1
|
Kawai T, Mizutani N, Okamura Y. Voltage- and Ca 2+-inducible PLC activity for analyzing PI(4,5)P 2 sensitivity of ion channels in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184396. [PMID: 39481747 DOI: 10.1016/j.bbamem.2024.184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a key membrane lipid regulating various ion channel activities. Currently, several molecular tools are used to modulate PIP2 levels, each of which has distinct advantages and drawbacks. In this study, we proposed a novel methodology using heterologous Xenopus oocytes to precisely manipulate PIP2 levels using phospholipase C (PLC)-ζ, which hydrolyzes PIP2. Xenopus oocytes injected with PLCζ exhibited notable hyperpolarization-induced Ca2+ influx driven by the increased driving force of Ca2+. High Ca2+ sensitivity of PLCζ facilitated hyperpolarization-induced PLC activity in Xenopus oocytes that was voltage- and Ca2+-dependent. This study demonstrated the regulatory capacity of PLCζ in modulating PIP2-sensitive ion channels, such as the KCNQ2/3 and GIRK channels, in a voltage- and Ca2+-dependent manner. Moreover, activation pathway of PLCζ only requires a two-electrode voltage clamp setup, making it a convenient molecular tool to manipulate PIP2 levels in combination with a voltage-sensing phosphatase (VSP). PLCζ has distinct characteristics and advantages compared to VSP: (1) Hyperpolarization, but not depolarization, reduced the PIP2 levels, (2) PIP2 levels were decreased without any increase in phosphatidylinositol 4-monophosphate (PIP) levels, and (3) PIP2 levels were reduced by Ca2+ administration. Therefore, PLCζ effectively supports understanding how PIP2 regulates ion channels, alongside VSP. Overall, this study highlights the unique characteristics of PLCζ and its distinct advantages in analyzing ion channel regulation by PIP2 and the PLC pathway in Xenopus oocytes.
Collapse
Affiliation(s)
| | - Natsuki Mizutani
- Graduate School of Medicine, Osaka University, Japan; Institute for Protein Research, Osaka University, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Osaka University, Japan; Graduate School of Frontier Biosciences, Osaka University, Japan
| |
Collapse
|
2
|
Kawai T, Morioka S, Miyata H, Andriani RT, Akter S, Toma G, Nakagawa T, Oyama Y, Iida-Norita R, Sasaki J, Watanabe M, Sakimura K, Ikawa M, Sasaki T, Okamura Y. The significance of electrical signals in maturing spermatozoa for phosphoinositide regulation through voltage-sensing phosphatase. Nat Commun 2024; 15:7289. [PMID: 39181879 PMCID: PMC11344830 DOI: 10.1038/s41467-024-51755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Voltage-sensing phosphatase (VSP) exhibits voltage-dependent phosphatase activity toward phosphoinositides. VSP generates a specialized phosphoinositide environment in mammalian sperm flagellum. However, the voltage-sensing mechanism of VSP in spermatozoa is not yet characterized. Here, we found that VSP is activated during sperm maturation, indicating that electric signals in immature spermatozoa are essential. Using a heterologous expression system, we show the voltage-sensing property of mouse VSP (mVSP). The voltage-sensing threshold of mVSP is approximately -30 mV, which is sensitive enough to activate mVSP in immature spermatozoa. We also report several knock-in mice in which we manipulate the voltage-sensitivity or electrochemical coupling of mVSP. Notably, the V312R mutant, with a minor voltage-sensitivity change, exhibits abnormal sperm motility after, but not before, capacitation. Additionally, the V312R mutant shows a significant change in the acyl-chain profile of phosphoinositide. Our findings suggest that electrical signals during sperm maturation are crucial for establishing the optimal phosphoinositide environment in spermatozoa.
Collapse
Affiliation(s)
- Takafumi Kawai
- Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Shin Morioka
- Department of Biochemical Pathophysiology/Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Sharmin Akter
- Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Gabriel Toma
- Center for Medical Research and Education, Osaka University, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuya Nakagawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yuki Oyama
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology/Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Kenji Sakimura
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology/Lipid Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Yu Y, Zhang L, Li B, Fu Z, Brohawn SG, Isacoff EY. Coupling sensor to enzyme in the voltage sensing phosphatase. Nat Commun 2024; 15:6409. [PMID: 39080263 PMCID: PMC11289409 DOI: 10.1038/s41467-024-50319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Voltage-sensing phosphatases (VSPs) dephosphorylate phosphoinositide (PIP) signaling lipids in response to membrane depolarization. VSPs possess an S4-containing voltage sensor domain (VSD), resembling that of voltage-gated cation channels, and a lipid phosphatase domain (PD). The mechanism by which voltage turns on enzyme activity is unclear. Structural analysis and modeling suggest several sites of VSD-PD interaction that could couple voltage sensing to catalysis. Voltage clamp fluorometry reveals voltage-driven rearrangements in three sites implicated earlier in enzyme activation-the VSD-PD linker, gating loop and R loop-as well as the N-terminal domain, which has not yet been explored. N-terminus mutations perturb both rearrangements in the other segments and enzyme activity. Our results provide a model for a dynamic assembly by which S4 controls the catalytic site.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Lin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Baobin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhu Fu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
4
|
Rayaprolu V, Miettinen HM, Baker WD, Young VC, Fisher M, Mueller G, Rankin WO, Kelley JT, Ratzan WJ, Leong LM, Davisson JA, Baker BJ, Kohout SC. Hydrophobic residues in S1 modulate enzymatic function and voltage sensing in voltage-sensing phosphatase. J Gen Physiol 2024; 156:e202313467. [PMID: 38771271 PMCID: PMC11109755 DOI: 10.1085/jgp.202313467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The voltage-sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage-sensing proteins, the VSDs do not interact with one another, and the S1-S3 helices are considered mainly scaffolding, except in the voltage-sensing phosphatase (VSP) and the proton channel (Hv). To investigate its contribution to VSP function, we mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134, and L137), individually or in combination. Most of these mutations shifted the voltage dependence of activity to higher voltages; however, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered, with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions was consistently shifted to lower voltages and indicated a second voltage-dependent motion. Additionally, none of the mutations broke the VSP dimer, indicating that the S1 impact could stem from intra- and/or intersubunit interactions. Lastly, when the same mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzyme's conformational response to membrane potential transients and influencing the function of the VSD.
Collapse
Affiliation(s)
- Vamseedhar Rayaprolu
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heini M. Miettinen
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William D. Baker
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Victoria C. Young
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Matthew Fisher
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Gwendolyn Mueller
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William O. Rankin
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - John T. Kelley
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - William J. Ratzan
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lee Min Leong
- Division of Bio-Medical Science and Technology, KIST School, Brain Science Institute, Korea Institute of Science and Technology (KIST), Korea University of Science and Technology (UST), Seoul, South Korea
| | - Joshua A. Davisson
- Department of Cell Biology and Neuroscience, Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Bradley J. Baker
- Division of Bio-Medical Science and Technology, KIST School, Brain Science Institute, Korea Institute of Science and Technology (KIST), Korea University of Science and Technology (UST), Seoul, South Korea
| | - Susy C. Kohout
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
5
|
Tsutsui H, Jinno Y, Mizutani N, Okamura Y. Structural change of the cytoplasmic N-terminus and S1 segment of voltage-sensing phosphatase reported by Anap. Acta Physiol (Oxf) 2024; 240:e14137. [PMID: 38502065 DOI: 10.1111/apha.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Voltage-sensing phosphatase contains a structurally conserved S1-S4-based voltage-sensor domain, which undergoes a conformational transition in response to membrane potential change. Unlike that of channels, it is functional even in isolation and is therefore advantageous for studying the transition mechanism, but its nature has not yet been fully elucidated. This study aimed to address whether the cytoplasmic N-terminus and S1 exhibit structural change. METHODS Anap, an environment-sensitive unnatural fluorescent amino acid, was site-specifically introduced to the voltage sensor domain to probe local structural changes by using oocyte voltage clamp and photometry. Tetramethylrhodamine was also used to probe some extracellularly accessible positions. In total, 51 positions were investigated. RESULTS We detected robust voltage-dependent signals from widely distributed positions including N-terminus and S1. In addition, response to hyperpolarization was observed at the extracellular end of S1, reflecting the local structure flexibility of the voltage-sensor domain in the down-state. We also found that the mechanical coupling between the voltage-sensor and phosphatase domains affects the depolarization-induced optical signals but not the hyperpolarization-induced signals. CONCLUSIONS These results fill a gap between the previous interpretations from the structural and biophysical approaches and should provide important insights into the mechanisms of the voltage-sensor domain transition as well as its coupling with the effector.
Collapse
Affiliation(s)
- Hidekazu Tsutsui
- School of Materials Science, JAIST, Nomi, Ishikawa, Japan
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Natsuki Mizutani
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Rayaprolu V, Miettinen HM, Baker W, Young VC, Fisher M, Mueller G, Rankin WO, Kelley JJ, Ratzan W, Leong LM, Davisson JA, Baker BJ, Kohout SC. S1 hydrophobic residues modulate voltage sensing phosphatase enzymatic function and voltage sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573443. [PMID: 38234747 PMCID: PMC10793425 DOI: 10.1101/2023.12.27.573443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The voltage sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage sensing proteins, the VSDs do not interact with one another and the S1-S3 helices are considered mainly as scaffolding. The two exceptions are the voltage sensing phosphatase (VSP) and the proton channel (Hv). VSP is a voltage-regulated enzyme and Hvs are channels that only have VSDs. To investigate the S1 contribution to VSP function, we individually mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134 and L137). We also combined these mutations to generate quadruple mutation designated S1-Q. Most of these mutations shifted the voltage dependence of activity to higher voltages though interestingly, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions were consistently shifted to lower voltages and indicated a second voltage dependent motion. Co-immunoprecipitation demonstrated that none of the mutations broke the VSP dimer indicating that the S1 impact could stem from intrasubunit and/or intersubunit interactions. Lastly, when the same alanine mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzymes conformational response to membrane potential transients and influencing the function of the VSD.
Collapse
|
7
|
Guo SC, Shen R, Roux B, Dinner AR. Dynamics of activation in the voltage-sensing domain of Ciona intestinalis phosphatase Ci-VSP. Nat Commun 2024; 15:1408. [PMID: 38360718 PMCID: PMC10869754 DOI: 10.1038/s41467-024-45514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) is a membrane protein containing a voltage-sensing domain (VSD) that is homologous to VSDs from voltage-gated ion channels responsible for cellular excitability. Previously published crystal structures of Ci-VSD in putative resting and active conformations suggested a helical-screw voltage sensing mechanism in which the S4 helix translocates and rotates to enable exchange of salt-bridge partners, but the microscopic details of the transition between the resting and active conformations remained unknown. Here, by combining extensive molecular dynamics simulations with a recently developed computational framework based on dynamical operators, we elucidate the microscopic mechanism of the resting-active transition at physiological membrane potential. Sparse regression reveals a small set of coordinates that distinguish intermediates that are hidden from electrophysiological measurements. The intermediates arise from a noncanonical helical-screw mechanism in which translocation, rotation, and side-chain movement of the S4 helix are only loosely coupled. These results provide insights into existing experimental and computational findings on voltage sensing and suggest ways of further probing its mechanism.
Collapse
Affiliation(s)
- Spencer C Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Benoît Roux
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aaron R Dinner
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Alhassen L, Alhassen W, Wong C, Sun Y, Xia Z, Civelli O, Hoshi N. Dehydroepiandrosterone Sulfate (DHEAS) Is an Endogenous Kv7 Channel Modulator That Reduces Kv7/M-Current Suppression and Inflammatory Pain. J Neurosci 2023; 43:7073-7083. [PMID: 37648450 PMCID: PMC10601364 DOI: 10.1523/jneurosci.2307-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.
Collapse
Affiliation(s)
- Lamees Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Cindy Wong
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Yuxuan Sun
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Zelin Xia
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Naoto Hoshi
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
9
|
Okamura Y, Yoshioka D. What voltage-sensing phosphatases can reveal about the mechanisms of ion channel regulation by phosphoinositides. Biochem Soc Trans 2023; 51:827-839. [PMID: 37052219 DOI: 10.1042/bst20221065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Many membrane proteins including ion channels and ion transporters are regulated by membrane phospholipids such as phosphoinositides in cell membranes and organelles. Voltage-sensing phosphatase, VSP, is a voltage-sensitive phosphoinositide phosphatase which dephosphorylates PI(4,5)P2 into PI(4)P. VSP rapidly reduces the level of PI(4,5)P2 upon membrane depolarization, thus serving as a useful tool to quantitatively study phosphoinositide-regulation of ion channels and ion transporters using a cellular electrophysiology system. In this review, we focus on the application of VSPs to Kv7 family potassium channels, which have been important research targets in biophysics, pharmacology and medicine.
Collapse
Affiliation(s)
- Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Yamada Oka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Yoshioka
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Yamada Oka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Paixao IC, Mizutani N, Matsuda M, Andriani RT, Kawai T, Nakagawa A, Okochi Y, Okamura Y. Role of K364 next to the active site cysteine in voltage-dependent phosphatase activity of Ci-VSP. Biophys J 2023:S0006-3495(23)00038-3. [PMID: 36680342 DOI: 10.1016/j.bpj.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of the voltage sensor domain (VSD) similar to that of voltage-gated ion channels and the cytoplasmic phosphatase region with remarkable similarity to the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Membrane depolarization activates VSD, leading to dephosphorylation of three species of phosphoinositides (phosphatidylinositol phosphates (PIPs)), PI(3,4,5)P3, PI(4,5)P2, and PI(3,4)P2. VSP dephosphorylates 3- and 5-phosphate of PIPs, unlike PTEN, which shows rigid 3-phosphate specificity. In this study, a bioinformatics search showed that some mammals have VSP orthologs with amino acid diversity in the active center motif, Cx5R, which is highly conserved among protein tyrosine phosphatases and PTEN-related phosphatases; lysine next to the active site cysteine in the Cx5R motif was substituted for methionine in VSP orthologs of Tasmanian devil, koala, and prairie deer mouse, and leucine in opossum. Since lysine at the corresponding site in PTEN is known to be critical for enzyme activities, we attempted to address the significance of amino acid diversity among VSP orthologs at this site. K364 was changed to different amino acids in sea squirt VSP (Ci-VSP), and voltage-dependent phosphatase activity in Xenopus oocyte was studied using fluorescent probes for PI(4,5)P2 and PI(3,4)P2. All mutants retained both 5-phosphatase and 3-phosphatase activity, indicating that lysine at this site is dispensable for 3-phosphatase activity, unlike PTEN. Notably, K364M mutant showed increased activity both of 5-phosphatase and 3-phosphatase compared with the wild type (WT). It also showed slower kinetics of voltage sensor motion. Malachite green assay of K364M mutant did not show significant difference of phosphatase activity from WT, suggesting tighter interaction between substrate binding and voltage sensing. Mutation corresponding to K364M in the zebrafish VSP led to enhanced voltage-dependent dephosphorylation of PI(4,5)P2. Further studies will provide clues to understanding of substrate preference in PIPs phosphatases as well as to customization of a molecular tool.
Collapse
Affiliation(s)
- Ian Costa Paixao
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Natsuki Mizutani
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Makoto Matsuda
- Department Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Rizki Tsari Andriani
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Medicine, Osaka University JSPS International Research Fellow, Suita, Japan
| | - Takafumi Kawai
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Nakagawa
- Laboratory for Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan.
| | - Yasushi Okamura
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
11
|
Bukiya AN, Rosenhouse-Dantsker A. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P 2 on Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:169-191. [PMID: 36988881 DOI: 10.1007/978-3-031-21547-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid-cholesterol. Here, we focus on members of the Kir2 and Kir3 subfamilies and their modulation by these two key lipids. We discuss how PI(4,5)P2 and cholesterol bind to Kir2 and Kir3 channels and how they affect channel activity. We also discuss the accumulating evidence indicating that there is interplay between PI(4,5)P2 and cholesterol in the modulation of Kir2 and Kir3 channels. In particular, we review the crosstalk between PI(4,5)P2 and cholesterol in the modulation of the ubiquitously expressed Kir2.1 channel and the synergy between these two lipids in the modulation of the Kir3.4 channel, which is primarily expressed in the heart. Additionally, we demonstrate that there is also synergy in the modulation of Kir3.2 channels, which are expressed in the brain. These observations suggest that alterations in the relative levels PI(4,5)P2 and cholesterol may fine-tune Kir channel activity.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
12
|
Mizutani N, Kawanabe A, Jinno Y, Narita H, Yonezawa T, Nakagawa A, Okamura Y. Interaction between S4 and the phosphatase domain mediates electrochemical coupling in voltage-sensing phosphatase (VSP). Proc Natl Acad Sci U S A 2022; 119:e2200364119. [PMID: 35733115 PMCID: PMC9245683 DOI: 10.1073/pnas.2200364119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.
Collapse
Affiliation(s)
- Natsuki Mizutani
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotaka Narita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Yonezawa
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Triclosan is a KCNQ3 potassium channel activator. Pflugers Arch 2022; 474:721-732. [PMID: 35459955 DOI: 10.1007/s00424-022-02692-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.
Collapse
|
14
|
Kawanabe A, Mizutani N, Polat OK, Yonezawa T, Kawai T, Mori MX, Okamura Y. Engineering an enhanced voltage-sensing phosphatase. J Gen Physiol 2021; 152:133870. [PMID: 32167537 PMCID: PMC7201886 DOI: 10.1085/jgp.201912491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/05/2019] [Accepted: 02/16/2020] [Indexed: 01/11/2023] Open
Abstract
Voltage-sensing phosphatases (VSP) consist of a membrane-spanning voltage sensor domain and a cytoplasmic region that has enzymatic activity toward phosphoinositides (PIs). VSP enzyme activity is regulated by membrane potential, and its activation leads to rapid and reversible alteration of cellular PIP levels. These properties enable VSPs to be used as a tool for studying the effects of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) binding to ion channels and transporters. For example, by applying simple changes in the membrane potential, Danio rerio VSP (Dr-VSP) has been used effectively to manipulate PI(4,5)P2 in mammalian cells with few, if any, side effects. In the present study, we report an enhanced version of Dr-VSP as an improved molecular tool for depleting PI(4,5)P2 from cultured mammalian cells. We modified Dr-VSP in two ways. Its voltage-dependent phosphatase activity was enhanced by introducing an aromatic residue at the position of Leu-223 within a membrane-interacting region of the phosphatase domain called the hydrophobic spine. In addition, selective plasma membrane targeting of Dr-VSP was facilitated by fusion with the N-terminal region of Ciona intestinalis VSP. This modified Dr-VSP (CiDr-VSPmChe L223F, or what we call eVSP) induced more drastic voltage-evoked changes in PI(4,5)P2 levels, using the activities of Kir2.1, KCNQ2/3, and TRPC6 channels as functional readouts. eVSP is thus an improved molecular tool for evaluating the PI(4,5)P2 sensitivity of ion channels in living cells.
Collapse
Affiliation(s)
- Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Natsuki Mizutani
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Onur K Polat
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoko Yonezawa
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Tsutsui H, Mizutani N, Okamura Y. Engineering voltage sensing phosphatase (VSP). Methods Enzymol 2021; 654:85-114. [PMID: 34120726 DOI: 10.1016/bs.mie.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensing phosphatase (VSP), consists of a voltage sensor domain (VSD) like that found in voltage-gated ion channels and a phosphoinositide (PIP) phosphatase region exhibiting remarkable structural similarity to a tumor suppressor enzyme, PTEN. Membrane depolarization activates the enzyme activity through tight coupling between the VSD and enzyme region. The VSD of VSP has a unique nature; it is a self-contained module that can be transferred to other proteins, conferring voltage sensitivity. Thanks to this nature, numerous versions of gene-encoded voltage indicators (GEVIs) have been developed through combination of a fluorescent protein with the VSD of VSP. In addition, VSP itself can also serve as a tool to alter PIP levels in cells. Cellular levels of PIPs, PI(4,5)P2 in particular, can be acutely and transiently reduced using a simple voltage protocol after heterologous expression of VSP. Recent progress in our understanding of the molecular structure and mechanisms underlying VSP facilitates optimization of its molecular properties for its use as a molecular tool.
Collapse
Affiliation(s)
- Hidekazu Tsutsui
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
| | - Natsuki Mizutani
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan
| | - Yasushi Okamura
- Graduate School of Medicine, Japan Advanced Institute of Science and Technology (JAIST), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
16
|
Villalba-Galea CA, Chiem AT. Hysteretic Behavior in Voltage-Gated Channels. Front Pharmacol 2020; 11:579596. [PMID: 33324211 PMCID: PMC7723447 DOI: 10.3389/fphar.2020.579596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
An ever-growing body of evidence has shown that voltage-gated ion channels are likely molecular systems that display hysteresis in their activity. This phenomenon manifests in the form of dynamic changes in both their voltage dependence of activity and their deactivation kinetics. The goal of this review is to provide a clear definition of hysteresis in terms of the behavior of voltage-gated channels. This review will discuss the basic behavior of voltage-gated channel activity and how they make these proteins into systems displaying hysteresis. It will also provide a perspective on putative mechanisms underlying hysteresis and explain its potential physiological relevance. It is uncertain whether all channels display hysteresis in their behavior. However, the suggested notion that ion channels are hysteretic systems directly collides with the well-accepted notion that ion channel activity is stochastic. This is because hysteretic systems are regarded to have “memory” of previous events while stochastic processes are regarded as “memoryless.” This review will address this apparent contradiction, providing arguments for the existence of processes that can be simultaneously hysteretic and stochastic.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Alvin T Chiem
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
17
|
Tran B, Ji ZG, Xu M, Tsuchida TN, Cooper EC. Two KCNQ2 Encephalopathy Variants in the Calmodulin-Binding Helix A Exhibit Dominant-Negative Effects and Altered PIP 2 Interaction. Front Physiol 2020; 11:1144. [PMID: 33041849 PMCID: PMC7518097 DOI: 10.3389/fphys.2020.571813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Heterozygous missense variants in KCNQ2, which encodes the potassium channel subunit Kv7.2, are among the most common genetic causes of severe neonatal-onset epileptic encephalopathy. Because about 20% of known severe Kv7.2 missense changes lie within the intracellular C-terminal region, improving understanding of the underlying pathogenic mechanisms is important. We analyzed the basis for the severe phenotypes of Kv7.2 A337T and A337G, variants in the C-terminal’s calmodulin (CaM)-binding Helix A. When expressed heterologously in mammalian cells, alone or in combination with wild type Kv7.2 or with wild type Kv7.2 and Kv7.3, both variants strongly suppressed channel currents. A337T channels expressed alone exhibited significantly reduced protein half-life and surface trafficking and co-immunoprecipitated less CaM. For both variants, increasing cellular phosphatidylinositol 4,5-bisphosphate (PIP2) by overexpression of PI(4)P5-kinase restored current densities. For both variants, the fraction of current suppressed by activation of M1 muscarinic receptors with 10 μM oxotremorine methiodide, which depletes PIP2, was less than for controls. During voltage-sensitive phosphatase-induced transient PIP2 depletion and resynthesize, potassium current inhibition and recovery kinetics were both markedly slowed. These results suggest that these variants may reduce currents by a mechanism not previously described: slowing of PIP2 migration between the bulk membrane and binding sites mediating channel electromechanical coupling. A novel Kv7.2/3-selective opener, SF0034, rescued current amplitudes. Our findings show that these two Helix A variants suppress channel current density strongly, consistent with their severe heterozygous phenotypes, implicate impairment of CaM and PIP2 regulation in KCNQ2 encephalopathy pathogenesis, and highlight the potential usefulness of selective Kv7 openers for this distinctive pathogenic mechanism and patient subgroup.
Collapse
Affiliation(s)
- Baouyen Tran
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Zhi-Gang Ji
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Mingxuan Xu
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Tammy N Tsuchida
- Departments of Pediatrics and Neurology, Children's National Medical Center, Washington, DC, United States
| | - Edward C Cooper
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Neurology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Villalba-Galea CA. Modulation of K V7 Channel Deactivation by PI(4,5)P 2. Front Pharmacol 2020; 11:895. [PMID: 32636742 PMCID: PMC7318307 DOI: 10.3389/fphar.2020.00895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
The activity of KV7 channels critically contributes to the regulation of cellular electrical excitability in many cell types. In the central nervous system, the heteromeric KV7.2/KV7.3 channel is thought to be the chief molecular entity giving rise to M-currents. These K+-currents as so called because they are inhibited by the activation of Gq protein-coupled muscarinic receptors. In general, activation of Gq protein-coupled receptors (GqPCRs) decreases the concentration of the phosphoinositide PI(4,5)P2 which is required for KV7 channel activity. It has been recently reported that the deactivation rate of KV7.2/KV7.3 channels decreases as a function of activation. This suggests that the activated/open channel stabilizes as activation persists. This property has been regarded as evidence for the existence of modal behavior in the activity of these channels. In particular, it has been proposed that the heteromeric KV7.2/KV7.3 channel has at least two modes of activity that can be distinguished by both their deactivation kinetics and sensitivity to Retigabine. The current study was aimed at understanding the effect of PI(4,5)P2 depletion on the modal behavior of KV7.2/KV7.3 channels. Here, it was hypothesized that depleting the membrane of P(4,5)P2 would hamper the stabilization of the activated/open channel, resulting in higher rates of deactivation of the heteromeric KV7.2/KV7.3 channel. In addressing this question, it was found that the activity-dependent slowdown of the deactivation was not as prominent when channels were co-expressed with the chimeric phosphoinositide-phosphatase Ci-VS-TPIP or when cells were treated with the phosphoinositide kinase inhibitor Wortmannin. Further, it was observed that either of these approaches to deplete PI(4,5)P2 had a higher impact on the kinetic of deactivation following prolonged activation, while having little or no effect when activation was short-lived. Furthermore, it was observed that the action of either Ci-VS-TPIP or Wortmannin reduced the effect of Retigabine on the kinetics of deactivation, having a higher impact when activation was prolonged. These combined observations led to the conclusion that the deactivation kinetic of KV7.2/KV7.3 channels was sensitive to PI(4,5)P2 depletion in an activation-dependent manner, displaying a stronger effect on deactivation following prolonged activation.
Collapse
Affiliation(s)
- Carlos A. Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
19
|
Handklo-Jamal R, Meisel E, Yakubovich D, Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E, Oz S. Andersen-Tawil Syndrome Is Associated With Impaired PIP 2 Regulation of the Potassium Channel Kir2.1. Front Pharmacol 2020; 11:672. [PMID: 32499698 PMCID: PMC7243181 DOI: 10.3389/fphar.2020.00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) type-1 is associated with loss-of-function mutations in KCNJ2 gene. KCNJ2 encodes the tetrameric inward-rectifier potassium channel Kir2.1, important to the resting phase of the cardiac action potential. Kir-channels' activity requires interaction with the agonist phosphatidylinositol-4,5-bisphosphate (PIP2). Two mutations were identified in ATS patients, V77E in the cytosolic N-terminal "slide helix" and M307V in the C-terminal cytoplasmic gate structure "G-loop." Current recordings in Kir2.1-expressing HEK cells showed that each of the two mutations caused Kir2.1 loss-of-function. Biotinylation and immunostaining showed that protein expression and trafficking of Kir2.1 to the plasma membrane were not affected by the mutations. To test the functional effect of the mutants in a heterozygote set, Kir2.1 dimers were prepared. Each dimer was composed of two Kir2.1 subunits joined with a flexible linker (i.e. WT-WT, WT dimer; WT-V77E and WT-M307V, mutant dimer). A tetrameric assembly of Kir2.1 is expected to include two dimers. The protein expression and the current density of WT dimer were equally reduced to ~25% of the WT monomer. Measurements from HEK cells and Xenopus oocytes showed that the expression of either WT-V77E or WT-M307V yielded currents of only about 20% compared to the WT dimer, supporting a dominant-negative effect of the mutants. Kir2.1 sensitivity to PIP2 was examined by activating the PIP2 specific voltage-sensitive phosphatase (VSP) that induced PIP2 depletion during current recordings, in HEK cells and Xenopus oocytes. PIP2 depletion induced a stronger and faster decay in Kir2.1 mutant dimers current compared to the WT dimer. BGP-15, a drug that has been demonstrated to have an anti-arrhythmic effect in mice, stabilized the Kir2.1 current amplitude following VSP-induced PIP2 depletion in cells expressing WT or mutant dimers. This study underlines the implication of mutations in cytoplasmic regions of Kir2.1. A newly developed calibrated VSP activation protocol enabled a quantitative assessment of changes in PIP2 regulation caused by the mutations. The results suggest an impaired function and a dominant-negative effect of the Kir2.1 variants that involve an impaired regulation by PIP2. This study also demonstrates that BGP-15 may be beneficial in restoring impaired Kir2.1 function and possibly in treating ATS symptoms.
Collapse
Affiliation(s)
| | - Eshcar Meisel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Daniel Yakubovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neonatology Department, Schneider Children's Medical Center, Petah-Tikva, Israel
| | | | - Roy Beinart
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Glikson
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Nathan Dascal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Nof
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shimrit Oz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Heart Center, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
20
|
Norton CE, Weise-Cross L, Ahmadian R, Yan S, Jernigan NL, Paffett ML, Naik JS, Walker BR, Resta TC. Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. Am J Respir Cell Mol Biol 2020; 62:709-718. [PMID: 31945301 DOI: 10.1165/rcmb.2018-0318oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 μm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
21
|
Senning EN. With PIPs, you get ZIPs and blips. J Gen Physiol 2019; 151:971-973. [PMID: 31235474 PMCID: PMC6683672 DOI: 10.1085/jgp.201912402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Senning discusses new research on the regulation of two-pore sodium channels by different phosphoinositide phosphates.
Collapse
Affiliation(s)
- Eric N. Senning
- Department of Neuroscience, University of Texas at Austin, Austin, TX
| |
Collapse
|
22
|
Mizutani N, Okochi Y, Okamura Y. Distinct functional properties of two electrogenic isoforms of the SLC34 Na-Pi cotransporter. Physiol Rep 2019; 7:e14156. [PMID: 31342668 PMCID: PMC6656865 DOI: 10.14814/phy2.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
Inorganic phosphate (Pi ) is crucial for proper cellular function in all organisms. In mammals, type II Na-Pi cotransporters encoded by members of the Slc34 gene family play major roles in the maintenance of Pi homeostasis. However, the molecular mechanisms regulating Na-Pi cotransporter activity within the plasma membrane are largely unknown. In the present study, we used two approaches to examine the effect of changing plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) levels on the activities of two electrogenic Na-Pi cotransporters, NaPi-IIa and NaPi-IIb. To deplete plasma membrane PI(4,5)P2 in Xenopus oocytes, we utilized Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which dephosphorylates PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P). Upon activation of Ci-VSP, NaPi-IIb currents were significantly decreased, whereas NaPi-IIa currents were unaffected. We also used the rapamycin-inducible Pseudojanin (PJ) system to deplete both PI(4,5)P2 and PI(4)P from the plasma membrane of cultured Neuro 2a cells. Depletion of PI(4,5)P2 and PI(4)P using PJ significantly reduced NaPi-IIb activity, but NaPi-IIa activity was unaffected, which excluded the possibility that NaPi-IIa is equally sensitive to PI(4,5)P2 and PI(4)P. These results indicate that NaPi-IIb activity is regulated by PI(4,5)P2 , whereas NaPi-IIa is not sensitive to either PI(4,5)P2 or PI(4)P. In addition, patch clamp recording of NaPi-IIa and NaPi-IIb currents in cultured mammalian cells enabled kinetic analysis with higher temporal resolution, revealing their distinct kinetic properties.
Collapse
Affiliation(s)
- Natsuki Mizutani
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yoshifumi Okochi
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yasushi Okamura
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
23
|
Sundelacruz S, Moody AT, Levin M, Kaplan DL. Membrane Potential Depolarization Alters Calcium Flux and Phosphate Signaling During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectricity 2019; 1:56-66. [PMID: 32292891 PMCID: PMC6524654 DOI: 10.1089/bioe.2018.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Membrane potential (Vmem) changes accompany important events in embryonic development and organ regeneration. Recent studies have pointed to its function as a potent regulator of cell proliferation, differentiation, migration, and tissue regeneration. We have previously reported that Vmem depolarization and hyperpolarization control the osteogenic (OS) differentiation potential of human mesenchymal stem cells (hMSCs). Materials and Methods: In this study, we sought to understand the mechanism(s) underlying voltage regulation of hMSC differentiation. We investigated the role of calcium and phosphate ion flux in the depolarization response of OS-differentiating hMSCs, as these ions are the two major inorganic components of the bone mineral matrix and are indicative of mature osteoblast function. Results: Our results suggest that inorganic phosphate levels play a larger role than calcium flux in mediating hMSC response to depolarization and that the expression of stanniocalcin 1 (STC1), a protein that regulates calcium and phosphate homeostasis in osteoblasts, is functionally required for the depolarization response during the early stages of differentiation. Conclusion: Depolarization alters hMSC differentiation through a phosphate signaling pathway involving STC1. This study enriches our mechanistic understanding of hMSC response to endogenous voltage cues.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Amy Thurber Moody
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology, Medford, Massachusetts
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
24
|
Zhang XC, Li H. Interplay between the electrostatic membrane potential and conformational changes in membrane proteins. Protein Sci 2019; 28:502-512. [PMID: 30549351 DOI: 10.1002/pro.3563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
Transmembrane electrostatic membrane potential is a major energy source of the cell. Importantly, it determines the structure as well as function of charge-carrying membrane proteins. Here, we discuss the relationship between membrane potential and membrane proteins, in particular whether the conformation of these proteins is integrally connected to the membrane potential. Together, these concepts provide a framework for rationalizing the types of conformational changes that have been observed in membrane proteins and for better understanding the electrostatic effects of the membrane potential on both reversible as well as unidirectional dynamic processes of membrane proteins.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Kruse M, Kohout SC, Hille B. Reinterpretation of the substrate specificity of the voltage-sensing phosphatase during dimerization. J Gen Physiol 2019; 151:258-263. [PMID: 30622132 PMCID: PMC6363406 DOI: 10.1085/jgp.201812260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 11/23/2022] Open
Abstract
Ciona intestinalis voltage-sensing phosphatase (VSP) has lipid 5- and 3-phosphatase activity, but 3-phosphatase is evident only at high VSP concentrations. Using kinetic modeling including endogenous lipid metabolizing enzymes and VSP phosphatase activities, Kruse et al. show how apparent activation of 3-phosphatase at high concentrations arises. Voltage-sensing phosphatases (VSPs) cleave both 3- and 5-phosphates from inositol phospholipids in response to membrane depolarization. When low concentrations of Ciona intestinalis VSP are expressed in Xenopus laevis oocytes, the 5-phosphatase reaction can be observed during large membrane depolarizations. When higher concentrations are expressed, the 5-phosphatase activity is observed with smaller depolarizations, and the 3-phosphatase activity is revealed with strong depolarization. Here we ask whether this apparent induction of 3-phosphatase activity is attributable to the dimerization that has been reported when VSP is expressed at higher concentrations. Using a simple kinetic model, we show that these enzymatic phenomena can be understood as an emergent property of a voltage-dependent enzyme with invariant substrate selectivity operating in the context of endogenous lipid-metabolizing enzymes present in oocytes. Thus, a switch of substrate specificity with dimerization need not be invoked to explain the appearance of 3-phosphatase activity at high VSP concentrations.
Collapse
Affiliation(s)
- Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Susy C Kohout
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
26
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
27
|
Okamura Y, Kawanabe A, Kawai T. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiol Rev 2019; 98:2097-2131. [PMID: 30067160 DOI: 10.1152/physrev.00056.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-sensing phosphatase (VSP) contains a voltage sensor domain (VSD) similar to that in voltage-gated ion channels, and a phosphoinositide phosphatase region similar to phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The VSP gene is conserved from unicellular organisms to higher vertebrates. Membrane depolarization induces electrical driven conformational rearrangement in the VSD, which is translated into catalytic enzyme activity. Biophysical and structural characterization has revealed details of the mechanisms underlying the molecular functions of VSP. Coupling between the VSD and the enzyme is tight, such that enzyme activity is tuned in a graded fashion to the membrane voltage. Upon VSP activation, multiple species of phosphoinositides are simultaneously altered, and the profile of enzyme activity depends on the history of the membrane potential. VSPs have been the obvious candidate link between membrane potential and phosphoinositide regulation. However, patterns of voltage change regulating VSP in native cells remain largely unknown. This review addresses the current understanding of the biophysical biochemical properties of VSP and provides new insight into the proposed functions of VSP.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Akira Kawanabe
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Takafumi Kawai
- Department of Physiology, Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University , Osaka , Japan ; and Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| |
Collapse
|
28
|
OKAMURA Y, OKOCHI Y. Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:111-135. [PMID: 30853698 PMCID: PMC6541726 DOI: 10.2183/pjab.95.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The voltage sensor domain (VSD) has long been studied as a unique domain intrinsic to voltage-gated ion channels (VGICs). Within VGICs, the VSD is tightly coupled to the pore-gate domain (PGD) in diverse ways suitable for its specific function in each physiological context, including action potential generation, muscle contraction and relaxation, hormone and neurotransmitter secretion, and cardiac pacemaking. However, some VSD-containing proteins lack a PGD. Voltage-sensing phosphatase contains a cytoplasmic phosphoinositide phosphatase with similarity to phosphatase and tensin homolog (PTEN). Hv1, a voltage-gated proton channel, also lacks a PGD. Within Hv1, the VSD operates as a voltage sensor, gate, and pore for both proton sensing and permeation. Hv1 has a C-terminal coiled coil that mediates dimerization for cooperative gating. Recent progress in the structural biology of VGICs and VSD proteins provides insights into the principles of VSD coupling conserved among these proteins as well as the hierarchy of protein organization for voltage-evoked cell signaling.
Collapse
Affiliation(s)
- Yasushi OKAMURA
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Yoshifumi OKOCHI
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
29
|
Kawanabe A, Hashimoto M, Nishizawa M, Nishizawa K, Narita H, Yonezawa T, Jinno Y, Sakata S, Nakagawa A, Okamura Y. The hydrophobic nature of a novel membrane interface regulates the enzyme activity of a voltage-sensing phosphatase. eLife 2018; 7:41653. [PMID: 30484774 PMCID: PMC6298786 DOI: 10.7554/elife.41653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023] Open
Abstract
Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named ‘the hydrophobic spine’), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.
Collapse
Affiliation(s)
- Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | | | - Hirotaka Narita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tomoko Yonezawa
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Jinno
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | | | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Choveau FS, De la Rosa V, Bierbower SM, Hernandez CC, Shapiro MS. Phosphatidylinositol 4,5-bisphosphate (PIP 2) regulates KCNQ3 K + channels by interacting with four cytoplasmic channel domains. J Biol Chem 2018; 293:19411-19428. [PMID: 30348901 DOI: 10.1074/jbc.ra118.005401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/12/2018] [Indexed: 01/11/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane regulates the function of many ion channels, including M-type (potassium voltage-gated channel subfamily Q member (KCNQ), Kv7) K+ channels; however, the molecular mechanisms involved remain unclear. To this end, we here focused on the KCNQ3 subtype that has the highest apparent affinity for PIP2 and performed extensive mutagenesis in regions suggested to be involved in PIP2 interactions among the KCNQ family. Using perforated patch-clamp recordings of heterologously transfected tissue culture cells, total internal reflection fluorescence microscopy, and the zebrafish (Danio rerio) voltage-sensitive phosphatase to deplete PIP2 as a probe, we found that PIP2 regulates KCNQ3 channels through four different domains: 1) the A-B helix linker that we previously identified as important for both KCNQ2 and KCNQ3, 2) the junction between S6 and the A helix, 3) the S2-S3 linker, and 4) the S4-S5 linker. We also found that the apparent strength of PIP2 interactions within any of these domains was not coupled to the voltage dependence of channel activation. Extensive homology modeling and docking simulations with the WT or mutant KCNQ3 channels and PIP2 were consistent with the experimental data. Our results indicate that PIP2 modulates KCNQ3 channel function by interacting synergistically with a minimum of four cytoplasmic domains.
Collapse
Affiliation(s)
- Frank S Choveau
- From the Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Victor De la Rosa
- From the Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Sonya M Bierbower
- From the Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Ciria C Hernandez
- the Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and .,the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Mark S Shapiro
- From the Department of Cell and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas 78229,
| |
Collapse
|
31
|
Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA. Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg 2+, spermine, and pH. J Biol Chem 2018; 293:18151-18167. [PMID: 30305398 PMCID: PMC6254349 DOI: 10.1074/jbc.ra118.004066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP-expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S-expressing cells but with a faster time course in the WT VSP-expressing cells. Inhibition by 150 μm Mg2+ was also significantly faster in the WT VSP-expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2-channel interactions.
Collapse
Affiliation(s)
- Tetyana Zhelay
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | | | - Pavani Beesetty
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | - Gerald M Alter
- Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435 and
| | - Masayuki Matsushita
- the Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - J Ashot Kozak
- From the Departments of Neuroscience, Cell Biology, and Physiology and.
| |
Collapse
|
32
|
Dierich M, Leitner MG. K v12.1 channels are not sensitive to G qPCR-triggered activation of phospholipase Cβ. Channels (Austin) 2018; 12:228-239. [PMID: 30136882 PMCID: PMC6986784 DOI: 10.1080/19336950.2018.1475783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kv12.1 K+ channels are expressed in several brain areas, but no physiological function could be attributed to these subunits so far. As genetically-modified animal models are not available, identification of native Kv12.1 currents must rely on characterization of distinct channel properties. Recently, it was shown in Xenopus laevis oocytes that Kv12.1 channels were modulated by membrane PI(4,5)P2. However, it is not known whether these channels are also sensitive to physiologically-relevant PI(4,5)P2 dynamics. We thus studied whether Kv12.1 channels were modulated by activation of phospholipase C β (PLCβ) and found that they were insensitive to receptor-triggered depletion of PI(4,5)P2. Thus, Kv12.1 channels add to the growing list of K+ channels that are insensitive to PLCβ signaling, although modulated by PI(4,5)P2 in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Marlen Dierich
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany
| | - Michael G Leitner
- a Department of Neurophysiology , Institute of Physiology and Pathophysiology, Philipps-University Marburg , Marburg , Germany.,b Division of Physiology, Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
33
|
Zhang J, Chen X, Xue Y, Gamper N, Zhang X. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes. J Cell Physiol 2018; 233:6377-6385. [PMID: 29667735 DOI: 10.1002/jcp.26555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2 , PIP2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xingjuan Chen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Beijing Key Laboratory of Diabetes Prevention and Research, Lu He Hospital, Capital Medical University, Beijing, China
| | - Yucong Xue
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
34
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
35
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
36
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
37
|
Abstract
Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucidate how the retigabine binding site is coupled to changes in voltage sensing, we used voltage-clamp fluorometry to track conformational changes of the KCNQ3 voltage-sensing domains (VSDs) in response to voltage, retigabine, and PIP2. Steady-state ionic conductance and voltage sensor fluorescence closely overlap under basal PIP2 conditions. Retigabine stabilizes the conducting conformation of the pore and the activated voltage sensor conformation, leading to dramatic deceleration of current and fluorescence deactivation, but these effects are attenuated upon disruption of channel:PIP2 interactions. These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine.
Collapse
|
38
|
Chen IS, Tateyama M, Fukata Y, Uesugi M, Kubo Y. Ivermectin activates GIRK channels in a PIP 2 -dependent, G βγ -independent manner and an amino acid residue at the slide helix governs the activation. J Physiol 2017; 595:5895-5912. [PMID: 28715108 DOI: 10.1113/jp274871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Ivermectin (IVM) is a widely used antiparasitic drug in humans and pets which activates glutamate-gated Cl- channel in parasites. It is known that IVM binds to the transmembrane domains (TMs) of several ligand-gated channels, such as Cys-loop receptors and P2X receptors. We found that the G-protein-gated inwardly rectifying K+ (GIRK) channel, especially GIRK2, is activated by IVM directly in a Gβγ -independent manner, but the activation is dependent on phosphatidylinositol-4,5-biphosphate (PIP2 ). We identified a critical amino acid residue of GIRK2 for activation by IVM, Ile82, located in the slide helix between the TM1 and the N-terminal cytoplasmic tail domain (CTD). The results demonstrate that the TM-CTD interface in GIRK channel, rather than the TMs, governs IVM-mediated activation and provide us with novel insights on the mode of action of IVM in ion channels. ABSTRACT Ivermectin (IVM) is a widely used antiparasitic drug in humans and pets which activates glutamate-gated Cl- channel in parasites. It is also known that IVM binds to the transmembrane domains (TMs) of several ligand-gated channels, such as Cys-loop receptors and P2X receptors. In this study, we found that the G-protein-gated inwardly rectifying K+ (GIRK) channel is activated by IVM directly. Electrophysiological recordings in Xenopus oocytes revealed that IVM activates GIRK channel in a phosphatidylinositol-4,5-biphosphate (PIP2 )-dependent manner, and that the IVM-mediated GIRK activation is independent of Gβγ subunits. We found that IVM activates GIRK2 more efficiently than GIRK4. In cultured hippocampal neurons, we also observed that IVM activates native GIRK current. Chimeric and mutagenesis analyses identified an amino acid residue unique to GIRK2 among the GIRK family, Ile82, located in the slide helix between the TM1 and the N-terminal cytoplasmic tail domain (CTD), which is critical for the activation. The results demonstrate that the TM-CTD interface in GIRK channels, rather than the TMs, governs IVM-mediated activation. These findings provide us with novel insights on the mode of action of IVM in ion channels that could lead to identification of new pharmacophores which activate the GIRK channel.
Collapse
Affiliation(s)
- I-Shan Chen
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto, 611-0011, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0193, Japan
| |
Collapse
|
39
|
Sakata S, Matsuda M, Kawanabe A, Okamura Y. Domain-to-domain coupling in voltage-sensing phosphatase. Biophys Physicobiol 2017; 14:85-97. [PMID: 28744425 PMCID: PMC5515349 DOI: 10.2142/biophysico.14.0_85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.
Collapse
Affiliation(s)
- Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Makoto Matsuda
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Bioscience, Osaka University
| |
Collapse
|
40
|
Tolstykh GP, Olsovsky CA, Ibey BL, Beier HT. Ryanodine and IP 3 receptor-mediated calcium signaling play a pivotal role in neurological infrared laser modulation. NEUROPHOTONICS 2017; 4:025001. [PMID: 28413806 PMCID: PMC5381754 DOI: 10.1117/1.nph.4.2.025001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 05/13/2023]
Abstract
Pulsed infrared (IR) laser energy has been shown to modulate neurological activity through both stimulation and inhibition of action potentials. While the mechanism(s) behind this phenomenon is (are) not completely understood, certain hypotheses suggest that the rise in temperature from IR exposure could activate temperature- or pressure-sensitive ion channels or create pores in the cellular outer membrane, allowing an influx of typically plasma-membrane-impermeant ions. Studies using fluorescent intensity-based calcium ion ([Formula: see text]) sensitive dyes show changes in [Formula: see text] levels after various IR stimulation parameters, which suggests that [Formula: see text] may originate from the external solution. However, activation of intracellular signaling pathways has also been demonstrated, indicating a more complex mechanism of increasing intracellular [Formula: see text] concentration. We quantified the [Formula: see text] mobilization in terms of influx from the external solution and efflux from intracellular organelles using Fura-2 and a high-speed ratiometric imaging system that rapidly alternates the dye excitation wavelengths. Using nonexcitable Chinese hamster ovarian ([Formula: see text]) cells and neuroblastoma-glioma (NG108) cells, we demonstrate that intracellular [Formula: see text] receptors play an important role in the IR-induced [Formula: see text], with the [Formula: see text] response augmented by ryanodine receptors in excitable cells.
Collapse
Affiliation(s)
- Gleb P. Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, San Antonio, Texas, United States
- Address all correspondence to: Gleb P. Tolstykh, E-mail:
| | - Cory A. Olsovsky
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Bennett L. Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, Texas, United States
| | - Hope T. Beier
- Air Force Research Laboratory, 711th Human Performance Wing, Airman System Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, JBSA Fort Sam Houston, San Antonio, Texas, United States
| |
Collapse
|
41
|
Abstract
Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- a Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences , University of the Pacific , Stockton , CA , USA
| |
Collapse
|
42
|
Rosasco MG, Gordon SE, Bajjalieh SM. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase. Biophys J 2016; 109:2480-2491. [PMID: 26682807 DOI: 10.1016/j.bpj.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology.
Collapse
Affiliation(s)
- Mario G Rosasco
- Department of Pharmacology, University of Washington, Seattle, Washington; Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, Washington.
| |
Collapse
|
43
|
de la Cruz L, Puente EI, Reyes-Vaca A, Arenas I, Garduño J, Bravo-Martínez J, Garcia DE. PIP2 in pancreatic β-cells regulates voltage-gated calcium channels by a voltage-independent pathway. Am J Physiol Cell Physiol 2016; 311:C630-C640. [PMID: 27488666 DOI: 10.1152/ajpcell.00111.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a membrane phosphoinositide that regulates the activity of many ion channels. Influx of calcium primarily through voltage-gated calcium (CaV) channels promotes insulin secretion in pancreatic β-cells. However, whether CaV channels are regulated by PIP2, as is the case for some non-insulin-secreting cells, is unknown. The purpose of this study was to investigate whether CaV channels are regulated by PIP2 depletion in pancreatic β-cells through activation of a muscarinic pathway induced by oxotremorine methiodide (Oxo-M). CaV channel currents were recorded by the patch-clamp technique. The CaV current amplitude was reduced by activation of the muscarinic receptor 1 (M1R) in the absence of kinetic changes. The Oxo-M-induced inhibition exhibited the hallmarks of voltage-independent regulation and did not involve PKC activation. A small fraction of the Oxo-M-induced CaV inhibition was diminished by a high concentration of Ca2+ chelator, whereas ≥50% of this inhibition was prevented by diC8-PIP2 dialysis. Localization of PIP2 in the plasma membrane was examined by transfecting INS-1 cells with PH-PLCδ1, which revealed a close temporal association between PIP2 hydrolysis and CaV channel inhibition. Furthermore, the depletion of PIP2 by a voltage-sensitive phosphatase reduced CaV currents in a way similar to that observed following M1R activation. These results indicate that activation of the M1R pathway inhibits the CaV channel via PIP2 depletion by a Ca2+-dependent mechanism in pancreatic β- and INS-1 cells and thereby support the hypothesis that membrane phospholipids regulate ion channel activity by interacting with ion channels.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Erika I Puente
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Arturo Reyes-Vaca
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Julieta Garduño
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - Jorge Bravo-Martínez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| | - David E Garcia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, México
| |
Collapse
|
44
|
Simple scheme of lipid enzyme can explain complex lives of phosphoinositides. Proc Natl Acad Sci U S A 2016; 113:7012-4. [DOI: 10.1073/pnas.1607427113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid. Proc Natl Acad Sci U S A 2016; 113:7521-6. [PMID: 27330112 DOI: 10.1073/pnas.1604218113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.
Collapse
|
46
|
Abstract
UNLABELLED In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca(2+) upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons.
Collapse
|
47
|
Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence. Proc Natl Acad Sci U S A 2016; 113:E3686-95. [PMID: 27222577 DOI: 10.1073/pnas.1606472113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation, emphasizing that VSPs can cleave the 3-phosphate of PI(3,4,5)P3.
Collapse
|
48
|
Tóth BI, Konrad M, Ghosh D, Mohr F, Halaszovich CR, Leitner MG, Vriens J, Oberwinkler J, Voets T. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. ACTA ACUST UNITED AC 2016; 146:51-63. [PMID: 26123194 PMCID: PMC4485019 DOI: 10.1085/jgp.201411339] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
TRPM3 is dynamically regulated by plasma membrane PI(4,5)P2 and related PIPs. The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic β cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 >> PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C–coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity.
Collapse
Affiliation(s)
- Balázs I Tóth
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe) and Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, 3000 Leuven, Belgium
| | - Maik Konrad
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe) and Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Mohr
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Christian R Halaszovich
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Michael G Leitner
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Joris Vriens
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe) and Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, 3000 Leuven, Belgium Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe) and Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, 3000 Leuven, Belgium
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe) and Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
49
|
Taghian T, Narmoneva DA, Kogan AB. Modulation of cell function by electric field: a high-resolution analysis. J R Soc Interface 2016; 12:rsif.2015.0153. [PMID: 25994294 DOI: 10.1098/rsif.2015.0153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development.
Collapse
Affiliation(s)
- T Taghian
- Department of Physics, University of Cincinnati, 345 Clifton Court, RM 400 Geo/Physics Building, Cincinnati, OH 45221-0011, USA
| | - D A Narmoneva
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, 2901 Woodside Dr., ML 0012, Cincinnati, OH 45221, USA
| | - A B Kogan
- Department of Physics, University of Cincinnati, 345 Clifton Court, RM 400 Geo/Physics Building, Cincinnati, OH 45221-0011, USA
| |
Collapse
|
50
|
Thornell IM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes. J Physiol 2016; 593:541-58. [PMID: 25398525 DOI: 10.1113/jphysiol.2014.284307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS We previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 ) directly stimulates heterologously expressed electrogenic Na(+)/bicarbonate cotransporter NBCe1-A in an excised macropatch from the Xenopus oocyte, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate/Ca(2+). In the current study, we expand on a previous observation that PIP2 may also directly stimulate NBCe1 in the intact oocyte. In this study on oocytes, we co-expressed either NBCe1-B or -C and a voltage-sensitive phosphatase (VSP), which depletes PIP2 without changing inositol 1,4,5-trisphosphate, and monitored NBCe1-mediated currents with the two-electrode voltage-clamp technique or pHi changes using Vm/pH-sensitive microelectrodes. Activating VSP inhibited NBCe1-B and -C outward currents and NBCe1-mediated pHi increases, and changes in NBCe1 activity paralleled changes in surface PIP2. This study is a quantitative assessment of PIP2 itself as a regulator of NBCe1-B and -C in the intact cell, and represents the first use of VSP to characterize the PIP2 sensitivity of a transporter. These data combined with our previous work demonstrate that NBCe1-B and -C are regulated by two PIP2-mediated signalling pathways. Specifically, a decrease in PIP2 per se can inhibit NBCe1, whereas hydrolysis of PIP2 to inositol 1,4,5-trisphosphate/Ca(2+) can stimulate the transporter. ABSTRACT The electrogenic Na(+)/bicarbonate cotransporter (NBCe1) of the Slc4 gene family is a powerful regulator of intracellular pH (pHi) and extracellular pH (pHo), and contributes to solute reabsorption and secretion in many epithelia. Using Xenopus laevis oocytes expressing NBCe1 variants, we have previously reported that the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) directly stimulates NBCe1-A in an excised macropatch, and indirectly stimulates NBCe1-B and -C in the intact oocyte primarily through inositol 1,4,5-trisphosphate (InsP3)/Ca(2+). In the current study, we used the two-electrode voltage-clamp technique alone or in combination with pH/voltage-sensitive microelectrodes or confocal fluorescence imaging of plasma membrane PIP2 to characterize the PIP2 sensitivity of NBCe1-B and -C in whole oocytes by co-expressing a voltage-sensitive phosphatase (VSP) that decreases PIP2 and bypasses the InsP3/Ca(2+) pathway. An oocyte depolarization that activated VSP only transiently stimulated the NBCe1-B/C current, consistent with an initial rapid depolarization-induced NBCe1 activation, and then a subsequent slower VSP-mediated NBCe1 inhibition. Upon repolarization, the NBCe1 current decreased, and then slowly recovered with an exponential time course that paralleled PIP2 resynthesis as measured with a PIP2-sensitive fluorophore and confocal imaging. A subthreshold depolarization that minimally activated VSP caused a more sustained increase in NBCe1 current, and did not lead to an exponential current recovery following repolarization. Similar results were obtained with oocytes expressing a catalytically dead VSP mutant at all depolarized potentials. Depleting endoplasmic reticulum Ca(2+) did not inhibit the NBCe1 current recovery following repolarization from VSP activation, demonstrating that changes in InsP3/Ca(2+) were not responsible. This study demonstrates for the first time that depleting PIP2 per se inhibits NBCe1 activity. The data in conjunction with previous findings implicate a dual PIP2 regulatory pathway for NBCe1 involving both PIP2 itself and generated InsP3/Ca(2+).
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | |
Collapse
|