1
|
Batool L, Hariharan K, Xu Y, Kaßmann M, Tsvetkov D, Gohlke BO, Kaden S, Gossen M, Nürnberg B, Kurtz A, Gollasch M. An inactivating human TRPC6 channel mutation without focal segmental glomerulosclerosis. Cell Mol Life Sci 2023; 80:265. [PMID: 37615749 PMCID: PMC10449997 DOI: 10.1007/s00018-023-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Transient receptor potential cation channel-6 (TRPC6) gene mutations cause familial focal segmental glomerulosclerosis (FSGS), which is inherited as an autosomal dominant disease. In patients with TRPC6-related FSGS, all mutations map to the N- or C-terminal TRPC6 protein domains. Thus far, the majority of TRPC6 mutations are missense resulting in increased or decreased calcium influx; however, the fundamental molecular mechanisms causing cell injury and kidney pathology are unclear. We report a novel heterozygous TRPC6 mutation (V691Kfs*) in a large kindred with no signs of FSGS despite a largely truncated TRPC6 protein. We studied the molecular effects of V691Kfs* TRPC6 mutant using the tridimensional cryo-EM structure of the tetrameric TRPC6 protein. The results indicated that V691 is localized at the pore-forming transmembrane region affecting the ion conduction pathway, and predicted that V691Kfs* causes closure of the ion-conducting pathway leading to channel inactivation. We assessed the impact of V691Kfs* and two previously reported TRPC6 disease mutants (P112Q and G757D) on calcium influx in cells. Our data show that the V691Kfs* fully inactivated the TRCP6 channel-specific calcium influx consistent with a complete loss-of-function phenotype. Furthermore, the V691Kfs* truncation exerted a dominant negative effect on the full-length TRPC6 proteins. In conclusion, the V691Kfs* non-functional truncated TRPC6 is not sufficient to cause FSGS. Our data corroborate recently characterized TRPC6 loss-of-function and gain-of-function mutants suggesting that one defective TRPC6 gene copy is not sufficient to cause FSGS. We underscore the importance of increased rather than reduced calcium influx through TRPC6 for podocyte cell death.
Collapse
Affiliation(s)
- Lilas Batool
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Krithika Hariharan
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Fraunhofer-Institute for Biomedical Engineering (IBMT), Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - Yao Xu
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Mario Kaßmann
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Dmitry Tsvetkov
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Björn-Oliver Gohlke
- Department of Information Technology, Science-IT, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sylvia Kaden
- Electron Microscopy Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institut für Aktive Polymere, Hereon TeltowAbteilung Stammzellmodifikation und Biomaterialien, Teltow, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Biomedical Data and Bioethics, Fraunhofer-Institute for Biomedical Engineering (IBMT), Berlin, Germany.
| | - Maik Gollasch
- Klinik und Poliklinik für Innere Medizin D-Geriatrie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany.
- Klinik für Nephrologie und Internistische Intensivmedizin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Cui Y, Gollasch M, Kassmann M. Arterial myogenic response and aging. Ageing Res Rev 2023; 84:101813. [PMID: 36470339 DOI: 10.1016/j.arr.2022.101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The arterial myogenic response is an inherent property of resistance arteries. Myogenic tone is crucial for maintaining a relatively constant blood flow in response to changes in intraluminal pressure and protects delicate organs from excessive blood flow. Although this fundamental physiological phenomenon has been extensively studied, the underlying molecular mechanisms are largely unknown. Recent studies identified a crucial role of mechano-activated angiotensin II type 1 receptors (AT1R) in this process. The development of myogenic response is affected by aging. In this review, we summarize recent progress made to understand the role of AT1R and other mechanosensors in the control of arterial myogenic response. We discuss age-related alterations in myogenic response and possible underlying mechanisms and implications for healthy aging.
Collapse
Affiliation(s)
- Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125 Berlin, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany.
| |
Collapse
|
3
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
4
|
Mironova GY, Haghbin N, Welsh DG. Functional tuning of Vascular L-type Ca2+ channels. Front Physiol 2022; 13:1058744. [DOI: 10.3389/fphys.2022.1058744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular smooth muscle contraction is intimately tied to membrane potential and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+ channels. While voltage is often viewed as the single critical factor gating these channels, research is starting to reveal a more intricate scenario whereby their function is markedly tuned. This emerging concept will be the focus of this three-part review, the first part articulating the mechanistic foundation of contractile development in vascular smooth muscle. Part two will extend this foundational knowledge, introducing readers to functional coupling and how neighboring L-type Ca2+ channels work cooperatively through signaling protein complexes, to facilitate their open probability. The final aspect of this review will discuss the impact of L-type Ca2+ channel trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief manuscript provides new insight into how voltage, along with channel cooperativity and number, work in concert to tune Ca2+ responses and smooth muscle contraction.
Collapse
|
5
|
Salazar-Enciso R, Guerrero-Hernández A, Gómez AM, Benitah JP, Rueda A. Aldosterone-Induced Sarco/Endoplasmic Reticulum Ca2+ Pump Upregulation Counterbalances Cav1.2-Mediated Ca2+ Influx in Mesenteric Arteries. Front Physiol 2022; 13:834220. [PMID: 35360237 PMCID: PMC8963271 DOI: 10.3389/fphys.2022.834220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Rogelio Salazar-Enciso
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Agustín Guerrero-Hernández
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- *Correspondence: Angélica Rueda,
| |
Collapse
|
6
|
Wang Y, Yildiz F, Struve A, Kassmann M, Markó L, Köhler MB, Luft FC, Gollasch M, Tsvetkov D. Aging Affects K V7 Channels and Perivascular Adipose Tissue-Mediated Vascular Tone. Front Physiol 2021; 12:749709. [PMID: 34899382 PMCID: PMC8662361 DOI: 10.3389/fphys.2021.749709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/04/2022] Open
Abstract
Aging is an independent risk factor for hypertension, cardiovascular morbidity, and mortality. However, detailed mechanisms linking aging to cardiovascular disease are unclear. We studied the aging effects on the role of perivascular adipose tissue and downstream vasoconstriction targets, voltage-dependent KV7 channels, and their pharmacological modulators (flupirtine, retigabine, QO58, and QO58-lysine) in a murine model. We assessed vascular function of young and old mesenteric arteries in vitro using wire myography and membrane potential measurements with sharp electrodes. We also performed bulk RNA sequencing and quantitative reverse transcription-polymerase chain reaction tests in mesenteric arteries and perivascular adipose tissue to elucidate molecular underpinnings of age-related phenotypes. Results revealed impaired perivascular adipose tissue-mediated control of vascular tone particularly via KV7.3–5 channels with increased age through metabolic and inflammatory processes and release of perivascular adipose tissue-derived relaxation factors. Moreover, QO58 was identified as novel pharmacological vasodilator to activate XE991-sensitive KCNQ channels in old mesenteric arteries. Our data suggest that targeting inflammation and metabolism in perivascular adipose tissue could represent novel approaches to restore vascular function during aging. Furthermore, KV7.3–5 channels represent a promising target in cardiovascular aging.
Collapse
Affiliation(s)
- Yibin Wang
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Fatima Yildiz
- Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Andrey Struve
- Department of Ear, Throat and Nose Diseases, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mario Kassmann
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Greifswald, Germany
| | - Lajos Markó
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - May-Britt Köhler
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Friedrich C Luft
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Greifswald, Germany
| | - Dmitry Tsvetkov
- Charité Medical Faculty, Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Abstract
Vascular smooth muscle cells (VSMCs) of small peripheral arteries contribute to blood pressure control by adapting their contractile state. These adaptations depend on the VSMC cytosolic Ca2+ concentration, regulated by complex local elementary Ca2+ signaling pathways. Ca2+ sparks represent local, transient, rapid calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial SMCs, Ca2+ sparks activate nearby calcium-dependent potassium channels, cause membrane hyperpolarization and thus decrease the global intracellular [Ca2+] to oppose vasoconstriction. Arterial SMC Cav1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux through RyRs. Cav3.2 T-type channels contribute to a minor extend to Ca2+ spark generation in certain types of arteries. Their localization within cell membrane caveolae is essential. We summarize present data on local elementary calcium signaling (Ca2+ sparks) in arterial SMCs with focus on RyR isoforms, large-conductance calcium-dependent potassium (BKCa) channels, and cell membrane-bound calcium channels (Cav1.2 and Cav3.2), particularly in caveolar microdomains.
Collapse
Affiliation(s)
- Gang Fan
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Maik Gollasch
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Mario Kassmann
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
9
|
Fan G, Kaßmann M, Cui Y, Matthaeus C, Kunz S, Zhong C, Zhu S, Xie Y, Tsvetkov D, Daumke O, Huang Y, Gollasch M. Age attenuates the T-type Ca V 3.2-RyR axis in vascular smooth muscle. Aging Cell 2020; 19:e13134. [PMID: 32187825 PMCID: PMC7189999 DOI: 10.1111/acel.13134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/26/2022] Open
Abstract
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2−/− mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.
Collapse
Affiliation(s)
- Gang Fan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Mario Kaßmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Claudia Matthaeus
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
| | - Séverine Kunz
- Electron Microscopy Facility Max Delbrück Center for Molecular Medicine (MDC) Berlin Germany
| | - Cheng Zhong
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Shuai Zhu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Yu Xie
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Oliver Daumke
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical Sciences Chinese University of Hong Kong Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Medical Clinic for Nephrology and Internal Intensive Care Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Geriatrics University Medicine Greifswald Greifswald Germany
| |
Collapse
|
10
|
Boerman EM, Segal SS. Aging alters spontaneous and neurotransmitter-mediated Ca 2+ signaling in smooth muscle cells of mouse mesenteric arteries. Microcirculation 2020; 27:e12607. [PMID: 31994289 DOI: 10.1111/micc.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Aging impairs MA dilation by reducing the ability of sensory nerves to counteract sympathetic vasoconstriction. This study tested whether altered SMC Ca2+ signals to sympathetic (NE) and sensory (CGRP) neurotransmitters underlie aging-related deficits in vasodilation. METHODS MAs from young and old mice were pressurized and loaded with Fluo-4 dye for confocal measurement of SMC Ca2+ sparks and waves. Endothelial denudation resolved the influence of ECs. SMCs were immunolabeled for RyR isoforms and compared with transcript levels for RyRs and CGRP receptor components. RESULTS SMCs from young vs old mice exhibited more spontaneous Ca2+ spark sites with no difference in Ca2+ waves. NE reduced spark sites and increased waves for both groups; addition of CGRP restored sparks and reduced waves only for young mice. Endothelial denudation attenuated Ca2+ responses to CGRP for young but not old mice, which were already attenuated, suggesting a diminished role for ECs with aging. CGRP receptor expression was similar between ages with increased serum CGRP in old mice, where RyR1 expression was replaced by RyR3. CONCLUSION With aging, we suggest that altered RyR expression in SMCs contributes to impaired ability of sensory neurotransmission to restore Ca2+ signaling underlying vasomotor control during sympathetic activation.
Collapse
Affiliation(s)
- Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
12
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
13
|
Kaßmann M, Szijártó IA, García‐Prieto CF, Fan G, Schleifenbaum J, Anistan Y, Tabeling C, Shi Y, le Noble F, Witzenrath M, Huang Y, Markó L, Nelson MT, Gollasch M. Role of Ryanodine Type 2 Receptors in Elementary Ca 2+ Signaling in Arteries and Vascular Adaptive Responses. J Am Heart Assoc 2019; 8:e010090. [PMID: 31030596 PMCID: PMC6512102 DOI: 10.1161/jaha.118.010090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022]
Abstract
Background Hypertension is the major risk factor for cardiovascular disease, the most common cause of death worldwide. Resistance arteries are capable of adapting their diameter independently in response to pressure and flow-associated shear stress. Ryanodine receptors (RyRs) are major Ca2+-release channels in the sarcoplasmic reticulum membrane of myocytes that contribute to the regulation of contractility. Vascular smooth muscle cells exhibit 3 different RyR isoforms (RyR1, RyR2, and RyR3), but the impact of individual RyR isoforms on adaptive vascular responses is largely unknown. Herein, we generated tamoxifen-inducible smooth muscle cell-specific RyR2-deficient mice and tested the hypothesis that vascular smooth muscle cell RyR2s play a specific role in elementary Ca2+ signaling and adaptive vascular responses to vascular pressure and/or flow. Methods and Results Targeted deletion of the Ryr2 gene resulted in a complete loss of sarcoplasmic reticulum-mediated Ca2+-release events and associated Ca2+-activated, large-conductance K+ channel currents in peripheral arteries, leading to increased myogenic tone and systemic blood pressure. In the absence of RyR2, the pulmonary artery pressure response to sustained hypoxia was enhanced, but flow-dependent effects, including blood flow recovery in ischemic hind limbs, were unaffected. Conclusions Our results establish that RyR2-mediated Ca2+-release events in VSCM s specifically regulate myogenic tone (systemic circulation) and arterial adaptation in response to changes in pressure (hypoxic lung model), but not flow. They further suggest that vascular smooth muscle cell-expressed RyR2 deserves scrutiny as a therapeutic target for the treatment of vascular responses in hypertension and chronic vascular diseases.
Collapse
Affiliation(s)
- Mario Kaßmann
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | - István András Szijártó
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Concha F. García‐Prieto
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- Department of Pharmaceutical and Health SciencesFacultad de FarmaciaUniversidad CEU San PabloMadridSpain
| | - Gang Fan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yoland‐Marie Anistan
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Christoph Tabeling
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Shi
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Ferdinand le Noble
- Department of Cell and Developmental BiologyITG (Institute of Toxicology and Genetics)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary MedicineCharité–Universitätsmedizin BerlinBerlinGermany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical SciencesChinese University of Hong KongChina
| | - Lajos Markó
- Medical Clinic for Hematology, Oncology and Tumor ImmunologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mark T. Nelson
- Department of PharmacologyCollege of MedicineThe University of VermontBurlingtonVT
| | - Maik Gollasch
- Experimental and Clinical Research Centera joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular MedicineCharité–Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
- Medical Clinic for Nephrology and Internal Intensive CareCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
14
|
Fan G, Kaßmann M, Hashad AM, Welsh DG, Gollasch M. Differential targeting and signalling of voltage-gated T-type Ca v 3.2 and L-type Ca v 1.2 channels to ryanodine receptors in mesenteric arteries. J Physiol 2018; 596:4863-4877. [PMID: 30146760 PMCID: PMC6187032 DOI: 10.1113/jp276923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In arterial smooth muscle, Ca2+ sparks are elementary Ca2+ -release events generated by ryanodine receptors (RyRs) to cause vasodilatation by opening maxi Ca2+ -sensitive K+ (BKCa ) channels. This study elucidated the contribution of T-type Cav 3.2 channels in caveolae and their functional interaction with L-type Cav 1.2 channels to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). Our data demonstrate that L-type Cav 1.2 channels provide the predominant Ca2+ pathway for the generation of Ca2+ sparks in murine arterial VSMCs. T-type Cav 3.2 channels represent an additional source for generation of VSMC Ca2+ sparks. They are located in pit structures of caveolae to provide locally restricted, tight coupling between T-type Cav 3.2 channels and RyRs to ignite Ca2+ sparks. ABSTRACT Recent data suggest that T-type Cav 3.2 channels in arterial vascular smooth muscle cells (VSMCs) and pits structure of caveolae could contribute to elementary Ca2+ signalling (Ca2+ sparks) via ryanodine receptors (RyRs) to cause vasodilatation. While plausible, their precise involvement in igniting Ca2+ sparks remains largely unexplored. The goal of this study was to elucidate the contribution of caveolar Cav 3.2 channels and their functional interaction with Cav 1.2 channels to trigger Ca2+ sparks in VSMCs from mesenteric, tibial and cerebral arteries. We used tamoxifen-inducible smooth muscle-specific Cav 1.2-/- (SMAKO) mice and laser scanning confocal microscopy to assess Ca2+ spark generation in VSMCs. Ni2+ , Cd2+ and methyl-β-cyclodextrin were used to inhibit Cav 3.2 channels, Cav 1.2 channels and caveolae, respectively. Ni2+ (50 μmol L-1 ) and methyl-β-cyclodextrin (10 mmol L-1 ) decreased Ca2+ spark frequency by ∼20-30% in mesenteric VSMCs in a non-additive manner, but failed to inhibit Ca2+ sparks in tibial and cerebral artery VSMCs. Cd2+ (200 μmol L-1 ) suppressed Ca2+ sparks in mesenteric arteries by ∼70-80%. A similar suppression of Ca2+ sparks was seen in mesenteric artery VSMCs of SMAKO mice. The remaining Ca2+ sparks were fully abolished by Ni2+ or methyl-β-cyclodextrin. Our data demonstrate that Ca2+ influx through CaV 1.2 channels is the primary means of triggering Ca2+ sparks in murine arterial VSMCs. CaV 3.2 channels, localized to caveolae and tightly coupled to RyR, provide an additional Ca2+ source for Ca2+ spark generation in mesenteric, but not tibial and cerebral, arteries.
Collapse
Affiliation(s)
- Gang Fan
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
| | - Mario Kaßmann
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
| | - Ahmed M. Hashad
- Department of Physiology and PharmacologyHotchkiss Brain and Libin Cardiovascular InstitutesUniversity of CalgaryAlbertaCanada
| | - Donald G. Welsh
- Department of Physiology and PharmacologyWestern UniversityLondonONCanada
| | - Maik Gollasch
- Charité – Universitätsmedizin BerlinExperimental and Clinical Research Center (ECRC)Campus BuchBerlinGermany
- DZHK (German Centre for Cardiovascular Research)BerlinGermany
- Charité – Universitätsmedizin BerlinMedical Clinic for Nephrology and Internal Intensive CareCampus VirchowBerlinGermany
| |
Collapse
|
15
|
Hashad AM, Harraz OF, Brett SE, Romero M, Kassmann M, Puglisi JL, Wilson SM, Gollasch M, Welsh DG. Caveolae Link Ca
V
3.2 Channels to BK
Ca
-Mediated Feedback in Vascular Smooth Muscle. Arterioscler Thromb Vasc Biol 2018; 38:2371-2381. [DOI: 10.1161/atvbaha.118.311394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ahmed M. Hashad
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada (A.M.H., O.F.H., D.G.W.)
| | - Osama F. Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada (A.M.H., O.F.H., D.G.W.)
- Department of Pharmacology, University of Vermont, Burlington (O.F.H.)
| | - Suzanne E. Brett
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.E.B., D.G.W.)
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, CA (M.R., S.M.W.)
| | - Mario Kassmann
- Experimental and Clinical Research Centre, Charité University Medicine, Berlin, Germany (M.K., M.G.)
| | - Jose L. Puglisi
- College of Medicine, California North State University, Sacramento (J.L.P.)
| | - Sean M. Wilson
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, CA (M.R., S.M.W.)
| | - Maik Gollasch
- Experimental and Clinical Research Centre, Charité University Medicine, Berlin, Germany (M.K., M.G.)
| | - Donald G. Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, Alberta, Canada (A.M.H., O.F.H., D.G.W.)
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.E.B., D.G.W.)
| |
Collapse
|
16
|
Jackson WF, Boerman EM. Voltage-gated Ca 2+ channel activity modulates smooth muscle cell calcium waves in hamster cremaster arterioles. Am J Physiol Heart Circ Physiol 2018; 315:H871-H878. [PMID: 29957015 DOI: 10.1152/ajpheart.00292.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cremaster muscle arteriolar smooth muscle cells (SMCs) display inositol 1,4,5-trisphosphate receptor-dependent Ca2+ waves that contribute to global myoplasmic Ca2+ concentration and myogenic tone. However, the contribution made by voltage-gated Ca2+ channels (VGCCs) to arteriolar SMC Ca2+ waves is unknown. We tested the hypothesis that VGCC activity modulates SMC Ca2+ waves in pressurized (80 cmH2O/59 mmHg, 34°C) hamster cremaster muscle arterioles loaded with Fluo-4 and imaged by confocal microscopy. Removal of extracellular Ca2+ dilated arterioles (32 ± 3 to 45 ± 3 μm, n = 15, P < 0.05) and inhibited the occurrence, amplitude, and frequency of Ca2+ waves ( n = 15, P < 0.05), indicating dependence of Ca2+ waves on Ca2+ influx. Blockade of VGCCs with nifedipine (1 μM) or diltiazem (10 μM) or deactivation of VGCCs by hyperpolarization of smooth muscle with the K+ channel agonist cromakalim (10 μM) produced similar inhibition of Ca2+ waves ( P < 0.05). Conversely, depolarization of SMCs with the K+ channel blocker tetraethylammonium (1 mM) constricted arterioles from 26 ± 3 to 14 ± 2 μm ( n = 11, P < 0.05) and increased wave occurrence (9 ± 3 to 16 ± 3 waves/SMC), amplitude (1.6 ± 0.07 to 1.9 ± 0.1), and frequency (0.5 ± 0.1 to 0.9 ± 0.2 Hz, n = 10, P < 0.05), effects that were blocked by nifedipine (1 μM, P < 0.05). Similarly, the VGCC agonist Bay K8644 (5 nM) constricted arterioles from 14 ± 1 to 8 ± 1 μm and increased wave occurrence (3 ± 1 to 10 ± 1 waves/SMC) and frequency (0.2 ± 0.1 to 0.6 ± 0.1 Hz, n = 6, P < 0.05), effects that were unaltered by ryanodine (50 μM, n = 6, P > 0.05). These data support the hypothesis that Ca2+ waves in arteriolar SMCs depend, in part, on the activity of VGCCs. NEW & NOTEWORTHY Arterioles that control blood flow to and within skeletal muscle depend on Ca2+ influx through voltage-gated Ca2+ channels and release of Ca2+ from internal stores through inositol 1,4,5-trisphosphate receptors in the form of Ca2+ waves to maintain pressure-induced smooth muscle tone.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Erika M Boerman
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
17
|
Zhao QY, Peng YB, Luo XJ, Luo X, Xu H, Wei MY, Jiang QJ, Li WE, Ma LQ, Xu JC, Liu XC, Zang DA, She YS, Zhu H, Shen J, Zhao P, Xue L, Yu MF, Chen W, Zhang P, Fu X, Chen J, Nie X, Shen C, Chen S, Chen S, Chen J, Hu S, Zou C, Qin G, Fang Y, Ding J, Ji G, Zheng YM, Song T, Wang YX, Liu QH. Distinct Effects of Ca 2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans. Int J Biol Sci 2017; 13:1242-1253. [PMID: 29104491 PMCID: PMC5666523 DOI: 10.7150/ijbs.21475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca2+-activated Cl- (Clca) channels, Ca2+ sparks activated large-conductance Ca2+-activated K+ channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state. In ASMCs, Ca2+ sparks induced relaxation through BKs and contraction via Clca channels. However, the integrated result was contraction because Ca2+ sparks activated BKs prior to Clca channels and Clca channels-induced depolarization was larger than BKs-caused hyperpolarization. However, the effects of Ca2+ sparks on both cell types were determined by L-type voltage-dependent Ca2+ channels (LVDCCs). In addition, compared with ASMCs, CASMCs had great and higher amplitude Ca2+ sparks, a higher density of BKs, and higher Ca2+ and voltage sensitivity of BKs. These differences enhanced the ability of Ca2+ sparks to decrease CASMC and to increase ASMC tone. The higher Ca2+ and voltage sensitivity of BKs in CASMCs than ASMCs were determined by the β1 subunits. Moreover, Ca2+ sparks showed the similar effects on human CASMC and ASMC tone. In conclusions, Ca2+ sparks decrease CASMC tone and increase ASMC tone, mediated by BKs and Clca channels, respectively, and finally determined by LVDCCs.
Collapse
Affiliation(s)
- Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Jing Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ming-Yu Wei
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Er Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Chao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu-San She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - He Zhu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhang
- Department of Cerebral Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingyu Chen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaowei Nie
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingcao Chen
- Department of Cerebral Surgery, Zhongnan Hospital, Wuhan University Medical College, Wuhan, 430071, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, AL, 35294, USA
| | - Ying Fang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
18
|
Humphries ESA, Kamishima T, Quayle JM, Dart C. Calcium/calmodulin-dependent kinase 2 mediates Epac-induced spontaneous transient outward currents in rat vascular smooth muscle. J Physiol 2017; 595:6147-6164. [PMID: 28731505 PMCID: PMC5599484 DOI: 10.1113/jp274754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The Ca2+ and redox-sensing enzyme Ca2+ /calmodulin-dependent kinase 2 (CaMKII) is a crucial and well-established signalling molecule in the heart and brain. In vascular smooth muscle, which controls blood flow by contracting and relaxing in response to complex Ca2+ signals and oxidative stress, surprisingly little is known about the role of CaMKII. The vasodilator-induced second messenger cAMP can relax vascular smooth muscle via its effector, exchange protein directly activated by cAMP (Epac), by activating spontaneous transient outward currents (STOCs) that hyperpolarize the cell membrane and reduce voltage-dependent Ca2+ influx. How Epac activates STOCs is unknown. In the present study, we map the pathway by which Epac increases STOC activity in contractile vascular smooth muscle and show that a critical step is the activation of CaMKII. To our knowledge, this is the first report of CaMKII activation triggering cellular activity known to induce vasorelaxation. ABSTRACT Activation of the major cAMP effector, exchange protein directly activated by cAMP (Epac), induces vascular smooth muscle relaxation by increasing the activity of ryanodine (RyR)-sensitive release channels on the peripheral sarcoplasmic reticulum. Resultant Ca2+ sparks activate plasma membrane Ca2+ -activated K+ (BKCa ) channels, evoking spontaneous transient outward currents (STOCs) that hyperpolarize the cell and reduce voltage-dependent Ca2+ entry. In the present study, we investigate the mechanism by which Epac increases STOC activity. We show that the selective Epac activator 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3', 5-cyclic monophosphate-AM (8-pCPT-AM) induces autophosphorylation (activation) of calcium/calmodulin-dependent kinase 2 (CaMKII) and also that inhibition of CaMKII abolishes 8-pCPT-AM-induced increases in STOC activity. Epac-induced CaMKII activation is probably initiated by inositol 1,4,5-trisphosphate (IP3 )-mobilized Ca2+ : 8-pCPT-AM fails to induce CaMKII activation following intracellular Ca2+ store depletion and inhibition of IP3 receptors blocks both 8-pCPT-AM-mediated CaMKII phosphorylation and STOC activity. 8-pCPT-AM does not directly activate BKCa channels, but STOCs cannot be generated by 8-pCPT-AM in the presence of ryanodine. Furthermore, exposure to 8-pCPT-AM significantly slows the initial rate of [Ca2+ ]i rise induced by the RyR activator caffeine without significantly affecting the caffeine-induced Ca2+ transient amplitude, a measure of Ca2+ store content. We conclude that Epac-mediated STOC activity (i) occurs via activation of CaMKII and (ii) is driven by changes in the underlying behaviour of RyR channels. To our knowledge, this is the first report of CaMKII initiating cellular activity linked to vasorelaxation and suggests novel roles for this Ca2+ and redox-sensing enzyme in the regulation of vascular tone and blood flow.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Guanine Nucleotide Exchange Factors/metabolism
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Wistar
- Vasodilation
Collapse
Affiliation(s)
| | | | - John M. Quayle
- Translational MedicineUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
19
|
Mullan B, Pettis J, Jackson WF. T-type voltage-gated Ca 2+ channels do not contribute to the negative feedback regulation of myogenic tone in murine superior epigastric arteries. Pharmacol Res Perspect 2017; 5:e00320. [PMID: 28603637 PMCID: PMC5464347 DOI: 10.1002/prp2.320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
T-type voltage-gated Ca2+ channels (CaV3.2 VGCC) have been hypothesized to control spontaneous transient outward currents (STOCs) through large-conductance Ca2+-activated K+ channels (BKCa), and contribute to the negative-feedback regulation of myogenic tone. We tested this hypothesis in superior epigastric arteries (SEAs) isolated from male C57BL/6 mice. SEAs were isolated and enzymatically dissociated to obtain single smooth muscle cells (SMCs) for whole-cell recording of paxilline-sensitive (PAX, 1 μmol/L) STOCs at -30 mV, or cannulated and studied by pressure myography (80 cm H2O, 37°C). The CaV3.2 blocker Ni2+ (30 μmol/L) had no effect on STOC amplitude (20.1 ± 1.7 pA vs. 20.6 ± 1.7 pA; n = 12, P = 0.6), but increased STOC frequency (0.79 ± 0.15 Hz vs. 1.21 ± 0.22 Hz; n = 12, P = 0.02). Although Ni2+ produced concentration-dependent constriction of isolated, pressurized SEAs (logEC50 = -5.8 ± 0.09; Emax = 72 ± 5% constriction), block of BKCa with PAX had no effect on vasoconstriction induced by 30 μmol/L Ni2+ (in the absence of PAX = 66 ± 4% constriction vs. in the presence of 1 μmol/L PAX = 65 ± 4% constriction; n = 7, P = 0.06). In contrast to Ni2+, the nonselective T-type blocker, mibefradil, produced only vasodilation (logEC50 = -6.9 ± 0.2; Emax = 74 ± 8% dilation), whereas the putative T-type blocker, ML218, had no significant effect on myogenic tone between 10 nmol/L and 10 μmol/L (n = 6-7, P = 0.59). Our data do not support a role for CaV3.2 VGCC in the negative-feedback regulation of myogenic tone in murine SEAs and suggest that Ni2+ may constrict SEAs by means other than block of CaV3.2 VGCC.
Collapse
Affiliation(s)
- Brendan Mullan
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| | - Jessica Pettis
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| | - William F. Jackson
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|
20
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Ding L, Su XX, Zhang WH, Xu YX, Pan XF. Gene Expressions Underlying Mishandled Calcium Clearance and Elevated Generation of Reactive Oxygen Species in the Coronary Artery Smooth Muscle Cells of Chronic Heart Failure Rats. Chin Med J (Engl) 2017; 130:460-469. [PMID: 28218221 PMCID: PMC5324384 DOI: 10.4103/0366-6999.199825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The calcium clearance and reactive oxygen species (ROS) generations in the coronary artery smooth muscle cells in chronic heart failure (HF) have not been fully investigated. Therefore, we attempted to understand the gene expressions underlying the mishandling of calcium clearance and the accumulations of ROS. METHODS We initially established an animal model of chronic HF by making the left anterior descending coronary artery ligation (CAL) in rats, and then isolated the coronary artery vascular smooth muscle cells from the ischemic and the nonischemic parts of the coronary artery vessels in 12 weeks after CAL operation. The intracellular calcium concentration and ROS level were measured using flow cytometry, and the gene expressions of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), encoding sarcoplasmic reticulum Ca2+-ATPase 2a, encoding sodium-calcium exchanger (NCX), and p47phox encoding a subunit of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were examined using real-time quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS We found that the calcium accumulation and ROS generation in the coronary artery smooth muscle cells isolated from either the ischemic or the nonischemic part of the CAL coronary artery vessel were significantly increased irrespective of blood supply (all P < 0.01). Moreover, these were accompanied by the increased expressions of NCX and p47phox, the decreased expression of SERCA2a, and the increased amount of phosphorylated forms of p47phox in NADPH oxidase (all P < 0.05). CONCLUSIONS Our results demonstrated that the disordered calcium clearance and the increased ROS generation occurred in the coronary artery smooth muscle cells in rats with chronic HF produced by ligation of the left anterior descending coronary artery (CAL), and which was found to be disassociated from blood supply, and the increased generation of ROS in the cells was found to make concomitancy to the increased activity of NADPH oxidase in cytoplasm.
Collapse
Affiliation(s)
- Liang Ding
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xian-Xiu Su
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Wen-Hui Zhang
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Yu-Xiang Xu
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xue-Feng Pan
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Biological Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Tsvetkov D, Kaßmann M, Tano JY, Chen L, Schleifenbaum J, Voelkl J, Lang F, Huang Y, Gollasch M. Do K V 7.1 channels contribute to control of arterial vascular tone? Br J Pharmacol 2016; 174:150-162. [PMID: 28000293 DOI: 10.1111/bph.13665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE KV 7.1 voltage-gated potassium channels are expressed in vascular smooth muscle cells (VSMC) of diverse arteries, including mesenteric arteries. Based on pharmacological evidence using R-L3 (KV 7.1 channel opener), HMR1556, chromanol 293B (KV 7.1 channel blockers), stimulation of these channels has been suggested to evoke profound relaxation in various vascular beds of rats. However, the specificity of these drugs in vivo is uncertain. EXPERIMENTAL APPROACH We used Kcnq1-/- mice and pharmacological tools to determine whether KV 7.1 channels play a role in the regulation of arterial tone. KEY RESULTS R-L3 produced similar concentration-dependent relaxations (EC50 ~ 1.4 μM) of arteries from wild-type (Kcnq1+/+ ) and Kcnq1-/- mice, pre-contracted with either phenylephrine or 60 mM KCl. This relaxation was not affected by 10 μM chromanol 293B, 10 μM HMR1556 or 30 μM XE991 (pan-KV 7 channel blocker). The anti-contractile effects of the perivascular adipose tissue (PVAT) were normal in Kcnq1-/- arteries. Chromanol 293B and HMR1556 did not affect the anti-contractile effects of (PVAT). Isolated VSMCs from Kcnq1-/- mice exhibited normal peak KV currents. The KV 7.2-5 channel opener retigabine caused similar relaxations in Kcnq1-/- and wild-type vessels. CONCLUSION AND IMPLICATIONS We conclude that KV 7.1 channels were apparently not involved in the control of arterial tone by α1 -adrenoceptor agonists and PVAT. In addition, R-L3 is an inappropriate pharmacological tool for studying the function of native vascular KV 7.1 channels in mice.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jean-Yves Tano
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lan Chen
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Xiamen Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Johanna Schleifenbaum
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jakob Voelkl
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Cardiology, Vascular Medicine and Physiology, University of Tübingen, Tübingen, Germany
| | - Yu Huang
- School of Biomedical Sciences, 223A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Medical Clinic for Nephrology and Internal Intensive Care, Campus Virchow, Charité University Medicine, Berlin, Germany
| |
Collapse
|
23
|
Hashad AM, Mazumdar N, Romero M, Nygren A, Bigdely-Shamloo K, Harraz OF, Puglisi JL, Vigmond EJ, Wilson SM, Welsh DG. Interplay among distinct Ca 2+ conductances drives Ca 2+ sparks/spontaneous transient outward currents in rat cerebral arteries. J Physiol 2016; 595:1111-1126. [PMID: 27805790 DOI: 10.1113/jp273329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Distinct Ca2+ channels work in a coordinated manner to grade Ca2+ spark/spontaneous transient outward currents (STOCs) in rat cerebral arteries. The relative contribution of each Ca2+ channel to Ca2+ spark/STOC production depends upon their biophysical properties and the resting membrane potential of smooth muscle. Na+ /Ca2+ exchanger, but not TRP channels, can also facilitate STOC production. ABSTRACT Ca2+ sparks are generated in a voltage-dependent manner to initiate spontaneous transient outward currents (STOCs), events that moderate arterial constriction. In this study, we defined the mechanisms by which membrane depolarization increases Ca2+ sparks and subsequent STOC production. Using perforated patch clamp electrophysiology and rat cerebral arterial myocytes, we monitored STOCs in the presence and absence of agents that modulate Ca2+ entry. Beginning with CaV 3.2 channel inhibition, Ni2+ was shown to decrease STOC frequency in cells held at hyperpolarized (-40 mV) but not depolarized (-20 mV) voltages. In contrast, nifedipine, a CaV 1.2 inhibitor, markedly suppressed STOC frequency at -20 mV but not -40 mV. These findings aligned with the voltage-dependent profiles of L- and T-type Ca2+ channels. Furthermore, computational and experimental observations illustrated that Ca2+ spark production is intimately tied to the activity of both conductances. Intriguingly, this study observed residual STOC production at depolarized voltages that was independent of CaV 1.2 and CaV 3.2. This residual component was insensitive to TRPV4 channel modulation and was abolished by Na+ /Ca2+ exchanger blockade. In summary, our work highlights that the voltage-dependent triggering of Ca2+ sparks/STOCs is not tied to a single conductance but rather reflects an interplay among multiple Ca2+ permeable pores with distinct electrophysiological properties. This integrated orchestration enables smooth muscle to grade Ca2+ spark/STOC production and thus precisely tune negative electrical feedback.
Collapse
Affiliation(s)
- Ahmed M Hashad
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada
| | - Neil Mazumdar
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Monica Romero
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Anders Nygren
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Bigdely-Shamloo
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Jose L Puglisi
- California Northstate University College of Medicine, CA, USA
| | - Edward J Vigmond
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.,LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France
| | - Sean M Wilson
- Department of Basic Sciences, Division of Pharmacology, Loma Linda University, CA, USA
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
25
|
NFAT5 moves to Fat City. J Mol Med (Berl) 2016; 94:967-9. [PMID: 27520842 DOI: 10.1007/s00109-016-1456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
26
|
Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The Role of DPO-1 and XE991-Sensitive Potassium Channels in Perivascular Adipose Tissue-Mediated Regulation of Vascular Tone. Front Physiol 2016; 7:335. [PMID: 27540364 PMCID: PMC4973012 DOI: 10.3389/fphys.2016.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
The anti-contractile effect of perivascular adipose tissue (PVAT) is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated KV (KCNQ) channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular KV channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca(2+) activated BKCa channels and/or voltage-dependent KV1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1). In this study, we tested whether KV1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding KV1.5 and BKCa channels, in helping to identify the nature of K(+) channels that could contribute to PVAT-mediated relaxation. XE991 at 30 μM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE) in the absence of PVAT. Similar effects were observed for XE991 at 0.3 μM, which is known to almost completely inhibit mesenteric artery VSMC KV currents. 30 μM XE991 did not affect BKCa currents in VSMCs. Kcna5 (-/-) arteries and wild-type arteries incubated with 1 μM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. KV current density and inhibition by 30 μM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5 (-/-) mice. We conclude that KV channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive KV1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other KV channels in the phenomenon.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Jean-Yves Tano
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Ning Wang
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Rudolf Schubert
- Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim of the University Heidelberg Mannheim, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research CentresBerlin, Germany; Medical Clinic for Nephrology and Internal Intensive Care, Charité University MedicineBerlin, Germany
| |
Collapse
|
27
|
Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X, Chen C, He WQ, Qiao YN, Tao T, Sun J, Peng YJ, Lu P, Zheng K, Craige SM, Lifshitz LM, Keaney JF, Fogarty KE, ZhuGe R, Zhu MS. The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun 2016; 7:11358. [PMID: 27101932 PMCID: PMC4844698 DOI: 10.1038/ncomms11358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. The molecular basis of the basal tone generated by internal anal sphincters (IAS) is largely unknown. Here, the authors show that the tone arises from a global rise in intracellular Ca2+ in smooth muscle cells via a Ryanodine receptor-TMEM16A-L-type Ca2+ channel-MLC kinase pathway, suggesting a potential therapy for IAS motility disorders.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Dong-Hai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei-Qi He
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,CAM-SU Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yan-Ning Qiao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ya-Jing Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siobhan M Craige
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - John F Keaney
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Innovation Center for Cardiovascular Disorders, Beijing 100029, China
| |
Collapse
|
28
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
29
|
Mercado J, Baylie R, Navedo MF, Yuan C, Scott JD, Nelson MT, Brayden JE, Santana LF. Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle. ACTA ACUST UNITED AC 2014; 143:559-75. [PMID: 24778429 PMCID: PMC4003184 DOI: 10.1085/jgp.201311050] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiotensin signaling promotes interactions between AKAP150, PKC, and TRPV4 channels to form signaling domains that control Ca2+ influx into arterial myocytes. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.
Collapse
Affiliation(s)
- Jose Mercado
- Department of Physiology & Biophysics and 2 Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tano JY, Gollasch M. Calcium-activated potassium channels in ischemia reperfusion: a brief update. Front Physiol 2014; 5:381. [PMID: 25339909 PMCID: PMC4186282 DOI: 10.3389/fphys.2014.00381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/13/2014] [Indexed: 12/24/2022] Open
Abstract
Ischemia and reperfusion (IR) injury constitutes one of the major causes of cardiovascular morbidity and mortality. The discovery of new therapies to block/mediate the effects of IR is therefore an important goal in the biomedical sciences. Dysfunction associated with IR involves modification of calcium-activated potassium channels (KCa) through different mechanisms, which are still under study. Respectively, the KCa family, major contributors to plasma membrane calcium influx in cells and essential players in the regulation of the vascular tone are interesting candidates. This family is divided into two groups including the large conductance (BKCa) and the small/intermediate conductance (SKCa/IKCa) K(+) channels. In the heart and brain, these channels have been described to offer protection against IR injury. BKCa and SKCa channels deserve special attention since new data demonstrate that these channels are also expressed in mitochondria. More studies are however needed to fully determine their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Jean-Yves Tano
- Experimental and Clinical Research Center, Charité University Medicine - Max Delbrück Center (MDC) for Molecular Medicine Berlin, Germany ; Nephrology/Intensive Care Section, Charité University Medicine Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, Charité University Medicine - Max Delbrück Center (MDC) for Molecular Medicine Berlin, Germany ; Nephrology/Intensive Care Section, Charité University Medicine Berlin, Germany
| |
Collapse
|
31
|
Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 2014; 115:650-61. [PMID: 25085940 DOI: 10.1161/circresaha.114.304056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE T-type (CaV3.1/CaV3.2) Ca(2+) channels are expressed in rat cerebral arterial smooth muscle. Although present, their functional significance remains uncertain with findings pointing to a variety of roles. OBJECTIVE This study tested whether CaV3.2 channels mediate a negative feedback response by triggering Ca(2+) sparks, discrete events that initiate arterial hyperpolarization by activating large-conductance Ca(2+)-activated K(+) channels. METHODS AND RESULTS Micromolar Ni(2+), an agent that selectively blocks CaV3.2 but not CaV1.2/CaV3.1, was first shown to depolarize/constrict pressurized rat cerebral arteries; no effect was observed in CaV3.2(-/-) arteries. Structural analysis using 3-dimensional tomography, immunolabeling, and a proximity ligation assay next revealed the existence of microdomains in cerebral arterial smooth muscle which comprised sarcoplasmic reticulum and caveolae. Within these discrete structures, CaV3.2 and ryanodine receptor resided in close apposition to one another. Computational modeling revealed that Ca(2+) influx through CaV3.2 could repetitively activate ryanodine receptor, inducing discrete Ca(2+)-induced Ca(2+) release events in a voltage-dependent manner. In keeping with theoretical observations, rapid Ca(2+) imaging and perforated patch clamp electrophysiology demonstrated that Ni(2+) suppressed Ca(2+) sparks and consequently spontaneous transient outward K(+) currents, large-conductance Ca(2+)-activated K(+) channel mediated events. Additional functional work on pressurized arteries noted that paxilline, a large-conductance Ca(2+)-activated K(+) channel inhibitor, elicited arterial constriction equivalent, and not additive, to Ni(2+). Key experiments on human cerebral arteries indicate that CaV3.2 is present and drives a comparable response to moderate constriction. CONCLUSIONS These findings indicate for the first time that CaV3.2 channels localize to discrete microdomains and drive ryanodine receptor-mediated Ca(2+) sparks, enabling large-conductance Ca(2+)-activated K(+) channel activation, hyperpolarization, and attenuation of cerebral arterial constriction.
Collapse
Affiliation(s)
- Osama F Harraz
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rasha R Abd El-Rahman
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Kamran Bigdely-Shamloo
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Sean M Wilson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Suzanne E Brett
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Monica Romero
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Albert L Gonzales
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Scott Earley
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Edward J Vigmond
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Anders Nygren
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Bijoy K Menon
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Rania E Mufti
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tim Watson
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Yves Starreveld
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Tobias Furstenhaupt
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Philip R Muellerleile
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - David T Kurjiaka
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Barry D Kyle
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Andrew P Braun
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.)
| | - Donald G Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes (O.F.H., R.R.A.E.-R., K.B.-S., S.E.B., R.E.M., B.D.K., A.P.B., D.G.W.), Department of Electrical and Computer Engineering (K.B.-S., E.J.V., A.N.), Department of Clinical Neurosciences (B.K.M., T.W., Y.S.), and Microscopy Imaging Facility (T.F.), University of Calgary, Calgary, Alberta, Canada; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt (O.F.H.); Division of Pharmacology, Loma Linda University, CA (S.M.W., M.R.); Department of Biomedical Sciences, Colorado State University, Fort Collins (A.L.G.); Department of Pharmacology, University of Nevada, Reno (S.E.); LIRYC Institute and Lab IMB, University of Bordeaux, Bordeaux, France (E.J.V.); and Department of Biomedical Sciences, Grand Valley State University, Allendale, MI (P.R.M., D.T.K.). dwelsh@ucalgary
| |
Collapse
|
32
|
Schleifenbaum J, Kassmann M, Szijártó IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 2014; 115:263-72. [PMID: 24838176 DOI: 10.1161/circresaha.115.302882] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular wall stretch is the major stimulus for the myogenic response of small arteries to pressure. The molecular mechanisms are elusive, but recent findings suggest that G protein-coupled receptors can elicit a stretch response. OBJECTIVE To determine whether angiotensin II type 1 receptors (AT1R) in vascular smooth muscle cells exert mechanosensitivity and identify the downstream ion channel mediators of myogenic vasoconstriction. METHODS AND RESULTS We used mice deficient in AT1R signaling molecules and putative ion channel targets, namely AT1R, angiotensinogen, transient receptor potential channel 6 (TRPC6) channels, or several subtypes of the voltage-gated K+ (Kv7) gene family (KCNQ3, 4, or 5). We identified a mechanosensing mechanism in isolated mesenteric arteries and in the renal circulation that relies on coupling of the AT1R subtype a to a Gq/11 protein as a critical event to accomplish the myogenic response. Arterial mechanoactivation occurs after pharmacological block of AT1R and in the absence of angiotensinogen or TRPC6 channels. Activation of AT1R subtype a by osmotically induced membrane stretch suppresses an XE991-sensitive Kv channel current in patch-clamped vascular smooth muscle cells, and similar concentrations of XE991 enhance mesenteric and renal myogenic tone. Although XE991-sensitive KCNQ3, 4, and 5 channels are expressed in vascular smooth muscle cells, XE991-sensitive K+ current and myogenic contractions persist in arteries deficient in these channels. CONCLUSIONS Our results provide definitive evidence that myogenic responses of mouse mesenteric and renal arteries rely on ligand-independent, mechanoactivation of AT1R subtype a. The AT1R subtype a signal relies on an ion channel distinct from TRPC6 or KCNQ3, 4, or 5 to enact vascular smooth muscle cell activation and elevated vascular resistance.
Collapse
Affiliation(s)
- Johanna Schleifenbaum
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Mario Kassmann
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - István András Szijártó
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Hantz C Hercule
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Jean-Yves Tano
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Stefanie Weinert
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Matthias Heidenreich
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Asif R Pathan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Yoland-Marie Anistan
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Natalia Alenina
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Nancy J Rusch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Michael Bader
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Thomas J Jentsch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.)
| | - Maik Gollasch
- From the Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC), Berlin, Germany (J.S., M.K., I.A.S., H.C.H., J.-Y.T., Y.-M.A., M.G.); Max Delbrück Center for Molecular Medicine, Berlin, Germany (S.W., M.H., N.A., M.B., T.J.J.); Department Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (S.W., M.H., T.J.J.); Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (A.R.P., N.J.R.); and Broad Institute of MIT and Harvard, Cambridge, MA (M.H.).
| |
Collapse
|
33
|
Kudryavtseva O, Herum KM, Dam VS, Straarup MS, Kamaev D, Briggs Boedtkjer DM, Matchkov VV, Aalkjær C. Downregulation of L-type Ca2+ channel in rat mesenteric arteries leads to loss of smooth muscle contractile phenotype and inward hypertrophic remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H1287-301. [DOI: 10.1152/ajpheart.00503.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-type Ca2+ channels (LTCCs) are important for vascular smooth muscle cell (VSMC) contraction, as well as VSMC differentiation, as indicated by loss of LTCCs during VSMC dedifferentiation. However, it is not clear whether loss of LTCCs is a primary event underlying phenotypic modulation or whether loss of LTCCs has significance for vascular structure. We used small interference RNA (siRNA) transfection in vivo to investigate the role of LTCCs in VSMC phenotypic expression and structure of rat mesenteric arteries. siRNA reduced LTCC mRNA and protein expression in rat mesenteric arteries 3 days after siRNA transfection to 12.7 ± 0.7% and 47.3 ± 13%, respectively: this was associated with an increased resting intracellular Ca2+ concentration ([Ca2+]i). Despite the high [Ca2+]i, the contractility was reduced (tension development to norepinephrine was 3.5 ± 0.2 N/m and 0.8 ± 0.2 N/m for sham-transfected and downregulated arteries respectively; P < 0.05). Expression of contractile phenotype marker genes was reduced in arteries downregulated for LTCCs. Phenotypic changes were associated with a 45% increase in number of VSMCs and a consequent increase of media thickness and media area. Ten days after siRNA transfection arterial structure was again normalized. The contractile responses of LTCC-siRNA transfected arteries were elevated in comparison with matched controls 10 days after transfection. The study provides strong evidence for causal relationships between LTCC expression and VSMC contractile phenotype, as well as novel data addressing the complex relationship between VSMC contractility, phenotype, and vascular structure. These findings are relevant for understanding diseases, associated with phenotype changes of VSMC and vascular remodeling, such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Olga Kudryavtseva
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | - Kate Møller Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Vibeke Secher Dam
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | - Dmitry Kamaev
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| | | | | | - Christian Aalkjær
- Department of Biomedicine, Membranes, Aarhus University, Aarhus C, Denmark; and
| |
Collapse
|
34
|
Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014; 94:303-26. [PMID: 24382889 DOI: 10.1152/physrev.00016.2013] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The L-type Cav1.2 calcium channel is present throughout the animal kingdom and is essential for some aspects of CNS function, cardiac and smooth muscle contractility, neuroendocrine regulation, and multiple other processes. The L-type CaV1.2 channel is built by up to four subunits; all subunits exist in various splice variants that potentially affect the biophysical and biological functions of the channel. Many of the CaV1.2 channel properties have been analyzed in heterologous expression systems including regulation of the L-type CaV1.2 channel by Ca(2+) itself and protein kinases. However, targeted mutations of the calcium channel genes confirmed only some of these in vitro findings. Substitution of the respective serines by alanine showed that β-adrenergic upregulation of the cardiac CaV1.2 channel did not depend on the phosphorylation of the in vitro specified amino acids. Moreover, well-established in vitro phosphorylation sites of the CaVβ2 subunit of the cardiac L-type CaV1.2 channel were found to be irrelevant for the in vivo regulation of the channel. However, the molecular basis of some kinetic properties, such as Ca(2+)-dependent inactivation and facilitation, has been approved by in vivo mutagenesis of the CaV1.2α1 gene. This article summarizes recent findings on the in vivo relevance of well-established in vitro results.
Collapse
|
35
|
Navedo MF, Amberg GC. Local regulation of L-type Ca²⁺ channel sparklets in arterial smooth muscle. Microcirculation 2013; 20:290-8. [PMID: 23116449 DOI: 10.1111/micc.12021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
Abstract
This review addresses the latest advances in our understanding of the regulation of a novel Ca²⁺ signal called L-type Ca²⁺ channel sparklets in arterial smooth muscle. L-type Ca²⁺ channel sparklets are elementary Ca²⁺ influx events produced by the opening of a single or a small cluster of L-type Ca²⁺ channels. These Ca²⁺ signals were first visualized in the vasculature in arterial smooth muscle cells. In these cells, L-type Ca²⁺ channel sparklets display two functionally distinct gating modalities that regulate local and global [Ca²⁺](i). The activity of L-type Ca²⁺ channel sparklets varies regionally within a cell depending on the dynamic activity of a cohort of protein kinases and phosphatases recruited to L-type Ca²⁺ channels in the arterial smooth muscle sarcolemma in a complex coordinated by the scaffolding molecule AKAP150. We also described a mechanism whereby clusters of L-type Ca²⁺ channels gate cooperatively to amplify intracellular Ca²⁺ signals with likely pathological consequences.
Collapse
Affiliation(s)
- Manuel F Navedo
- Department of Pharmacology, University of California, Davis, California, USA.
| | | |
Collapse
|
36
|
Balasubramanian L, Lo CM, Sham JSK, Yip KP. Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. Am J Physiol Cell Physiol 2013; 304:C382-91. [PMID: 23325413 DOI: 10.1152/ajpcell.00234.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It was previously demonstrated in isolated renal vascular smooth muscle cells (VSMCs) that integrin-mediated mechanotransduction triggers intracellular Ca(2+) mobilization, which is the hallmark of myogenic response in VSMCs. To test directly whether integrin-mediated mechanotransduction results in the myogenic response-like behavior in renal VSMCs, cell traction force microscopy was used to monitor cell traction force when the cells were pulled with fibronectin-coated or low density lipoprotein (LDL)-coated paramagnetic beads. LDL-coated beads were used as a control for nonintegrin-mediated mechanotransduction. Pulling with LDL-coated beads increased the cell traction force by 61 ± 12% (9 cells), which returned to the prepull level after the pulling process was terminated. Pulling with noncoated beads had a minimal increase in the cell traction force (12 ± 9%, 8 cells). Pulling with fibronectin-coated beads increased the cell traction force by 56 ± 20% (7 cells). However, the cell traction force was still elevated by 23 ± 14% after the pulling process was terminated. This behavior is analogous to the changes of vascular resistance in pressure-induced myogenic response, in which vascular resistance remains elevated after myogenic constriction. Fibronectin is a native ligand for α(5)β(1)-integrins in VSMCs. Similar remanent cell traction force was found when cells were pulled with beads coated with β(1)-integrin antibody (Ha2/5). Activation of β(1)-integrin with soluble antibody also triggered variations of cell traction force and Ca(2+) mobilization, which were abolished by the Src inhibitor. In conclusion, mechanical force transduced by α(5)β(1)-integrins triggered a myogenic response-like behavior in isolated renal VSMCs.
Collapse
Affiliation(s)
- Lavanya Balasubramanian
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
37
|
Rueda A, Fernández-Velasco M, Benitah JP, Gómez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 2013; 8:e53321. [PMID: 23301060 PMCID: PMC3536748 DOI: 10.1371/journal.pone.0053321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
Diabetes is a major risk factor for stroke. However, the molecular mechanisms involved in cerebral artery dysfunction found in the diabetic patients are not completely elucidated. In cerebral artery smooth muscle cells (CASMCs), spontaneous and local increases of intracellular Ca2+ due to the opening of ryanodine receptors (Ca2+ sparks) activate large conductance Ca2+-activated K+ (BK) channels that generate spontaneous transient outward currents (STOCs). STOCs have a key participation in the control of vascular myogenic tone and blood pressure. Our goal was to investigate whether alterations in Ca(2+) spark and STOC activities, measured by confocal microscopy and patch-clamp technique, respectively, occur in isolated CASMCs of an experimental model of type-2 diabetes (db/db mouse). We found that mean Ca(2+) spark amplitude, duration, size and rate-of-rise were significantly smaller in Fluo-3 loaded db/db compared to control CASMCs, with a subsequent decrease in the total amount of Ca(2+) released through Ca(2+) sparks in db/db CASMCs, though Ca(2+) spark frequency remained. Interestingly, the frequency of large-amplitude Ca(2+) sparks was also significantly reduced in db/db cells. In addition, the frequency and amplitude of STOCs were markedly reduced at all voltages tested (from -50 to 0 mV) in db/db CASMCs. The latter correlates with decreased BK channel β1/α subunit ratio found in db/db vascular tissues. Taken together, Ca(2+) spark alterations lead to inappropriate BK channels activation in CASMCs of db/db mice and this condition is aggravated by the decrease in the BK β1 subunit/α subunit ratio which underlies the significant reduction of Ca(2+) spark/STOC coupling in CASMCs of diabetic animals.
Collapse
Affiliation(s)
- Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- * E-mail: (AMG); (AR)
| | - María Fernández-Velasco
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jean-Pierre Benitah
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
- * E-mail: (AMG); (AR)
| |
Collapse
|
38
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
39
|
Navedo MF, Santana LF. CaV1.2 sparklets in heart and vascular smooth muscle. J Mol Cell Cardiol 2012; 58:67-76. [PMID: 23220157 DOI: 10.1016/j.yjmcc.2012.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
CaV1.2 sparklets are local elevations in intracellular Ca(2+) ([Ca(2+)]i) resulting from the opening of a single or small cluster of voltage-gated, dihydropyridine-sensitive CaV1.2 channels. Activation of CaV1.2 sparklets is an early event in the signaling cascade that couples membrane depolarization to contraction (i.e., excitation-contraction coupling) in cardiac and arterial smooth muscle. Here, we review recent work on the molecular and biophysical mechanisms that regulate CaV1.2 sparklet activity in these cells. CaV1.2 sparklet activity is tightly regulated by a cohort of protein kinases and phosphatases that are targeted to specific regions of the sarcolemma by the anchoring protein AKAP150. We discuss a model for the local control of Ca(2+) influx via CaV1.2 channels in which a signaling complex formed by AKAP79/150, protein kinase C, protein kinase A, and calcineurin regulates the activity of individual CaV1.2 channels and also facilitates the coordinated activation of small clusters of these channels. This results in amplification of Ca(2+) influx, which strengthens excitation-contraction coupling in cardiac and vascular smooth muscle.
Collapse
Affiliation(s)
- Manuel F Navedo
- Department of Pharmacology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
40
|
Westcott EB, Goodwin EL, Segal SS, Jackson WF. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. J Physiol 2012; 590:1849-69. [PMID: 22331418 DOI: 10.1113/jphysiol.2011.222083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca(2+) imaging of smooth muscle cells (SMCs) revealed Ca(2+) sparks and Ca(2+) waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca(2+) and myogenic tone. In arterioles, SMCs exhibited only Ca(2+) waves that were insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca(2+)-activated K(+) channels (BK(Ca)) in SMCs of arteries, whereas BK(Ca) appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca(2+) waves, global Ca(2+) and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP(3)R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP(3)R1>>IP(3)R2>IP(3)R3. Despite similar expression of IP(3)Rs and dependence of Ca(2+) waves on IP(3)Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
41
|
Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schülein R, Jensen BL, Loddenkemper C, Jankowski V, Marcussen N, Gollasch M, Arendshorst WJ, Tepel M. The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol 2011; 32:378-85. [PMID: 22155451 DOI: 10.1161/atvbaha.111.241018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Syndecan 4 (Sdc4) modulates signal transduction and regulates activity of protein channels. Sdc4 is essential for the regulation of cellular permeability. We hypothesized that Sdc4 may regulate transient receptor potential canonical 6 (TRPC6) channels, a determinant of glomerular permeability, in a RhoA/Rho-associated protein kinase-dependent manner. METHODS AND RESULTS Sdc4 knockout (Sdc4(-/-)) mice showed increased glomerular filtration rate and ameliorated albuminuria under baseline conditions and after bovine serum albumin overload (each P<0.05). Using reverse transcription-polymerase chain reaction and immunoblotting, Sdc4(-/-) mice showed reduced TRPC6 mRNA by 79% and TRPC6 protein by 82% (each P<0.05). Sdc4(-/-) mice showed an increased RhoA activity by 87% and increased phosphorylation of ezrin in glomeruli by 48% (each P<0.05). Sdc4 knockdown in cultured podocytes reduced TRPC6 gene expression and reduced the association of TRPC6 with plasma membrane and TRPC6-mediated calcium influx and currents. Sdc4 knockdown inactivated negative regulatory protein Rho GTPase activating protein by 33%, accompanied by a 41% increase in RhoA activity and increased phosphorylation of ezrin (P<0.05). Conversely, overexpression of Sdc4 reduced RhoA activity and increased TRPC6 protein and TRPC6-mediated calcium influx and currents. CONCLUSIONS Our results establish a previously unknown function of Sdc4 for regulation of TRPC6 channels and support the role of Sdc4 for the regulation of glomerular permeability.
Collapse
Affiliation(s)
- Ying Liu
- Odense University Hospital and University of Southern Denmark, Institute for Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, Winsløwparken 21.3, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takeda Y, Nystoriak MA, Nieves-Cintrón M, Santana LF, Navedo MF. Relationship between Ca2+ sparklets and sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial smooth muscle. Am J Physiol Heart Circ Physiol 2011; 301:H2285-94. [PMID: 21984539 PMCID: PMC3233819 DOI: 10.1152/ajpheart.00488.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.
Collapse
Affiliation(s)
- Yukari Takeda
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
43
|
Schmidt K, Dubrovska G, Nielsen G, Fesüs G, Uhrenholt TR, Hansen PB, Gudermann T, Dietrich A, Gollasch M, de Wit C, Köhler R. Amplification of EDHF-type vasodilatations in TRPC1-deficient mice. Br J Pharmacol 2011; 161:1722-33. [PMID: 20718731 DOI: 10.1111/j.1476-5381.2010.00985.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE TRPC1 channels are expressed in the vasculature and are putative candidates for intracellular Ca(2+) handling. However, little is known about their role in endothelium-dependent vasodilatations including endothelium-derived hyperpolarizing factor (EDHF) vasodilatations, which require activation of Ca(2+) -activated K(+) channels (K(Ca)). To provide molecular information on the role of TRPC1 for K(Ca) function and the EDHF signalling complex, we examined endothelium-dependent and independent vasodilatations, K(Ca) currents and smooth muscle contractility in TRPC1-deficient mice (TRPC1-/-). EXPERIMENTAL APPROACH Vascular responses were studied using pressure/wire myography and intravital microscopy. We performed electrophysiological measurements, and confocal Ca(2+) imaging for studying K(Ca) channel functions and Ca(2+) sparks. KEY RESULTS TRPC1 deficiency in carotid arteries produced a twofold augmentation of TRAM-34- and UCL1684-sensitive EDHF-type vasodilatations and of endothelial hyperpolarization to acetylcholine. NO-mediated vasodilatations were unchanged. TRPC1-/- exhibited enhanced EDHF-type vasodilatations in resistance-sized arterioles in vivo associated with reduced spontaneous tone. Endothelial IK(Ca) /SK(Ca)-type K(Ca) currents, smooth muscle cell Ca(2+) sparks and associated BK(Ca)-mediated spontaneous transient outward currents were unchanged in TRPC1-/-. Smooth muscle contractility induced by receptor-operated Ca(2+) influx or Ca(2+) release and endothelium-independent vasodilatations were unaltered in TRPC1-/-. TRPC1-/- exhibited lower systolic blood pressure as determined by tail-cuff blood pressure measurements. CONCLUSIONS AND IMPLICATIONS Our data demonstrate that TRPC1 acts as a negative regulator of endothelial K(Ca) channel-dependent EDHF-type vasodilatations and thereby contributes to blood pressure regulation. Thus, we propose a specific role of TRPC1 in the EDHF-K(Ca) signalling complex and suggest that pharmacological inhibition of TRPC1, by enhancing EDHF vasodilatations, may be a novel strategy for lowering blood pressure.
Collapse
Affiliation(s)
- Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 2011; 300:H1616-30. [PMID: 21357503 DOI: 10.1152/ajpheart.00728.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
45
|
Santana LF, Navedo MF. Natural inequalities: why some L-type Ca2+ channels work harder than others. ACTA ACUST UNITED AC 2010; 136:143-7. [PMID: 20660657 PMCID: PMC2912067 DOI: 10.1085/jgp.200910391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Luis F Santana
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
46
|
Vaithianathan T, Narayanan D, Asuncion-Chin MT, Jeyakumar LH, Liu J, Fleischer S, Jaggar JH, Dopico AM. Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 2010; 299:C264-78. [PMID: 20445169 PMCID: PMC2928634 DOI: 10.1152/ajpcell.00318.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 05/04/2010] [Indexed: 11/22/2022]
Abstract
Ryanodine receptors (RyRs) regulate contractility in resistance-size cerebral artery smooth muscle, yet their molecular identity, subcellular location, and phenotype in this tissue remain unknown. Following rat resistance-size cerebral artery myocyte sarcoplasmic reticulum (SR) purification and incorporation into POPE-POPS-POPC (5:3:2; wt/wt) bilayers, unitary conductances of 110 +/- 8, 334 +/- 15, and 441 +/- 27 pS in symmetric 300 mM Cs(+) were usually detected. The most frequent (34/40 bilayers) conductance (334 pS) decreased to
Collapse
Affiliation(s)
- Thirumalini Vaithianathan
- Department Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle. J Biomed Biotechnol 2009; 2009:135249. [PMID: 20029633 PMCID: PMC2793424 DOI: 10.1155/2009/135249] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/22/2009] [Indexed: 11/17/2022] Open
Abstract
Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs), calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular [Ca2+] and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular [Ca2+] and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMC Ca(v)1.2 L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling between Ca(v)1.2 and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk between Ca(v)1.1/Ca(v)1.2 L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.
Collapse
|
48
|
Kirschstein T, Rehberg M, Bajorat R, Tokay T, Porath K, Köhling R. High K+-induced contraction requires depolarization-induced Ca2+ release from internal stores in rat gut smooth muscle. Acta Pharmacol Sin 2009; 30:1123-31. [PMID: 19578389 DOI: 10.1038/aps.2009.98] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM Depolarization-induced contraction of smooth muscle is thought to be mediated by Ca2+ influx through voltage-gated L-type Ca2+channels. We describe a novel contraction mechanism that is independent of Ca2+ entry. METHODS Pharmacological experiments were carried out on isolated rat gut longitudinal smooth muscle preparations, measuring isometric contraction strength upon high K+-induced depolarization. RESULTS Treatment with verapamil, which presumably leads to a conformational change in the channel, completely abolished K+-induced contraction, while residual contraction still occurred when Ca2+ entry was blocked with Cd2+. These results were further confirmed by measuring intracellular Ca2+ transients using Fura-2. Co-application of Cd2+ and the ryanodine receptor blocker DHBP further reduced contraction, albeit incompletely. Additional blockage of either phospholipase C (U 73122) or inositol 1,4,5-trisphophate (IP3)receptors (2-APB) abolished most contractions, while sole application of these blockers and Cd2+ (without parallel ryanodine receptor manipulation) also resulted in incomplete contraction block. CONCLUSION We conclude that there are parallel mechanisms of depolarization-induced smooth muscle contraction via (a) Ca2+ entry and (b) Ca2+ entry-independent, depolarization-induced Ca2+-release through ryanodine receptors and IP3, with the latter being dependent on phospholipase C activation.
Collapse
|
49
|
Hofmann F, Bernhard D, Lukowski R, Weinmeister P. cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 2008:137-62. [PMID: 19089329 DOI: 10.1007/978-3-540-68964-5_8] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes--prkg1 and prkg2--code for cGKs, namely cGKI and cGKII. In mammals, two isozymes, cGKIalpha and cGKIbeta, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxta-glomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondreal bone growth. cGKs are also modulators of cell growth and many other functions.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie der Technischen Universität, Biedersteiner Str. 29, München, 80802, Germany.
| | | | | | | |
Collapse
|
50
|
Hegner B, Lange M, Kusch A, Essin K, Sezer O, Schulze-Lohoff E, Luft FC, Gollasch M, Dragun D. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler Thromb Vasc Biol 2008; 29:232-8. [PMID: 19074484 DOI: 10.1161/atvbaha.108.179457] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMCs) and circulating mesenchymal progenitor cells (MSCs) with a VSMC phenotype contribute to neointima formation and lumen loss after angioplasty and during allograft arteriosclerosis. We hypothesized that phosphoinositol-Akt-mammalian target of rapamycin-p70S6 kinase (PI3K/Akt/mTOR/p70S6K) pathway activation regulates VSMC differentiation from MSCs. METHODS AND RESULTS We studied effects of PI3K/Akt/mTOR signaling on phenotypic modulation of MSC and VSMC marker expression, including L-type Ca(2+) channels. Phosphorylation of Akt and p70S6K featured downregulation of VSMC markers in dedifferentiated MSCs. mTOR inhibition with rapamycin at below pharmacological concentrations blocked p70S6K phosphorylation and induced a differentiated contractile phenotype with smooth muscle (sm)-calponin, sm-alpha-actin, and SM protein 22-alpha (SM22alpha) expression. The PI3K inhibitor Ly294002 abolished Akt and p70S6K phosphorylation and reversed the dedifferentiated phenotype via induction of sm-calponin, sm-alpha-actin, SM22alpha, and myosin light chain kinase. Rapamycin acted antiproliferative without impairing MSC viability. In VSMCs, rapamycin increased a homing chemokine for MSCs, stromal cell-derived factor-1-alpha, at mRNA and protein levels. The CXCR4-mediated MSC migration toward conditioned medium of rapamycin-treated VSMCs was enhanced. CONCLUSIONS We describe novel pleiotropic effects of rapamycin at very low concentrations that stabilized differentiated contractile VSMCs from MSCs in addition to exerting antiproliferative and enhanced homing effects.
Collapse
Affiliation(s)
- Björn Hegner
- Clinic for Nephrology and Intensive Care Medicine, Charité Campus Virchow Klinihum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|