basal [Cl(-)]i was 44.2 +/- 1.2 mM (mean +/- SE), Cl(-) equilibrium potential (E Cl) was -27.0 +/- 0.7 mV (n = 75). This [Cl(-)]i is about four times higher than electrochemical equilibrium. On isosmotic removal of external Cl(-), cells lost Cl(-) and shrank. On returning to control solution, cells reaccumulated Cl(-) and recovered CWV. Cl(-) reaccumulation had Na+-dependent (SDC) and Na+-independent (SIC) components. The SIC stabilized at [Cl(-)]i = 13.2 +/- 1.2 mM, suggesting that it was passive (E(Cl) = -60.5 +/- 3 mV). Bumetanide blocked CWV recovery and most (65%) of the SDC (IC50 = 5.7 microM), indicating that both were mediated by NKCC. Active Cl(-) uptake fell with increasing [Cl(-)]i and became negligible when [Cl(-)]i reached basal levels. The kinetics of active Cl(-) uptake suggests a negative feedback system in which intracellular Cl(-)regulates its own influx thereby keeping [Cl(-)]i constant, above electrochemical equilibrium but below the value that would attain if NKCC reached thermodynamic equilibrium.
Collapse
Affiliation(s)
- Héctor I Rocha-González
- Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, Ohio 45435-0001, USA
| | | | | |
Collapse
|