1
|
Wei J, Li L, Song H, Du Z, Yang J, Zhang M, Liu X. Response of a neuronal network computational model to infrared neural stimulation. Front Comput Neurosci 2022; 16:933818. [PMID: 36045903 PMCID: PMC9423709 DOI: 10.3389/fncom.2022.933818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Infrared neural stimulation (INS), as a novel form of neuromodulation, allows modulating the activity of nerve cells through thermally induced capacitive currents and thermal sensitivity ion channels. However, fundamental questions remain about the exact mechanism of INS and how the photothermal effect influences the neural response. Computational neural modeling can provide a powerful methodology for understanding the law of action of INS. We developed a temperature-dependent model of ion channels and membrane capacitance based on the photothermal effect to quantify the effect of INS on the direct response of individual neurons and neuronal networks. The neurons were connected through excitatory and inhibitory synapses and constituted a complex neuronal network model. Our results showed that a slight increase in temperature promoted the neuronal spikes and enhanced network activity, whereas the ultra-temperature inhibited neuronal activity. This biophysically based simulation illustrated the optical dose-dependent biphasic cell response with capacitive current as the core change condition. The computational model provided a new sight to elucidate mechanisms and inform parameter selection of INS.
Collapse
Affiliation(s)
- Jinzhao Wei
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Licong Li
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- Licong Li
| | - Hao Song
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Zhaoning Du
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Jianli Yang
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research at BNU, Beijing Normal University, Beijing, China
- Division of Psychology, Beijing Normal University, Beijing, China
| | - Xiuling Liu
- Key Laboratory of Digital Medical Engineering of Hebei, Hebei University, Baoding, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
- *Correspondence: Xiuling Liu
| |
Collapse
|
2
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
3
|
Krinner S, Predoehl F, Burfeind D, Vogl C, Moser T. RIM-Binding Proteins Are Required for Normal Sound-Encoding at Afferent Inner Hair Cell Synapses. Front Mol Neurosci 2021; 14:651935. [PMID: 33867935 PMCID: PMC8044855 DOI: 10.3389/fnmol.2021.651935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The afferent synapses between inner hair cells (IHC) and spiral ganglion neurons are specialized to faithfully encode sound with sub-millisecond precision over prolonged periods of time. Here, we studied the role of Rab3 interacting molecule-binding proteins (RIM-BP) 1 and 2 – multidomain proteins of the active zone known to directly interact with RIMs, Bassoon and CaV1.3 – in IHC presynaptic function and hearing. Recordings of auditory brainstem responses and otoacoustic emissions revealed that genetic disruption of RIM-BPs 1 and 2 in mice (RIM-BP1/2–/–) causes a synaptopathic hearing impairment exceeding that found in mice lacking RIM-BP2 (RIM-BP2–/–). Patch-clamp recordings from RIM-BP1/2–/– IHCs indicated a subtle impairment of exocytosis from the readily releasable pool of synaptic vesicles that had not been observed in RIM-BP2–/– IHCs. In contrast, the reduction of Ca2+-influx and sustained exocytosis was similar to that in RIMBP2–/– IHCs. We conclude that both RIM-BPs are required for normal sound encoding at the IHC synapse, whereby RIM-BP2 seems to take the leading role.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Friederike Predoehl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Dinah Burfeind
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Vogl
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Van Hook MJ. Temperature effects on synaptic transmission and neuronal function in the visual thalamus. PLoS One 2020; 15:e0232451. [PMID: 32353050 PMCID: PMC7192487 DOI: 10.1371/journal.pone.0232451] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous neuronal properties including the synaptic vesicle release process, neurotransmitter receptor complement, and postsynaptic ion channels are involved in transforming synaptic inputs into postsynaptic spiking. Temperature is a significant influencer of neuronal function and synaptic integration. Changing temperature can affect neuronal physiology in a diversity of ways depending on how it affects different members of the cell’s ion channel complement. Temperature’s effects on neuronal function are critical for pathological states such as fever, which can trigger seizure activity, but are also important in interpreting and comparing results of experiments conducted at room vs physiological temperature. The goal of this study was to examine the influence of temperature on synaptic properties and ion channel function in thalamocortical (TC) relay neurons in acute brain slices of the dorsal lateral geniculate nucleus, a key synaptic target of retinal ganglion cells in the thalamus. Warming the superfusate in patch clamp experiments with acutely-prepared brain slices led to an overall inhibition of synaptically-driven spiking behavior in TC neurons in response to a retinal ganglion cell spike train. Further study revealed that this was associated with an increase in presynaptic synaptic vesicle release probability and synaptic depression and altered passive and active membrane properties. Additionally, warming the superfusate triggered activation of an inwardly rectifying potassium current and altered the voltage-dependence of voltage-gated Na+ currents and T-type calcium currents. This study highlights the importance of careful temperature control in ex vivo physiological experiments and illustrates how numerous properties such as synaptic inputs, active conductances, and passive membrane properties converge to determine spike output.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail: ,
| |
Collapse
|
5
|
Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. Clustered Ca 2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses. Cell Rep 2019; 25:3451-3464.e3. [PMID: 30566869 DOI: 10.1016/j.celrep.2018.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.
Collapse
Affiliation(s)
- Philippe F Y Vincent
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Soyoun Cho
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA; The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margot Tertrais
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Yohan Bouleau
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | | | - Didier Dulon
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France.
| |
Collapse
|
6
|
Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner. Sci Rep 2019; 9:11341. [PMID: 31383906 PMCID: PMC6683208 DOI: 10.1038/s41598-019-47487-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.
Collapse
|
7
|
How to Build a Fast and Highly Sensitive Sound Detector That Remains Robust to Temperature Shifts. J Neurosci 2019; 39:7260-7276. [PMID: 31315946 DOI: 10.1523/jneurosci.2510-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Frogs must have sharp hearing abilities during the warm summer months to successfully find mating partners. This study aims to understand how frog hair cell ribbon-type synapses preserve both sensitivity and temporal precision during temperature changes. Under room (∼24°C) and high (∼32°C) temperature, we performed in vitro patch-clamp recordings of hair cells and their afferent fibers in amphibian papillae of either male or female bullfrogs. Afferent fibers exhibited a wide heterogeneity in membrane input resistance (Rin) from 100 mΩ to 1000 mΩ, which may contribute to variations in spike threshold and firing frequency. At higher temperatures, most fibers increased their frequency of spike firing due to an increase in spontaneous EPSC frequencies. Hair cell resting membrane potential (Vrest) remained surprisingly stable during temperature increases, because Ca2+ influx and K+ outflux increased simultaneously. This increase in Ca2+ current likely enhanced spontaneous EPSC frequencies. These larger "leak currents" at Vrest also lowered Rin and produced higher electrical resonant frequencies. Lowering Rin will reduce the hair cells receptor potential and presumably moderate the systems sensitivity. Using membrane capacitance measurements, we suggest that hair cells can partially compensate for this reduced sensitivity by increasing exocytosis efficiency and the size of the readily releasable pool of synaptic vesicles. Furthermore, paired recordings of hair cells and their afferent fibers showed that synaptic delays shortened and multivesicular release becomes more synchronous at higher temperatures, which should improve temporal precision. Together, our results explain many previous in vivo observations on the temperature dependence of spikes in auditory nerves.SIGNIFICANCE STATEMENT The vertebrate inner ear detects and transmits auditory information over a broad dynamic range of sound frequency and intensity. It achieves remarkable sensitivity to soft sounds and precise frequency selectivity. How does the ear of cold-blooded vertebrates maintain its performance level as temperature changes? More specifically, how does the hair cell to afferent fiber synapse in bullfrog amphibian papilla adjust to a wide range of physiological temperatures without losing its sensitivity and temporal fidelity to sound signals? This study uses in vitro experiments to reveal the biophysical mechanisms that explain many observations made from in vivo auditory nerve fiber recordings. We find that higher temperature facilitates vesicle exocytosis and electrical tuning to higher sound frequencies, which benefits sensitivity and selectivity.
Collapse
|
8
|
Xia Q, Nyberg T. Inhibition of cortical neural networks using infrared laser. JOURNAL OF BIOPHOTONICS 2019; 12:e201800403. [PMID: 30859700 DOI: 10.1002/jbio.201800403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 05/18/2023]
Abstract
The aim of the present study is to optimize parameters for inhibiting neuronal activity safely and investigating thermal inhibition of rat cortex neural networks in vitro by continuous infrared (IR) laser. Rat cortex neurons were cultured on multi-electrode arrays until neural networks were formed with spontaneous neural activity. Neurons were then irradiated to inhibit the activity of the networks using different powers of 1550 nm IR laser light. A finite element heating model, calibrated by the open glass pipette method, was used to calculate temperature increases at different laser irradiation intensities. A damage signal ratio (DSR) was evaluated to avoid excessive heating that may damage cells. The DSR predicted that cortex neurons should be safe at temperatures up to 49.6°C for 30 seconds, but experiments suggested that cortex neurons should not be exposed to temperatures over 46°C for 30 seconds. Neural response experiments showed that the inhibition of neural activity is temperature dependent. The normal neural activity could be inhibited safely with an inhibition degree up to 80% and induced epileptiform activity could be suppressed. These results show that continuous IR laser radiations provide a possible way to safely inhibit the neural network activity.
Collapse
Affiliation(s)
- Qingling Xia
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tobias Nyberg
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
9
|
Chanaday NL, Kavalali ET. Time course and temperature dependence of synaptic vesicle endocytosis. FEBS Lett 2018; 592:3606-3614. [DOI: 10.1002/1873-3468.13268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| | - Ege T. Kavalali
- Department of Pharmacology; Vanderbilt Brain Institute; Vanderbilt University; Nashville TN USA
| |
Collapse
|
10
|
Yao CK, Liu YT, Lee IC, Wang YT, Wu PY. A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis. PLoS Biol 2017; 15:e2000931. [PMID: 28414717 PMCID: PMC5393565 DOI: 10.1371/journal.pbio.2000931] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis.
Collapse
Affiliation(s)
- Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Neuroscience Program in Academia Sinica, Academia Sinica, Nankang, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yu-Tzu Liu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - I-Chi Lee
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - You-Tung Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Yen Wu
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
11
|
Different Ca V1.3 Channel Isoforms Control Distinct Components of the Synaptic Vesicle Cycle in Auditory Inner Hair Cells. J Neurosci 2017; 37:2960-2975. [PMID: 28193694 DOI: 10.1523/jneurosci.2374-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022] Open
Abstract
The mechanisms orchestrating transient and sustained exocytosis in auditory inner hair cells (IHCs) remain largely unknown. These exocytotic responses are believed to mobilize sequentially a readily releasable pool of vesicles (RRP) underneath the synaptic ribbons and a slowly releasable pool of vesicles (SRP) at farther distance from them. They are both governed by Cav1.3 channels and require otoferlin as Ca2+ sensor, but whether they use the same Cav1.3 isoforms is still unknown. Using whole-cell patch-clamp recordings in posthearing mice, we show that only a proportion (∼25%) of the total Ca2+ current in IHCs displaying fast inactivation and resistance to 20 μm nifedipine, a l-type Ca2+ channel blocker, is sufficient to trigger RRP but not SRP exocytosis. This Ca2+ current is likely conducted by short C-terminal isoforms of Cav1.3 channels, notably Cav1.342A and Cav1.343S, because their mRNA is highly expressed in wild-type IHCs but poorly expressed in Otof-/- IHCs, the latter having Ca2+ currents with considerably reduced inactivation. Nifedipine-resistant RRP exocytosis was poorly affected by 5 mm intracellular EGTA, suggesting that the Cav1.3 short isoforms are closely associated with the release site at the synaptic ribbons. Conversely, our results suggest that Cav1.3 long isoforms, which carry ∼75% of the total IHC Ca2+ current with slow inactivation and confer high sensitivity to nifedipine and to internal EGTA, are essentially involved in recruiting SRP vesicles. Intracellular Ca2+ imaging showed that Cav1.3 long isoforms support a deep intracellular diffusion of Ca2+SIGNIFICANCE STATEMENT Auditory inner hair cells (IHCs) encode sounds into nerve impulses through fast and indefatigable Ca2+-dependent exocytosis at their ribbon synapses. We show that this synaptic process involves long and short C-terminal isoforms of the Cav1.3 Ca2+ channel that differ in the kinetics of their Ca2+-dependent inactivation and their relative sensitivity to the l-type Ca2+ channel blocker nifedipine. The short C-terminal isoforms, having fast inactivation and low sensitivity to nifedipine, mainly control the fast fusion of the readily releasable pool (RRP); that is, they encode the phasic exocytotic component. The long isoforms, with slow inactivation and great sensitivity to nifedipine, mainly regulate the vesicular replenishment of the RRP; that is, the sustained or tonic exocytosis.
Collapse
|
12
|
The Coupling between Ca 2+ Channels and the Exocytotic Ca 2+ Sensor at Hair Cell Ribbon Synapses Varies Tonotopically along the Mature Cochlea. J Neurosci 2017; 37:2471-2484. [PMID: 28154149 PMCID: PMC5354352 DOI: 10.1523/jneurosci.2867-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
The cochlea processes auditory signals over a wide range of frequencies and intensities. However, the transfer characteristics at hair cell ribbon synapses are still poorly understood at different frequency locations along the cochlea. Using recordings from mature gerbils, we report here a surprisingly strong block of exocytosis by the slow Ca2+ buffer EGTA (10 mM) in basal hair cells tuned to high frequencies (∼30 kHz). In addition, using recordings from gerbil, mouse, and bullfrog auditory organs, we find that the spatial coupling between Ca2+ influx and exocytosis changes from nanodomain in low-frequency tuned hair cells (∼<2 kHz) to progressively more microdomain in high-frequency cells (∼>2 kHz). Hair cell synapses have thus developed remarkable frequency-dependent tuning of exocytosis: accurate low-latency encoding of onset and offset of sound intensity in the cochlea's base and submillisecond encoding of membrane receptor potential fluctuations in the apex for precise phase-locking to sound signals. We also found that synaptic vesicle pool recovery from depletion was sensitive to high concentrations of EGTA, suggesting that intracellular Ca2+ buffers play an important role in vesicle recruitment in both low- and high-frequency hair cells. In conclusion, our results indicate that microdomain coupling is important for exocytosis in high-frequency hair cells, suggesting a novel hypothesis for why these cells are more susceptible to sound-induced damage than low-frequency cells; high-frequency inner hair cells must have a low Ca2+ buffer capacity to sustain exocytosis, thus making them more prone to Ca2+-induced cytotoxicity. SIGNIFICANCE STATEMENT In the inner ear, sensory hair cells signal reception of sound. They do this by converting the sound-induced movement of their hair bundles present at the top of these cells, into an electrical current. This current depolarizes the hair cell and triggers the calcium-induced release of the neurotransmitter glutamate that activates the postsynaptic auditory fibers. The speed and precision of this process enables the brain to perceive the vital components of sound, such as frequency and intensity. We show that the coupling strength between calcium channels and the exocytosis calcium sensor at inner hair cell synapses changes along the mammalian cochlea such that the timing and/or intensity of sound is encoded with high precision.
Collapse
|
13
|
Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1. eNeuro 2016; 3:eN-NWR-0295-16. [PMID: 28058271 PMCID: PMC5197407 DOI: 10.1523/eneuro.0295-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022] Open
Abstract
Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5′ untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli.
Collapse
|
14
|
Strenzke N, Chakrabarti R, Al-Moyed H, Müller A, Hoch G, Pangrsic T, Yamanbaeva G, Lenz C, Pan KT, Auge E, Geiss-Friedlander R, Urlaub H, Brose N, Wichmann C, Reisinger E. Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants. EMBO J 2016; 35:2519-2535. [PMID: 27729456 DOI: 10.15252/embj.201694564] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
The multi-C2 domain protein otoferlin is required for hearing and mutated in human deafness. Some OTOF mutations cause a mild elevation of auditory thresholds but strong impairment of speech perception. At elevated body temperature, hearing is lost. Mice homozygous for one of these mutations, OtofI515T/I515T, exhibit a moderate hearing impairment involving enhanced adaptation to continuous or repetitive sound stimulation. In OtofI515T/I515T inner hair cells (IHCs), otoferlin levels are diminished by 65%, and synaptic vesicles are enlarged. Exocytosis during prolonged stimulation is strongly reduced. This indicates that otoferlin is critical for the reformation of properly sized and fusion-competent synaptic vesicles. Moreover, we found sustained exocytosis and sound encoding to scale with the amount of otoferlin at the plasma membrane. We identified a 20 amino acid motif including an RXR motif, presumably present in human but not in mouse otoferlin, which reduces the plasma membrane abundance of Ile515Thr-otoferlin. Together, this likely explains the auditory synaptopathy at normal temperature and the temperature-sensitive deafness in humans carrying the Ile515Thr mutation.
Collapse
Affiliation(s)
- Nicola Strenzke
- Auditory Systems Physiology Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany
| | - Rituparna Chakrabarti
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Hanan Al-Moyed
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany.,Molecular Biology of Cochlear Neurotransmission Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Müller
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany.,Molecular Biology of Cochlear Neurotransmission Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and German Primate Center, Göttingen, Germany
| | - Tina Pangrsic
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gulnara Yamanbaeva
- Auditory Systems Physiology Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Elisabeth Auge
- Auditory Systems Physiology Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ruth Geiss-Friedlander
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany .,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ellen Reisinger
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", Göttingen, Germany .,Molecular Biology of Cochlear Neurotransmission Group, Department for Otolaryngology and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Exocytosis at the inner hair cell ribbon synapse is achieved through the functional coupling between calcium channels and glutamate-filled synaptic vesicles. Using membrane capacitance measurements, we investigated whether the actin network regulates the exocytosis of synaptic vesicles at the mouse auditory hair cell. Our results suggest that actin network disruption increases exocytosis and that actin filaments may spatially organize a subfraction of synaptic vesicles with respect to the calcium channels. Significance statement: Inner hair cells (IHCs), the auditory sensory cells of the cochlea, release glutamate onto the afferent auditory nerve fibers to encode sound stimulation. To achieve this task, the IHC relies on the recruitment of glutamate-filled vesicles that can be located in close vicinity to the calcium channels or more remotely from them. The molecular determinants responsible for organizing these vesicle pools are not fully identified. Using pharmacological tools in combination with membrane capacitance measurements, we show that actin filament disruption increases exocytosis in IHCs and that actin filaments most likely position a fraction of vesicles away from the calcium channels.
Collapse
|
16
|
Zhang Q, Lan L, Shi W, Yu L, Xie LY, Xiong F, Zhao C, Li N, Yin Z, Zong L, Guan J, Wang D, Sun W, Wang Q. Temperature sensitive auditory neuropathy. Hear Res 2016; 335:53-63. [PMID: 26778470 DOI: 10.1016/j.heares.2016.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Temperature sensitive auditory neuropathy is a very rare and puzzling disorder. In the present study, we reported three unrelated 2 to 6 year-old children who were diagnosed as auditory neuropathy patients who complained of severe hearing loss when they had fever. Their hearing thresholds varied from the morning to the afternoon. Two of these patients' hearing improved with age, and one patient received positive results from cochlear implant. Genetic analysis revealed that these three patients had otoferlin (OTOF) homozygous or compound heterozygous mutations with the genotypes c.2975_2978delAG/c.4819C>T, c.4819C>T/c.4819C>T, or c.2382_2383delC/c.1621G>A, respectively. Our study suggests that these gene mutations may be the cause of temperature sensitive auditory neuropathy. The long term follow up results suggest that the hearing loss in this type of auditory neuropathy may recover with age.
Collapse
Affiliation(s)
- Qiujing Zhang
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Lan Lan
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Wei Shi
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Lan Yu
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Lin-Yi Xie
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Fen Xiong
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Cui Zhao
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Na Li
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Zifang Yin
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Liang Zong
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Jing Guan
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Dayong Wang
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| | - Wei Sun
- Department of Communicative Disorders & Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY 14215, USA.
| | - Qiuju Wang
- Department of Otolaryngology/Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
17
|
Chamberland S, Evstratova A, Tóth K. Interplay between synchronization of multivesicular release and recruitment of additional release sites support short-term facilitation at hippocampal mossy fiber to CA3 pyramidal cells synapses. J Neurosci 2014; 34:11032-47. [PMID: 25122902 PMCID: PMC6705252 DOI: 10.1523/jneurosci.0847-14.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/07/2014] [Accepted: 06/27/2014] [Indexed: 11/21/2022] Open
Abstract
Synaptic short-term plasticity is a key regulator of neuronal communication and is controlled via various mechanisms. A well established property of mossy fiber to CA3 pyramidal cell synapses is the extensive short-term facilitation during high-frequency bursts. We investigated the mechanisms governing facilitation using a combination of whole-cell electrophysiological recordings, electrical minimal stimulation, and random-access two-photon microscopy in acute mouse hippocampal slices. Two distinct presynaptic mechanisms were involved in short-term facilitation, with their relative contribution dependent on extracellular calcium concentration. The synchronization of multivesicular release was observed during trains of facilitating EPSCs recorded in 1.2 mM external Ca(2+) ([Ca(2+)]e). Indeed, covariance analysis revealed a gradual augmentation in quantal size during trains of EPSCs, and application of the low-affinity glutamate receptor antagonist γ-D-glutamylglycine showed an increase in cleft glutamate concentration during paired-pulse stimulation. Whereas synchronization of multivesicular release contributed to the facilitation in 1.2 mM [Ca(2+)]e, variance-mean analysis showed that recruitment of more release sites (N) was likely to account for the larger facilitation observed in 2.5 mM [Ca(2+)]e. Furthermore, this increase in N could be promoted by calcium microdomains of heterogeneous amplitudes observed in single mossy fiber boutons. Our findings suggest that the combination of multivesicular release and the recruitment of additional release sites act together to increase glutamate release during burst activity. This is supported by the compartmentalized spatial profile of calcium elevations in boutons and helps to expand the dynamic range of mossy fibers information transfer.
Collapse
Affiliation(s)
- Simon Chamberland
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Laval University, Quebec City, Quebec, Canada, G1J 2G3
| | - Alesya Evstratova
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Laval University, Quebec City, Quebec, Canada, G1J 2G3
| | - Katalin Tóth
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Laval University, Quebec City, Quebec, Canada, G1J 2G3
| |
Collapse
|
18
|
Abstract
Synaptic vesicle recycling sustains high rates of neurotransmission at the ribbon-type active zones (AZs) of mouse auditory inner hair cells (IHCs), but its modes and molecular regulation are poorly understood. Electron microscopy indicated the presence of clathrin-mediated endocytosis (CME) and bulk endocytosis. The endocytic proteins dynamin, clathrin, and amphiphysin are expressed and broadly distributed in IHCs. We used confocal vglut1-pHluorin imaging and membrane capacitance (Cm) measurements to study the spatial organization and dynamics of IHC exocytosis and endocytosis. Viral gene transfer expressed vglut1-pHluorin in IHCs and targeted it to synaptic vesicles. The intravesicular pH was ∼6.5, supporting only a modest increase of vglut1-pHluorin fluorescence during exocytosis and pH neutralization. Ca(2+) influx triggered an exocytic increase of vglut1-pHluorin fluorescence at the AZs, around which it remained for several seconds. The endocytic Cm decline proceeded with constant rate (linear component) after exocytosis of the readily releasable pool (RRP). When exocytosis exceeded three to four RRP equivalents, IHCs additionally recruited a faster Cm decline (exponential component) that increased with the amount of preceding exocytosis and likely reflects bulk endocytosis. The dynamin inhibitor Dyngo-4a and the clathrin blocker pitstop 2 selectively impaired the linear component of endocytic Cm decline. A missense mutation of dynamin 1 (fitful) inhibited endocytosis to a similar extent as Dyngo-4a. We propose that IHCs use dynamin-dependent endocytosis via CME to support vesicle cycling during mild stimulation but recruit bulk endocytosis to balance massive exocytosis.
Collapse
|
19
|
Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea. Proc Natl Acad Sci U S A 2014; 111:1999-2004. [PMID: 24429348 DOI: 10.1073/pnas.1319615111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development.
Collapse
|
20
|
Temperature enhances activation and inactivation kinetics of potassium currents in inner hair cells isolated from Guinea-pig cochlea. Clin Exp Otorhinolaryngol 2013; 6:140-5. [PMID: 24069516 PMCID: PMC3781226 DOI: 10.3342/ceo.2013.6.3.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 11/12/2022] Open
Abstract
Objectives Until recently, most patch-clamp recordings in inner hair cells (IHCs) have been performed at room temperature. The results acquired at room temperature should be corrected if they are to be related to in vivo findings. However, the temperature dependency to ion channels in IHCs is unknown. The aim of this study was to investigate the effect of temperature on the potassium currents in IHCs. Methods IHCs were isolated from a mature guinea-pig cochlea and potassium currents were recorded at room temperature (around 25℃) and physiological temperatures (35℃-37℃). Results IHCs showed outwardly rectifying currents in response to depolarizing voltage pulses, with only a slight inward current when hyperpolarized. The amplitude of both outward and inward currents demonstrated no temperature dependency, however, activation and inactivation rates were faster at 36℃ than at room temperature. Half-time for activation was shorter at 36℃ than at room temperature at membrane potentials of -10, +10, +20, +30, and +40 mV. Q10 for the activation rate was 1.83. The inactivation time constant in outward tetraethylammonium-sensitive potassium currents was much smaller at 36℃ than at room temperature between the membrane potentials of -20 and +60 mV. Q10 for the inactivation time constant was 3.19. Conclusion The results of this study suggest that the amplitude of potassium currents in IHCs showed no temperature dependence either in outward or inward-going currents, however, activation and inactivation accelerated at physiological temperatures.
Collapse
|
21
|
Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, Knipper M, Holley MC, Marcotti W. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 2012; 7:e45732. [PMID: 23029208 PMCID: PMC3446918 DOI: 10.1371/journal.pone.0045732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022] Open
Abstract
Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca2+ action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (CaV1.3) Ca2+ current (ICa), IHCs also transiently express a large Na+ current (INa). We aimed to investigate the specific contribution of INa to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of INa differ between low- and high-frequency IHCs. We show that INa is highly temperature-dependent and activates at around −60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (−55 mV/−60 mV). However, in vivo the availability of INa could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as −70 mV. When IHCs were held at −60 mV and INa elicited using a simulated action potential as a voltage command, we found that INa contributed to the subthreshold depolarization and upstroke of an action potential. We also found that INa is likely to be carried by the TTX-sensitive channel subunits NaV1.1 and NaV1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of INa in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ksenya Varakina
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Christoph Franz
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephanie Kuhn
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| |
Collapse
|
22
|
Kennedy HJ. New developments in understanding the mechanisms and function of spontaneous electrical activity in the developing mammalian auditory system. J Assoc Res Otolaryngol 2012; 13:437-45. [PMID: 22526733 DOI: 10.1007/s10162-012-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/25/2012] [Indexed: 01/12/2023] Open
Abstract
In the mature mammalian auditory system, inner hair cells are responsible for converting sound-evoked vibrations into graded electrical responses, resulting in release of neurotransmitter and neuronal transmission via the VIIIth cranial nerve to auditory centres in the central nervous system. Before the cochlea can reliably respond to sound, inner hair cells are not merely immature quiescent pre-hearing cells, but instead are capable of generating 'spontaneous' calcium-based action potentials. The resulting calcium signal promotes transmitter release that drives action potential firing in developing spiral ganglion neurones. These early signalling events that occur before sound-evoked activity are thought to be important in guiding and refining the initial phases of development of the auditory circuits. This review will summarise our current knowledge of the mechanisms that underlie spontaneous action potentials in developing inner hair cells and how these events are triggered and regulated.
Collapse
Affiliation(s)
- Helen J Kennedy
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
23
|
El Ouardi A, Streckert J, Bitz A, Münkner S, Engel J, Hansen V. New fin-line devices for radiofrequency exposure of small biological samples in vitro allowing whole-cell patch clamp recordings. Bioelectromagnetics 2011; 32:102-12. [PMID: 21225887 DOI: 10.1002/bem.20621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/04/2010] [Indexed: 11/06/2022]
Abstract
The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin-line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately P(in) = 50 mW, P(in) = 19 mW, and P(in) = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF-induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10% from the intended solution volume yielded a calculated SAR deviation of 8% from the desired value. A maximum ±10% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located.
Collapse
|
24
|
Matthews G, Fuchs P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 2010; 11:812-22. [PMID: 21045860 DOI: 10.1038/nrn2924] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sensory synapses of the visual and auditory systems must faithfully encode a wide dynamic range of graded signals, and must be capable of sustained transmitter release over long periods of time. Functionally and morphologically, these sensory synapses are unique: their active zones are specialized in several ways for sustained, rapid vesicle exocytosis, but their most striking feature is an organelle called the synaptic ribbon, which is a proteinaceous structure that extends into the cytoplasm at the active zone and tethers a large pool of releasable vesicles. But precisely how does the ribbon function to support tonic release at these synapses? Recent genetic and biophysical advances have begun to open the 'black box' of the synaptic ribbon with some surprising findings and promise to resolve its function in vision and hearing.
Collapse
Affiliation(s)
- Gary Matthews
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA.
| | | |
Collapse
|
25
|
Tang LS, Goeritz ML, Caplan JS, Taylor AL, Fisek M, Marder E. Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol 2010; 8. [PMID: 20824168 PMCID: PMC2930868 DOI: 10.1371/journal.pbio.1000469] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD), Lateral Pyloric (LP), and Pyloric (PY) neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10) approximately 2.3) as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10)'s of the input conductance, synaptic currents, transient outward current (I(A)), and the hyperpolarization-activated inward current (I(h)), all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances) of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10)'s close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10)'s of the processes that contribute to temperature compensation of neuronal circuits.
Collapse
Affiliation(s)
- Lamont S. Tang
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Marie L. Goeritz
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jonathan S. Caplan
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Adam L. Taylor
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mehmet Fisek
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance MM, Puel JL. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 2008; 83:278-92. [PMID: 18674745 PMCID: PMC2495073 DOI: 10.1016/j.ajhg.2008.07.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/20/2008] [Accepted: 07/11/2008] [Indexed: 11/27/2022] Open
Abstract
Autosomal-dominant sensorineural hearing loss is genetically heterogeneous, with a phenotype closely resembling presbycusis, the most common sensory defect associated with aging in humans. We have identified SLC17A8, which encodes the vesicular glutamate transporter-3 (VGLUT3), as the gene responsible for DFNA25, an autosomal-dominant form of progressive, high-frequency nonsyndromic deafness. In two unrelated families, a heterozygous missense mutation, c.632C-->T (p.A211V), was found to segregate with DFNA25 deafness and was not present in 267 controls. Linkage-disequilibrium analysis suggested that the families have a distant common ancestor. The A211 residue is conserved in VGLUT3 across species and in all human VGLUT subtypes (VGLUT1-3), suggesting an important functional role. In the cochlea, VGLUT3 accumulates glutamate in the synaptic vesicles of the sensory inner hair cells (IHCs) before releasing it onto receptors of auditory-nerve terminals. Null mice with a targeted deletion of Slc17a8 exon 2 lacked auditory-nerve responses to acoustic stimuli, although auditory brainstem responses could be elicited by electrical stimuli, and robust otoacoustic emissions were recorded. Ca(2+)-triggered synaptic-vesicle turnover was normal in IHCs of Slc17a8 null mice when probed by membrane capacitance measurements at 2 weeks of age. Later, the number of afferent synapses, spiral ganglion neurons, and lateral efferent endings below sensory IHCs declined. Ribbon synapses remaining by 3 months of age had a normal ultrastructural appearance. We conclude that deafness in Slc17a8-deficient mice is due to a specific defect of vesicular glutamate uptake and release and that VGLUT3 is essential for auditory coding at the IHC synapse.
Collapse
Affiliation(s)
- Jérôme Ruel
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | - Sarah Emery
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI 48109-5241, USA
| | - Régis Nouvian
- InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, University of Goettingen Medical School, Goettingen 37075, Germany
| | - Tiphaine Bersot
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | | | - Jana M. Van Rybroek
- Department of Otolaryngology and Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Guy Rebillard
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | - Marc Lenoir
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | - Michel Eybalin
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | - Benjamin Delprat
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| | - Theru A. Sivakumaran
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI 48109-5241, USA
| | - Bruno Giros
- Inserm U 513, 9 Quai Saint Bernard, 75252 Paris, France
| | | | - Tobias Moser
- InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the Brain, University of Goettingen Medical School, Goettingen 37075, Germany
- Bernstein Center for Computational Neuroscience, University of Goettingen, Goettingen 37075, Germany
| | - Richard J.H. Smith
- Department of Otolaryngology and Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Marci M. Lesperance
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI 48109-5241, USA
| | - Jean-Luc Puel
- Inserm U 583, Institut des Neurosciences, Hôpital Saint Eloi, 34091 Montpellier, France
- Université Montpellier 1, 34091 Montpellier, France
| |
Collapse
|
27
|
Wittig JH, Parsons TD. Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study. J Neurophysiol 2008; 100:1724-39. [PMID: 18667546 DOI: 10.1152/jn.90322.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of first-exocytosis latency with the number of readily releasable vesicles. We developed an experimentally constrained biophysical model to test the hypothesis that ribbons enable temporally precise exocytosis by increasing the readily releasable pool size. Simulations of calcium influx, buffered calcium diffusion, and synaptic vesicle exocytosis were stochastic (Monte Carlo) and yielded spatiotemporal distributions of vesicle fusion consistent with experimental measurements of exocytosis magnitude and first-spike latency of nerve fibers. No single vesicle could drive the auditory nerve with requisite precision, indicating a requirement for multiple readily releasable vesicles. However, plasmalemma-docked vesicles alone did not account for the nerve's precision--the synaptic ribbon was required to retain a pool of readily releasable vesicles sufficiently large to statistically ensure first-exocytosis latency was both short and reproducible. The model predicted that at least 16 readily releasable vesicles were necessary to match the nerve's precision and provided insight into interspecies differences in synaptic anatomy and physiology. We confirmed that ribbon-associated vesicles were required in disparate calcium buffer conditions, irrespective of the number of vesicles required to trigger an action potential. We conclude that one of the simplest functions ascribable to the ribbon--the ability to hold docked vesicles at an active zone--accounts for the synapse's temporal precision.
Collapse
Affiliation(s)
- John H Wittig
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | | |
Collapse
|
28
|
Grant L, Fuchs P. Calcium- and calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea. J Neurophysiol 2008; 99:2183-93. [PMID: 18322004 DOI: 10.1152/jn.01174.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of voltage-gated calcium channels was studied in inner hair cells (IHCs) in an ex vivo preparation of the apical turn of the rat organ of Corti. Whole cell voltage clamp in the presence of potassium channel blockers showed inward calcium currents with millisecond activation and deactivation kinetics. When temperature was raised from 22 to 37 degrees C, the calcium currents of immature IHCs [<12 days postnatal (P12)] increased threefold in amplitude, and developed more pronounced inactivation. This was determined to be calcium-dependent inactivation (CDI) on the basis of its reliance on external calcium (substitution with barium), sensitivity to internal calcium-buffering, and voltage dependence (reflecting the calcium driving force). After the onset of hearing at P12, IHC calcium current amplitude and the extent of inactivation were greatly reduced. Although smaller than in prehearing IHCs, CDI remained significant in the mature IHC near the resting membrane potential. CDI in mature IHCs was enhanced by application of the endoplasmic calcium pump blocker, benzo-hydroquinone. Conversely, CDI in immature IHCs was reduced by calmodulin inhibitors. Thus voltage-gated calcium channels in mammalian IHCs are subject to a calmodulin-mediated process of CDI. The extent of CDI depends on the balance of calcium buffering mechanisms and may be regulated by calmodulin-specific processes. CDI provides a means for the rate of spontaneous transmitter release to be adjusted to variations in hair cell resting potential and steady state calcium influx.
Collapse
Affiliation(s)
- Lisa Grant
- Center for Hearing and Balance, Departmernt of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | |
Collapse
|
29
|
Johnson SL, Marcotti W. Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 2008; 586:1029-42. [PMID: 18174213 PMCID: PMC2268984 DOI: 10.1113/jphysiol.2007.145219] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/11/2007] [Indexed: 12/20/2022] Open
Abstract
The Ca(2+) current (I(Ca)) in prehearing and adult inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, is mainly carried by L-type (Ca(V)1.3) Ca(2+) channels. I(Ca) in immature and adult IHCs triggers the release of neurotransmitter onto auditory afferent fibres in response to spontaneous action potentials (APs) or graded receptor potentials, respectively. We have investigated whether the biophysical properties of I(Ca) vary between low- and high-frequency IHCs during cochlear development and whether its inactivation influences cellular responses. I(Ca) was recorded from gerbil IHCs maintained near physiological recording conditions. The size of I(Ca) in adult IHCs was about a third of that in immature cells with no apparent difference along the cochlea at both stages. The activation kinetics of I(Ca) were significantly faster in high-frequency IHCs, with that of adult cells being more rapid than immature cells. The degree of I(Ca) inactivation was similar along the immature cochlea but larger in high- than low-frequency adult IHCs. This inactivation was greatly reduced with barium but not affected by changing the intracellular buffer (BAPTA instead of EGTA). Immature basal IHCs showed faster recovery of I(Ca) from inactivation than apical cells allowing them to support a higher AP frequency. I(Ca) in adult IHCs was more resistant to progressive inactivation following repeated voltage stimulation than that of immature cells. This suggests that adult IHCs are likely to be suited for sustaining rapid and repeated release of synaptic vesicles, which is essential for sound encoding.
Collapse
Affiliation(s)
- Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|