1
|
Powers SK. Ventilator-induced diaphragm dysfunction: phenomenology and mechanism(s) of pathogenesis. J Physiol 2024; 602:4729-4752. [PMID: 39216087 DOI: 10.1113/jp283860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Holwerda AM, Dirks ML, Barbeau P, Goessens J, Gijsen A, van Loon LJ, Holloway GP. Mitochondrial bioenergetics are not associated with myofibrillar protein synthesis rates. J Cachexia Sarcopenia Muscle 2024; 15:1811-1822. [PMID: 39007407 PMCID: PMC11446679 DOI: 10.1002/jcsm.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Mitochondria represent key organelles influencing cellular homeostasis and have been implicated in the signalling events regulating protein synthesis. METHODS We examined whether mitochondrial bioenergetics (oxidative phosphorylation and reactive oxygen species (H2O2) emission, ROS) measured in vitro in permeabilized muscle fibres represent regulatory factors for integrated daily muscle protein synthesis rates and skeletal muscle mass changes across the spectrum of physical activity, including free-living and bed-rest conditions: n = 19 healthy, young men (26 ± 4 years, 23.4 ± 3.3 kg/m2) and following 12 weeks of resistance-type exercise training: n = 10 healthy older men (70 ± 3 years, 25.2 ± 2.1 kg/m2). Additionally, we evaluated the direct relationship between attenuated mitochondrial ROS emission and integrated daily myofibrillar and sarcoplasmic protein synthesis rates in genetically modified mice (mitochondrial-targeted catalase, MCAT). RESULTS Neither oxidative phosphorylation nor H2O2 emission were associated with muscle protein synthesis rates in healthy young men under free-living conditions or following 1 week of bed rest (both P > 0.05). Greater increases in GSSG concentration were associated with greater skeletal muscle mass loss following bed rest (r = -0.49, P < 0.05). In older men, only submaximal mitochondrial oxidative phosphorylation (corrected for mitochondrial content) was positively associated with myofibrillar protein synthesis rates during exercise training (r = 0.72, P < 0.05). However, changes in oxidative phosphorylation and H2O2 emission were not associated with changes in skeletal muscle mass following training (both P > 0.05). Additionally, MCAT mice displayed no differences in myofibrillar (2.62 ± 0.22 vs. 2.75 ± 0.15%/day) and sarcoplasmic (3.68 ± 0.35 vs. 3.54 ± 0.35%/day) protein synthesis rates when compared with wild-type mice (both P > 0.05). CONCLUSIONS Mitochondrial oxidative phosphorylation and reactive oxygen emission do not seem to represent key factors regulating muscle protein synthesis or muscle mass regulation across the spectrum of physical activity.
Collapse
Affiliation(s)
- Andrew M. Holwerda
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Marlou L. Dirks
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
- Department of Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Pierre‐Andre Barbeau
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| | - Joy Goessens
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annemie Gijsen
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Luc J.C. van Loon
- NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Graham P. Holloway
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
| |
Collapse
|
3
|
Fard D, Barbiera A, Dobrowolny G, Tamagnone L, Scicchitano BM. Semaphorins: Missing Signals in Age-dependent Alteration of Neuromuscular Junctions and Skeletal Muscle Regeneration. Aging Dis 2024; 15:517-534. [PMID: 37728580 PMCID: PMC10917540 DOI: 10.14336/ad.2023.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.
Collapse
Affiliation(s)
- Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy.
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| |
Collapse
|
4
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
5
|
Lee HJ, Choi HJ, Lee SA, Baek DH, Heo JB, Song GY, Lee W. Myogenesis Effects of RGX365 to Improve Skeletal Muscle Atrophy. Nutrients 2023; 15:4307. [PMID: 37836590 PMCID: PMC10574276 DOI: 10.3390/nu15194307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Age-related skeletal muscle atrophy and weakness not only reduce the quality of life of those afflicted, but also worsen the prognosis of underlying diseases. We evaluated the effect of RGX365, a protopanaxatriol-type rare ginsenoside mixture, on improving skeletal muscle atrophy. We investigated the myogenic effect of RGX365 on mouse myoblast cells (C2C12) and dexamethasone (10 µM)-induced atrophy of differentiated C2C12. RGX365-treated myotube diameters and myosin heavy chain (MyHC) expression levels were analyzed using immunofluorescence. We evaluated the myogenic effects of RGX365 in aging sarcopenic mice. RGX365 increased myoblast differentiation and MyHC expression, and attenuated the muscle atrophy-inducing F-box (Atrogin-1) and muscle RING finger 1 (MuRF1) expression. Notably, one month of oral administration of RGX365 to 23-month-old sarcopenic mice improved muscle fiber size and the expression of skeletal muscle regeneration-associated molecules. In conclusion, rare ginsenosides, agonists of steroid receptors, can ameliorate skeletal muscle atrophy during long-term administration.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Hui-Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Sang-Ah Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbruecken, Germany
| | - Dong Hyuk Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.-J.C.); (D.H.B.); (J.B.H.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Ribeiro F, Alves PKN, Bechara LRG, Ferreira JCB, Labeit S, Moriscot AS. Small-Molecule Inhibition of MuRF1 Prevents Early Disuse-Induced Diaphragmatic Dysfunction and Atrophy. Int J Mol Sci 2023; 24:ijms24043637. [PMID: 36835047 PMCID: PMC9965746 DOI: 10.3390/ijms24043637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.
Collapse
Affiliation(s)
- Fernando Ribeiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula K. N. Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luiz R. G. Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-0946
| |
Collapse
|
7
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
8
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Abstract
OBJECTIVES Mechanical ventilation is associated with primary diaphragmatic dysfunction, also termed ventilator-induced diaphragmatic dysfunction. Studies evaluating diaphragmatic function recovery after extubation are lacking. We evaluated early and late recoveries from ventilator-induced diaphragmatic dysfunction in a mouse model. DESIGN Experimental randomized study. SETTING Research laboratory. SUBJECTS C57/BL6 mice. INTERVENTIONS Six groups of C57/BL6 mice. Mice were ventilated for 6 hours and then euthanatized immediately (n = 18), or 1 (n = 18) or 10 days after extubation with (n = 5) and without S107 (n = 16) treatment. Mice euthanatized immediately after 6 hours of anesthesia (n = 15) or after 6 hours of anesthesia and 10 days of recovery (n = 5) served as controls. MEASUREMENTS AND MAIN RESULTS For each group, diaphragm force production, posttranslational modification of ryanodine receptor, oxidative stress, proteolysis, and cross-sectional areas were evaluated. After 6 hours of mechanical ventilation, diaphragm force production was decreased by 25-30%, restored to the control levels 1 day after extubation, and secondarily decreased by 20% 10 days after extubation compared with controls. Ryanodine receptor was protein kinase A-hyperphosphorylated, S-nitrosylated, oxidized, and depleted of its stabilizing subunit calstabin-1 6 hours after the onset of the mechanical ventilation, 1 and 10 days after extubation. Post extubation treatment with S107, a Rycal drug that stabilizes the ryanodine complex, did reverse the loss of diaphragmatic force associated with mechanical ventilation. Total protein oxidation was restored to the control levels 1 day after extubation. Markers of proteolysis including calpain 1 and calpain 2 remained activated 10 days after extubation without significant changes in cross-sectional areas. CONCLUSIONS We report that mechanical ventilation is associated with a late diaphragmatic dysfunction related to a structural alteration of the ryanodine complex that is reversed with the S107 treatment.
Collapse
|
10
|
Yoshihara T, Deminice R, Hyatt HW, Ozdemir M, Nguyen BL, Powers SK. Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction. Clin Transl Sci 2021; 14:1512-1523. [PMID: 33742769 PMCID: PMC8301547 DOI: 10.1111/cts.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mechanical ventilation (MV) is a life‐saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator‐induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin‐angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1‐7 (Ang1‐7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1‐7 protects the diaphragm against MV‐induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1‐7 shielded diaphragm fibers against MV‐induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1‐7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1‐7 has the therapeutic potential to protect against VIDD by preventing MV‐induced contractile dysfunction and atrophy of both slow and fast muscle fibers.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.,Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Acute liver injury following acetaminophen administration does not activate atrophic pathways in the mouse diaphragm. Sci Rep 2021; 11:6302. [PMID: 33737702 PMCID: PMC7973759 DOI: 10.1038/s41598-021-85859-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-acetyl-para-amino phenol (APAP, usually named paracetamol), which is commonly used for its analgesic and antipyretic properties may lead to hepatotoxicity and acute liver damage in case of overdoses. Released cytokines and oxidative stress following acute liver damage may affect other organs' function notably the diaphragm, which is particularly sensitive to oxidative stress and circulating cytokines. We addressed this issue in a mouse model of acute liver injury induced by administration of APAP. C57BL/6J mice (each n = 8) were treated with N-acetyl-para-amino phenol (APAP) to induce acute drug caused liver injury and sacrificed 12 or 24 h afterwards. An untreated group served as controls. Key markers of inflammation, proteolysis, autophagy and oxidative stress were measured in diaphragm samples. In APAP treated animals, liver damage was proven by the enhanced serum levels of alanine aminotransferase and aspartate aminotransferase. In the diaphragm, besides a significant increase in IL 6 and lipid peroxidation, no changes were observed in key markers of the proteolytic, and autophagy signaling pathways, other inflammatory markers and fiber dimensions. The first 24 h of acute liver damage did not impair diaphragm atrophic pathways although it slightly enhanced IL-6 and lipid peroxidation. Whether longer exposure might affect the diaphragm needs to be addressed in future experiments.
Collapse
|
12
|
Hyatt HW, Ozdemir M, Yoshihara T, Nguyen BL, Deminice R, Powers SK. Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction. Redox Biol 2020; 38:101802. [PMID: 33279868 PMCID: PMC7724197 DOI: 10.1016/j.redox.2020.101802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, an unintended consequence of prolonged MV is the rapid development of diaphragmatic atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). Although the mechanism(s) responsible for VIDD are not fully understood, abundant evidence reveals that oxidative stress leading to the activation of the major proteolytic systems (i.e., autophagy, ubiquitin-proteasome, caspase, and calpain) plays a dominant role. Of the proteolytic systems involved in VIDD, calpain has received limited experimental attention due to the longstanding dogma that calpain plays a minor role in inactivity-induced muscle atrophy. Guided by preliminary experiments, we tested the hypothesis that activation of calpains play an essential role in MV-induced oxidative stress and the development of VIDD. This premise was rigorously tested by transgene overexpression of calpastatin, an endogenous inhibitor of calpains. Animals with/without transfection of the calpastatin gene in diaphragm muscle fibers were exposed to 12 h of MV. Results confirmed that overexpression of calpastatin barred MV-induced activation of calpain in diaphragm fibers. Importantly, deterrence of calpain activation protected the diaphragm against MV-induced oxidative stress, fiber atrophy, and contractile dysfunction. Moreover, prevention of calpain activation in the diaphragm forstalled MV-induced mitochondrial dysfunction and prevented MV-induced activation of caspase-3 along with the transcription of muscle specific E3 ligases. Collectively, these results support the hypothesis that calpain activation plays an essential role in the early development of VIDD. Further, these findings provide the first direct evidence that calpain plays an important function in inactivity-induced mitochondrial dysfunction and oxidative stress in skeletal muscle fibers. Inhibiting calpains during mechanical ventilation protects the diaphragm. Calpains play an important role in muscle atrophy and contractile dysfunction. Calpain inhibition during mechanical ventilation prevents mitochondrial dysfunction. Calpain-cleaved molecules may play important signaling roles. Calpain activation cross-talks with other proteolytic systems.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise and Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise Physiology, Juntendo University, Tokyo, Japan
| | - Branden L Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Powers SK, Ozdemir M, Hyatt H. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2020; 33:559-569. [PMID: 31941357 PMCID: PMC7454189 DOI: 10.1089/ars.2019.8000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Skeletal muscles play essential roles in key body functions including breathing, locomotion, and glucose homeostasis; therefore, maintaining healthy skeletal muscles is important. Prolonged periods of muscle inactivity (e.g., bed rest, mechanical ventilation, or limb immobilization) result in skeletal muscle atrophy and weakness. Recent Advances: Disuse skeletal muscle atrophy occurs due to both accelerated proteolysis and decreased protein synthesis with proteolysis playing a leading role in some types of inactivity-induced atrophy. Although all major proteolytic systems are involved in inactivity-induced proteolysis in skeletal muscles, growing evidence indicates that both calpain and autophagy play an important role. Regulation of proteolysis in skeletal muscle is under complex control, but it is established that activation of both calpain and autophagy is directly linked to oxidative stress. Critical Issues: In this review, we highlight the experimental evidence that supports a cause and effect link between reactive oxygen species (ROS) and activation of both calpain and autophagy in skeletal muscle fibers during prolonged inactivity. We also review the sources of oxidant production in muscle fibers during inactivity-induced atrophy, and provide a detailed discussion on how ROS activates both calpain and autophagy during disuse muscle wasting. Future Directions: Future studies are required to delineate the specific mechanisms by which ROS activates both calpain and autophagy in skeletal muscles during prolonged periods of contractile inactivity. This knowledge is essential to develop the most effective strategies to protect against disuse muscle atrophy. Antioxid. Redox Signal. 33, 559-569.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Roy A, Sharma AK, Nellore K, Narkar VA, Kumar A. TAK1 preserves skeletal muscle mass and mitochondrial function through redox homeostasis. FASEB Bioadv 2020; 2:538-553. [PMID: 32923988 PMCID: PMC7475301 DOI: 10.1096/fba.2020-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle atrophy is debilitating consequence of a large number of chronic disease states, aging, and disuse conditions. Skeletal muscle mass is regulated through coordinated activation of a number of signaling cascades. Transforming growth factor-β activated kinase 1 (TAK1) is a central kinase that mediates the activation of multiple signaling pathways in response to various growth factors, cytokines, and microbial products. Accumulating evidence suggests that TAK1 promotes skeletal muscle growth and essential for the maintenance of muscle mass in adults. Targeted inactivation of TAK1 leads to severe muscle wasting and kyphosis in mice. However, the mechanisms by which TAK1 prevents loss of muscle mass remain poorly understood. Through generation of inducible skeletal muscle-specific Tak1-knockout mice, we demonstrate that targeted ablation of TAK1 disrupts redox signaling leading to the accumulation of reactive oxygen species and loss of skeletal muscle mass and contractile function. Suppression of oxidative stress using Trolox improves muscle contractile function and inhibits the activation of catabolic signaling pathways in Tak1-deficient muscle. Moreover, Trolox inhibits the activation of ubiquitin-proteasome system and autophagy markers in skeletal muscle of Tak1-deficient mice. Furthermore, inhibition of oxidative stress using Trolox prevents the slow-to-fast type fiber transition and improves mitochondrial respiration in skeletal muscle of Tak1-deficient mice. Overall, our results demonstrate that TAK1 maintains skeletal muscle mass and health through redox homeostasis.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Aditya K. Sharma
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Kushal Nellore
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Vihang A Narkar
- Center for Metabolic and Degenerative DiseasesInstitute of Molecular MedicineThe University of Texas McGovern Medical SchoolHoustonTXUSA
| | - Ashok Kumar
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| |
Collapse
|
15
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
16
|
Powers SK, Bomkamp M, Ozdemir M, Hyatt H. Mechanisms of exercise-induced preconditioning in skeletal muscles. Redox Biol 2020; 35:101462. [PMID: 32089451 PMCID: PMC7284917 DOI: 10.1016/j.redox.2020.101462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022] Open
Abstract
Endurance exercise training promotes numerous biochemical adaptations within skeletal muscle fibers culminating into a phenotype that is safeguarded against numerous perils including doxorubicin-induced myopathy and inactivity-induced muscle atrophy. This exercise-induced protection of skeletal muscle fibers is commonly termed "exercise preconditioning". This review will discuss the biochemical mechanisms responsible for exercise-induced protection of skeletal muscle fibers against these harmful events. The first segment of this report highlights the evidence that endurance exercise training provides cytoprotection to skeletal muscle fibers against several potentially damaging insults. The second and third sections of the review will discuss the cellular adaptations responsible for exercise-induced protection of skeletal muscle fibers against doxorubicin-provoked damage and inactivity-induced fiber atrophy, respectively. Importantly, we also identify gaps in our understanding of exercise preconditioning in hopes of stimulating future research.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Matthew Bomkamp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA.
| | - Mustafa Ozdemir
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
17
|
Zhou XL, Wei XJ, Li SP, Ma HL, Zhao Y. Lung-protective ventilation worsens ventilator-induced diaphragm atrophy and weakness. Respir Res 2020; 21:16. [PMID: 31924204 PMCID: PMC6954632 DOI: 10.1186/s12931-020-1276-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Lung–protective ventilation (LPV) has been found to minimize the risk of ventilator–induced lung injury (VILI). However, whether LPV is able to diminish ventilator–induced diaphragm dysfunction (VIDD) remains unknown. This study was designed to test the hypothesis that LPV protects the diaphragm against VIDD. Methods Adult male Wistar rats received either conventional mechanical (tidal volume [VT]: 10 ml/kg, positive end–expiratory pressure [PEEP]: 2 cm H2O; CV group) or lung-protective (VT: 5 ml/kg, PEEP: 10 cm H2O; LPV group) ventilation for 12 h. Then, diaphragms and lungs were collected for biochemical and histological analyses. Transcriptome sequencing (RNA–seq) was performed to determine the differentially expressed genes in the diaphragms between groups. Results Our results suggested that LPV was associated with diminished pulmonary injuries and reduced oxidative stress compared with the effects of the CV strategy in rats. However, animals that received LPV showed increased protein degradation, decreased cross–sectional areas (CSAs) of myofibers, and reduced forces of the diaphragm compared with the same parameters in animals receiving CV (p < 0.05). In addition, the LPV group showed a higher level of oxidative stress in the diaphragm than the CV group (p < 0.05). Moreover, RNA–seq and western blots revealed that the peroxisome proliferator–activated receptor γ coactivator–1alpha (PGC–1α), a powerful reactive oxygen species (ROS) inhibitor, was significantly downregulated in the LPV group compared with its expression in the CV group (p < 0.05). Conclusions Compared with the CV strategy, the LPV strategy did not protect the diaphragm against VIDD in rats. In contrast, the LPV strategy worsened VIDD by inducing oxidative stress together with the downregulation of PGC–1α in the diaphragm. However, further studies are required to determine the roles of PGC–1α in ventilator-induced diaphragmatic oxidative stress.
Collapse
Affiliation(s)
- Xian-Long Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiao-Jun Wei
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shao-Ping Li
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
18
|
Huang Z, Fang Q, Ma W, Zhang Q, Qiu J, Gu X, Yang H, Sun H. Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Front Pharmacol 2019; 10:997. [PMID: 31616291 PMCID: PMC6763704 DOI: 10.3389/fphar.2019.00997] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. Oxidative stress and inflammation are two main molecular mechanisms involved in muscle atrophy. In the current study, we want to explore whether and how salidroside, with antioxidant and anti-inflammatory properties, protects against skeletal muscle atrophy induced by denervation. First, oxidative stress and inflammatory response were examined during myotube atrophy induced by nutrition deprivation. The results demonstrated that oxidative stress and inflammatory response were induced in cultured myotubes suffered from nutrition deprivation, and salidroside not only inhibited oxidative stress and inflammatory response but also attenuated nutrition deprivation-induced myotube atrophy, as evidenced by an increased myotube diameter. The antioxidant, anti-inflammatory, and antiatrophic properties of salidroside in cultured myotubes were confirmed in denervated mouse models. The mice treated with salidroside showed less oxidative stress and less inflammatory cytokines, as well as higher skeletal muscle wet weight ratio and larger average cross sectional areas of myofibers compared with those treated with saline only during denervation-induced skeletal muscle atrophy. Moreover, salidroside treatment of denervated mice resulted in an inhibition of the activation of mitophagy in skeletal muscle. Furthermore, salidroside reduced the expression of atrophic genes, including MuRF1 and MAFbx, autophagy genes, including PINK1, BNIP3, LC3B, ATG7, and Beclin1, and transcription factor forkhead box O3 A (Foxo3A), and improved the expression of myosin heavy chain and transcriptional factor phosphorylated Foxo3A. Taken together, these results suggested that salidroside alleviated denervation-induced muscle atrophy by suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ziwei Huang
- Department of Orthopedics, Orthopedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Qingqing Fang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Wenjing Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Qiuyu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| | - Huilin Yang
- Department of Orthopedics, Orthopedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu China
| |
Collapse
|
19
|
Peñuelas O, Keough E, López-Rodríguez L, Carriedo D, Gonçalves G, Barreiro E, Lorente JÁ. Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med Exp 2019; 7:48. [PMID: 31346802 PMCID: PMC6658639 DOI: 10.1186/s40635-019-0259-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation [MV] is a life-saving technique delivered to critically ill patients incapable of adequately ventilating and/or oxygenating due to respiratory or other disease processes. This necessarily invasive support however could potentially result in important iatrogenic complications. Even brief periods of MV may result in diaphragm weakness [i.e., ventilator-induced diaphragm dysfunction [VIDD]], which may be associated with difficulty weaning from the ventilator as well as mortality. This suggests that VIDD could potentially have a major impact on clinical practice through worse clinical outcomes and healthcare resource use. Recent translational investigations have identified that VIDD is mainly characterized by alterations resulting in a major decline of diaphragmatic contractile force together with atrophy of diaphragm muscle fibers. However, the signaling mechanisms responsible for VIDD have not been fully established. In this paper, we summarize the current understanding of the pathophysiological pathways underlying VIDD and highlight the diagnostic approach, as well as novel and experimental therapeutic options.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain.
| | - Elena Keough
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Lucía López-Rodríguez
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Gesly Gonçalves
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department [CEXS], Barcelona, Spain
- Universitat Pompeu Fabra [UPF], Barcelona Biomedical Research Park [PRBB], Barcelona, Spain
| | - José Ángel Lorente
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Universidad Europea, Madrid, Spain
| |
Collapse
|
20
|
Yanar K, Simsek B, Atukeren P, Aydin S, Cakatay U. Is D-Galactose a Useful Agent for Accelerated Aging Model of Gastrocnemius and Soleus Muscle of Sprague-Dawley Rats? Rejuvenation Res 2019; 22:521-528. [PMID: 31131732 DOI: 10.1089/rej.2019.2185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elderly population and age-related diseases are on the rise. On the contrary, aging studies are technically hard to conduct, because they require elderly animals, the maintenance of which requires ample effort and is expensive. To tackle this problem, D-galactose is used to hasten the aging process in various tissues in rodent models and it has been shown to successfully mimic the oxidative alterations that take place in the natural aging process in various tissues both by our group and others. In the present study, the validity of D-galactose aging model in skeletal muscles was tested both on predominantly slow-twitch (soleus) and rather fast-twitch (gastrocnemius) muscle in male Sprague-Dawley rats and the results are compared with young littermate controls and naturally aged rats. Redox-related modifications in soleus and gastrocnemius were assessed by measurement of protein carbonyl groups, advanced oxidation protein products, lipid hydroperoxides, total thiol, and Cu, Zn-superoxide dismutase activities. In the present study, we provide biochemical evidence demonstrating that D-galactose-induced mimetic aging does result in oxidative stress-related redox alterations that are comparable with the alterations that occur in natural aging in soleus. On the contrary, in the D-galactose-induced mimetic aging of gastrocnemius, even though the oxidative stress markers were significantly increased, the endpoint redox homeostasis markers were not statistically comparable with the redox status of naturally aged group.
Collapse
Affiliation(s)
- Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Atukeren
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seval Aydin
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
21
|
van der Pijl RJ, Granzier HL, Ottenheijm CAC. Diaphragm contractile weakness due to reduced mechanical loading: role of titin. Am J Physiol Cell Physiol 2019; 317:C167-C176. [PMID: 31042425 DOI: 10.1152/ajpcell.00509.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diaphragm, the main muscle of inspiration, is constantly subjected to mechanical loading. Only during controlled mechanical ventilation, as occurs during thoracic surgery and in the intensive care unit, is mechanical loading of the diaphragm arrested. Animal studies indicate that the diaphragm is highly sensitive to unloading, causing rapid muscle fiber atrophy and contractile weakness; unloading-induced diaphragm atrophy and contractile weakness have been suggested to contribute to the difficulties in weaning patients from ventilator support. The molecular triggers that initiate the rapid unloading atrophy of the diaphragm are not well understood, although proteolytic pathways and oxidative signaling have been shown to be involved. Mechanical stress is known to play an important role in the maintenance of muscle mass. Within the muscle's sarcomere, titin is considered to play an important role in the stress-response machinery. Titin is a giant protein that acts as a mechanosensor regulating muscle protein expression in a sarcomere strain-dependent fashion. Thus titin is an attractive candidate for sensing the sudden mechanical arrest of the diaphragm when patients are mechanically ventilated, leading to changes in muscle protein expression. Here, we provide a novel perspective on how titin and its biomechanical sensing and signaling might be involved in the development of mechanical unloading-induced diaphragm weakness.
Collapse
Affiliation(s)
- Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona.,Department of Physiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona.,Department of Physiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Tang H, Shrager JB. The Signaling Network Resulting in Ventilator-induced Diaphragm Dysfunction. Am J Respir Cell Mol Biol 2019; 59:417-427. [PMID: 29768017 DOI: 10.1165/rcmb.2018-0022tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving measure for those incapable of adequately ventilating or oxygenating without assistance. Unfortunately, even brief periods of MV result in diaphragm weakness (i.e., ventilator-induced diaphragm dysfunction [VIDD]) that may render it difficult to wean the ventilator. Prolonged MV is associated with cascading complications and is a strong risk factor for death. Thus, prevention of VIDD may have a dramatic impact on mortality rates. Here, we summarize the current understanding of the pathogenic events underlying VIDD. Numerous alterations have been proven important in both human and animal MV diaphragm. These include protein degradation via the ubiquitin proteasome system, autophagy, apoptosis, and calpain activity-all causing diaphragm muscle fiber atrophy, altered energy supply via compromised oxidative phosphorylation and upregulation of glycolysis, and also mitochondrial dysfunction and oxidative stress. Mitochondrial oxidative stress in fact appears to be a central factor in each of these events. Recent studies by our group and others indicate that mitochondrial function is modulated by several signaling molecules, including Smad3, signal transducer and activator of transcription 3, and FoxO. MV rapidly activates Smad3 and signal transducer and activator of transcription 3, which upregulate mitochondrial oxidative stress. Additional roles may be played by angiotensin II and leaky ryanodine receptors causing elevated calcium levels. We present, here, a hypothetical scaffold for understanding the molecular pathogenesis of VIDD, which links together these elements. These pathways harbor several drug targets that could soon move toward testing in clinical trials. We hope that this review will shape a short list of the most promising candidates.
Collapse
Affiliation(s)
- Huibin Tang
- Stanford University School of Medicine, Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford, California; and Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Joseph B Shrager
- Stanford University School of Medicine, Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford, California; and Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
23
|
Zambelli V, Sigurtà A, Rizzi L, Zucca L, Delvecchio P, Bresciani E, Torsello A, Bellani G. Angiotensin-(1-7) exerts a protective action in a rat model of ventilator-induced diaphragmatic dysfunction. Intensive Care Med Exp 2019; 7:8. [PMID: 30659381 PMCID: PMC6338614 DOI: 10.1186/s40635-018-0218-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ventilator-induced diaphragmatic dysfunction (VIDD) is a common event during mechanical ventilation (MV) leading to rapid muscular atrophy and contractile dysfunction. Recent data show that renin-angiotensin system is involved in diaphragmatic skeletal muscle atrophy after MV. In particular, angiotensin-II can induce marked diaphragm muscle wasting, whereas angiotensin-(1–7) (Ang-(1–7)) could counteract this activity. This study was designed to evaluate the effects of the treatment with Ang-(1–7) in a rat model of VIDD with neuromuscular blocking agent infusion. Moreover, we studied whether the administration of A-779, an antagonist of Ang-(1–7) receptor (Mas), alone or in combination with PD123319, an antagonist of AT2 receptor, could antagonize the effects of Ang-(1–7). Methods Sprague-Dawley rats underwent prolonged MV (8 h), while receiving an iv infusion of sterile saline 0.9% (vehicle) or Ang-(1–7) or Ang-(1–7) + A-779 or Ang-(1–7) + A-779 + PD123319. Diaphragms were collected for ex vivo contractility measurement (with electric stimulation), histological analysis, quantitative real-time PCR, and Western blot analysis. Results MV resulted in a significant reduction of diaphragmatic contractility in all groups of treatment. Ang-(1–7)-treated rats showed higher muscular fibers cross-sectional area and lower atrogin-1 and myogenin mRNA levels, compared to vehicle treatment. Treatment with the antagonists of Mas and Ang-II receptor 2 (AT2R) caused a significant reduction of muscular contractility and an increase of atrogin-1 and MuRF-1 mRNA levels, not affecting the cross-sectional fiber area and myogenin mRNA levels. Conclusions Systemic Ang-(1–7) administration during MV exerts a protective role on the muscular fibers of the diaphragm preserving muscular fibers anatomy, and reducing atrophy. The involvement of Mas and AT2R in the mechanism of action of Ang-(1–7) still remains controversial.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Anna Sigurtà
- Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Rizzi
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Letizia Zucca
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Paolo Delvecchio
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Elena Bresciani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Antonio Torsello
- Department of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- Department of Medicine, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
24
|
Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med (Maywood) 2018; 243:1329-1337. [PMID: 30453774 DOI: 10.1177/1535370218811950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IMPACT STATEMENT Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.
Collapse
Affiliation(s)
- Yung-Yang Liu
- 1 Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan.,2 Institutes of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Fu Li
- 3 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan.,4 Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
25
|
Hyatt H, Deminice R, Yoshihara T, Powers SK. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys 2018; 662:49-60. [PMID: 30452895 DOI: 10.1016/j.abb.2018.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
Prolonged skeletal muscle inactivity (e.g. limb immobilization, bed rest, mechanical ventilation, spinal cord injury, etc.) results in muscle atrophy that manifests into a decreased quality of life and in select patient populations, a higher risk of morbidity and mortality. Thus, understanding the processes that contribute to muscle atrophy during prolonged periods of muscle disuse is an important area of research. In this regard, mitochondrial dysfunction has been directly linked to the muscle wasting that occurs during extended periods of skeletal muscle inactivity. While the concept that mitochondrial dysfunction contributes to disuse muscle atrophy has been contemplated for nearly 50 years, the mechanisms connecting mitochondrial signaling events to skeletal muscle atrophy remained largely unexplained until recently. Indeed, emerging evidence reveals that mitochondrial dysfunction and the associated mitochondrial signaling events are a requirement for several forms of inactivity-induced skeletal muscle atrophy. Specifically, inactivity-induced alterations in skeletal muscle mitochondria phenotype and increased ROS emission, impaired Ca2+ handling, and release of mitochondria-specific proteolytic activators are established occurrences that promote fiber atrophy during prolonged periods of muscle inactivity. This review highlights the evidence that directly connects mitochondrial dysfunction and aberrant mitochondrial signaling with skeletal muscle atrophy and discusses the mechanisms linking these interconnected phenomena.
Collapse
Affiliation(s)
- Hayden Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Rafael Deminice
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Education, University of Estadual of Londrina, Londrina, Brazil
| | - Toshinori Yoshihara
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Exercise Physiology, Juntendo University, Tokyo, Japan
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch 2018; 471:441-453. [PMID: 30426248 DOI: 10.1007/s00424-018-2227-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Repeated bouts of endurance exercise promotes numerous biochemical adaptations in skeletal muscle fibers resulting in a muscle phenotype that is protected against a variety of homeostatic challenges; these exercise-induced changes in muscle phenotype are often referred to as "exercise preconditioning." Importantly, exercise preconditioning provides protection against several threats to skeletal muscle health including cancer chemotherapy (e.g., doxorubicin) and prolonged muscle inactivity. This review summarizes our current understanding of the mechanisms responsible for exercise-induced protection of skeletal muscle fibers against both doxorubicin-induced muscle wasting and a unique form of inactivity-induced muscle atrophy (i.e., ventilator-induced diaphragm atrophy). Specifically, the first section of this article will highlight the potential mechanisms responsible for exercise-induced protection of skeletal muscle fibers against doxorubicin-induced fiber atrophy. The second segment will discuss the biochemical changes that are responsible for endurance exercise-mediated protection of diaphragm muscle against ventilator-induced diaphragm wasting. In each section, we highlight gaps in our knowledge in hopes of stimulating future research in this evolving field of investigation.
Collapse
|
27
|
Genchi GG, Degl'Innocenti A, Salgarella AR, Pezzini I, Marino A, Menciassi A, Piccirillo S, Balsamo M, Ciofani G. Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes. Nanomedicine (Lond) 2018; 13:2821-2833. [PMID: 30334476 DOI: 10.2217/nnm-2018-0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Oxidative stress (OS) is strictly associated with senescence/pathogenesis of biological systems. As putative countermeasure to environmental OS, cerium oxide nanoparticles (nanoceria [NC]) were administered to muscle cells on ground and aboard the International Space Station. MATERIALS & METHODS Transcriptional analyses were conducted through microarray technology and hierarchical clustering. Venn diagram and gene ontology analyses were also performed on selected gene lists. RESULTS Adaptive responses to both NC administration and to permanence in real microgravity conditions occurred. Enrichment in the biological processes related to aging, body fat development and mesodermal tissue proliferation for NC-treated samples were found. CONCLUSION Nanotechnology antioxidants promise applications to pathological conditions governed by OS on Earth and in life-hostile environments (low Earth orbit and deep space).
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Alice Rita Salgarella
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Ilaria Pezzini
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Arianna Menciassi
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Sara Piccirillo
- Agenzia Spaziale Italiana, Via del Politecnico snc, Roma 00133, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna 501, Livorno 57128, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy.,Politecnico di Torino, Department of Aerospace & Mechanical Engineering, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
28
|
Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. J Transl Med 2018; 98:1170-1183. [PMID: 29925937 DOI: 10.1038/s41374-018-0081-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
Mechanical ventilation (MV) is often used to maintain life in patients with sepsis and sepsis-related acute lung injury. However, controlled MV may cause diaphragm weakness due to muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) signaling pathways may elicit sepsis-related acute inflammatory responses and muscle protein degradation and mediate the pathogenic mechanisms of VIDD. However, the mechanisms regulating the interactions between VIDD and endotoxemia are unclear. We hypothesized that mechanical stretch with or without endotoxin treatment would augment diaphragmatic structural damage, the production of free radicals, muscle proteolysis, mitochondrial dysfunction, and autophagy of the diaphragm via the TLR4/NF-κB pathway. Male C57BL/6 mice, either wild-type or TLR4-deficient, aged between 6 and 8 weeks were exposed to MV (6 mL/kg or 10 mL/kg) with or without endotoxemia for 8 h. Nonventilated mice were used as controls. MV with endotoxemia aggravated VIDD, as demonstrated by the increases in the expression levels of TLR4, caspase-3, atrogin-1, muscle ring finger-1, and microtubule-associated protein light chain 3-II. In addition, increased NF-κB phosphorylation and oxidative loads, disorganized myofibrils, disrupted mitochondria, autophagy, and myonuclear apoptosis were also observed. Furthermore, MV with endotoxemia reduced P62 levels and diaphragm muscle fiber size (P < 0.05). Endotoxin-exacerbated VIDD was attenuated by pharmacologic inhibition with a NF-κB inhibitor or in TLR4-deficient mice (P < 0.05). Our data indicate that endotoxin-augmented MV-induced diaphragmatic injury occurs through the activation of the TLR4/NF-κB signaling pathway.
Collapse
|
29
|
Owens DJ. Nutritional Support to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:483-495. [PMID: 30390266 DOI: 10.1007/978-981-13-1435-3_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malnutrition is an important factor contributing to muscle atrophy. Both underfeeding and obesity have negative consequences for the preservation of muscle mass and function. In addition, adequate nutrition on an exercise background is an efficacious strategy to counteract the severity of muscle loss associated with numerous clinical muscle wasting conditions. As such, significant research efforts have been dedicated to identifying optimal calorie control and the requirements of particular macro- and micronutrients in attenuating muscle atrophy. This chapter will explore current nutrition strategies with robust evidence to counteract muscle atrophy with a particular focus on protein, as well presenting evidence for other promising emergent strategies.
Collapse
Affiliation(s)
- Daniel John Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
30
|
Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I. Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med Sci Sports Exerc 2017; 48:2307-2319. [PMID: 27128663 DOI: 10.1249/mss.0000000000000975] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous health problems, including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders, often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients experiencing acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders.
Collapse
Affiliation(s)
- Scott K Powers
- 1Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL; 2Basic and Clinical Myology Laboratory, Department of Physiology, University of Melbourne, Victoria, AUSTRALIA; and 3Medical Physiology, Department of Neuroscience, University Medical Center Groningen, Groningen, THE NETHERLANDS
| | | | | | | | | |
Collapse
|
31
|
Powers SK. Exercise: Teaching myocytes new tricks. J Appl Physiol (1985) 2017; 123:460-472. [PMID: 28572498 DOI: 10.1152/japplphysiol.00418.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as "exercise preconditioning." As few as 3-5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Mitochondrial-Targeted Catalase: Extended Longevity and the Roles in Various Disease Models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:203-241. [PMID: 28253986 DOI: 10.1016/bs.pmbts.2016.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The free-radical theory of aging was proposed more than 50 years ago. As one of the most popular mechanisms explaining the aging process, it has been extensively studied in several model organisms. However, the results remain controversial. The mitochondrial version of free-radical theory of aging proposes that mitochondria are both the primary sources of reactive oxygen species (ROS) and the primary targets of ROS-induced damage. One critical ROS is hydrogen peroxide, which is naturally degraded by catalase in peroxisomes or glutathione peroxidase within mitochondria. Our laboratory developed mice-overexpressing catalase targeted to mitochondria (mCAT), peroxisomes (pCAT), or the nucleus (nCAT) in order to investigate the role of hydrogen peroxide in different subcellular compartments in aging and age-related diseases. The mCAT mice have demonstrated the largest effects on life span and healthspan extension. This chapter will discuss the mCAT phenotype and review studies using mCAT to investigate the roles of mitochondrial oxidative stresses in various disease models, including metabolic syndrome and atherosclerosis, cardiac aging, heart failure, skeletal muscle pathology, sensory defect, neurodegenerative diseases, and cancer. As ROS has been increasingly recognized as essential signaling molecules that may be beneficial in hormesis, stress response and immunity, the potential pleiotropic, or adverse effects of mCAT are also discussed. Finally, the development of small-molecule mitochondrial-targeted therapeutic approaches is reviewed.
Collapse
|
33
|
Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'Graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016; 7:403-12. [PMID: 27030815 PMCID: PMC4788634 DOI: 10.1002/jcsm.12108] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland; Department of Clinical Cardiology, Inselspital University Hospital of Bern Bern Switzerland
| | - Stephan von Haehling
- Department of Cardiology and Center for Innovative Clinical Trials University of Göttingen Göttingen Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charite Universitätsmedizin Berlin Berlin Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery and Dept. of Neurology, Inselspital University Hospital of Bern Bern Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| |
Collapse
|
34
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
35
|
Sigurta' A, Zambelli V, Bellani G. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7). Med Hypotheses 2016; 94:132-7. [PMID: 27515219 DOI: 10.1016/j.mehy.2016.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
Abstract
Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its prevention and treatment.
Collapse
Affiliation(s)
- Anna Sigurta'
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
36
|
Li LF, Chang YL, Chen NH, Wang CY, Chang GJ, Lin MC, Chang CH, Huang CC, Chuang JH, Yang YP, Chiou SH, Liu YY. Inhibition of Src and forkhead box O1 signaling by induced pluripotent stem-cell therapy attenuates hyperoxia-augmented ventilator-induced diaphragm dysfunction. Transl Res 2016; 173:131-147.e1. [PMID: 27055225 DOI: 10.1016/j.trsl.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
Mechanical ventilation (MV) with hyperoxia is required for providing life support to patients with acute lung injury (ALI). However, MV may cause diaphragm weakness through muscle injury and atrophy, an effect termed ventilator-induced diaphragm dysfunction (VIDD). Src protein tyrosine kinase and class O of forkhead box 1 (FoxO1) mediate acute inflammatory responses and muscle protein degradation induced by oxidative stress. Induced pluripotent stem cells (iPSCs) have been reported to improve hyperoxia-augmented ALI; however, the mechanisms regulating the interactions among VIDD, hyperoxia, and iPSCs are unclear. In this study, we hypothesized that iPSC therapy can ameliorate hyperoxia-augmented VIDD by suppressing the Src-FoxO1 pathway. Male C57BL/6 mice, either wild-type or Src-deficient, aged between 6 and 8 weeks were exposed to MV (6 or 10 mL/kg) with or without hyperoxia for 2-8 h after the administration of 5 × 10(7) cells/kg Oct4/Sox2/Parp1 mouse iPSCs or iPSC-derived conditioned medium (iPSC-CM). Nonventilated mice were used as controls. MV during hyperoxia aggravated VIDD, as demonstrated by the increases in Src activation, FoxO1 dephosphorylation, malondialdehyde, caspase-3, atrogin-1 and muscle ring finger-1 production, microtubule-associated protein light chain 3-II, disorganized myofibrils, disrupted mitochondria, autophagy, and myonuclear apoptosis; however, MV with hyperoxia reduced mitochondrial cytochrome C, diaphragm muscle fiber size, and contractility (P < 0.05). Hyperoxia-exacerbated VIDD was attenuated in Src-deficient mice and by iPSCs and iPSC-CM (P < 0.05). Our data indicate that iPSC therapy attenuates MV-induced diaphragmatic injury that occurs during hyperoxia-augmented VIDD by inhibiting the Src-FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuh-Lih Chang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ning-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chien-Ying Wang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Hao Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chung-Chi Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jen-Hua Chuang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Pin Yang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Yang Liu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Smuder AJ, Gonzalez-Rothi EJ, Kwon OS, Morton AB, Sollanek KJ, Powers SK, Fuller DD. Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2016; 120:166-77. [PMID: 26472866 PMCID: PMC4719055 DOI: 10.1152/japplphysiol.00488.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023] Open
Abstract
Cervical spinal cord injury (SCI) can dramatically impair diaphragm muscle function and often necessitates mechanical ventilation (MV) to maintain adequate pulmonary gas exchange. MV is a life-saving intervention. However, prolonged MV results in atrophy and impaired function of the diaphragm. Since cervical SCI can also trigger diaphragm atrophy, it may create preconditions that exacerbate ventilator-induced diaphragm dysfunction (VIDD). Currently, no drug therapy or clinical standard of care exists to prevent or minimize diaphragm dysfunction following SCI. Therefore, we first tested the hypothesis that initiating MV acutely after cervical SCI will exacerbate VIDD and enhance proteolytic activation in the diaphragm to a greater extent than either condition alone. Rats underwent controlled MV for 12 h following acute (∼24 h) cervical spinal hemisection injury at C2 (SCI). Diaphragm tissue was then harvested for comprehensive functional and molecular analyses. Second, we determined if antioxidant therapy could mitigate MV-induced diaphragm dysfunction after cervical SCI. In these experiments, SCI rats received antioxidant (Trolox, a vitamin E analog) or saline treatment prior to initiating MV. Our results demonstrate that compared with either condition alone, the combination of SCI and MV resulted in increased diaphragm atrophy, contractile dysfunction, and expression of atrophy-related genes, including MuRF1. Importantly, administration of the antioxidant Trolox attenuated proteolytic activation, fiber atrophy, and contractile dysfunction in the diaphragms of SCI + MV animals. These findings provide evidence that cervical SCI greatly exacerbates VIDD, but antioxidant therapy with Trolox can preserve diaphragm contractile function following acute SCI.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
38
|
Yoshihara T, Sugiura T, Yamamoto Y, Shibaguchi T, Kakigi R, Naito H. The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle. Physiol Rep 2015; 3:3/10/e12597. [PMID: 26508739 PMCID: PMC4632963 DOI: 10.14814/phy2.12597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the effect of repeated heat stress on muscle atrophy, and apoptotic and proteolytic regulation in unloaded rat slow- and fast-type skeletal muscles. Forty male Wistar rats (11 week-old) were divided into control (CT), hindlimb unweighting (HU), intermittent weight-bearing during HU (HU + IWB), and intermittent weight-bearing with heat stress during HU (41–41.5°C for 30 min; HU + IWB + HS) groups. The HU + IWB + HS and HU + IWB groups were released from unloading for 1 h every second day, during which the HU + IWB + HS group underwent the heating. Our results revealed that repeated bouts of heat stress resulted in protection against disuse muscle atrophy in both soleus and plantaris muscles. This heat stress–induced protection against disuse-induced muscular atrophy may be partially due to reduced apoptotic activation in both muscles, and decreased ubiquitination in only the soleus muscle. We concluded that repeated heat stress attenuated skeletal muscle atrophy via suppressing apoptosis but the response to proteolytic systems depend on the muscle phenotype.
Collapse
Affiliation(s)
- Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Takao Sugiura
- Faculty of Education, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Yuki Yamamoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsubasa Shibaguchi
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Kakigi
- Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
39
|
Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis. PLoS One 2015; 10:e0137693. [PMID: 26361212 PMCID: PMC4567376 DOI: 10.1371/journal.pone.0137693] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.
Collapse
|
40
|
Kwon OS, Smuder AJ, Wiggs MP, Hall SE, Sollanek KJ, Morton AB, Talbert EE, Toklu HZ, Tumer N, Powers SK. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction. J Appl Physiol (1985) 2015; 119:1033-41. [PMID: 26359481 DOI: 10.1152/japplphysiol.00237.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Stephanie E Hall
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Erin E Talbert
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Hale Z Toklu
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida; and Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Nihal Tumer
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida; and Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida;
| |
Collapse
|
41
|
Howe KP, Clochesy JM, Goldstein LS, Owen H. Mechanical Ventilation Antioxidant Trial. Am J Crit Care 2015; 24:440-5. [PMID: 26330437 DOI: 10.4037/ajcc2015335] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Many patients each year require prolonged mechanical ventilation. Inflammatory processes may prevent successful weaning, and evidence indicates that mechanical ventilation induces oxidative stress in the diaphragm, resulting in atrophy and contractile dysfunction of diaphragmatic myofibers. Antioxidant supplementation might mitigate the harmful effects of the oxidative stress induced by mechanical ventilation. OBJECTIVE To test the clinical effectiveness of antioxidant supplementation in reducing the duration of mechanical ventilation. METHODS A randomized, prospective, placebo-controlled double-blind design was used to test whether enterally administered antioxidant supplementation would decrease the duration of mechanical ventilation, all-cause mortality, and length of stay in the intensive care unit and hospital. Patients received vitamin C 1000 mg plus vitamin E 1000 IU, vitamin C 1000 mg plus vitamin E 1000 IU plus N-acetylcysteine 400 mg, or placebo solution as a bolus injection via their enteral feeding tube every 8 hours. RESULTS Clinical and statistically significant differences in duration of mechanical ventilation were seen among the 3 groups (Mantel-Cox log rank statistic = 5.69, df = 1, P = .017). The 3 groups did not differ significantly in all-cause mortality during hospitalization or in the length of stay in the intensive care unit or hospital. CONCLUSIONS Enteral administration of antioxidants is a simple, safe, inexpensive, and effective intervention that decreases the duration of mechanical ventilation in critically ill adults.
Collapse
Affiliation(s)
- Kimberly P. Howe
- Kimberly P. Howe is corporate director of academic affairs, Northside Medical Center, Youngstown, Ohio. John M. Clochesy is a professor, University of South Florida College of Nursing, Tampa, Florida. Lawrence S. Goldstein is medical director of the medical intensive care unit, Northside Medical Center, and an associate professor at Northeastern Ohio Universities College of Medicine, Rootstown, Ohio. Hugh Owen is a pharmacist at Northside Medical Center
| | - John M. Clochesy
- Kimberly P. Howe is corporate director of academic affairs, Northside Medical Center, Youngstown, Ohio. John M. Clochesy is a professor, University of South Florida College of Nursing, Tampa, Florida. Lawrence S. Goldstein is medical director of the medical intensive care unit, Northside Medical Center, and an associate professor at Northeastern Ohio Universities College of Medicine, Rootstown, Ohio. Hugh Owen is a pharmacist at Northside Medical Center
| | - Lawrence S. Goldstein
- Kimberly P. Howe is corporate director of academic affairs, Northside Medical Center, Youngstown, Ohio. John M. Clochesy is a professor, University of South Florida College of Nursing, Tampa, Florida. Lawrence S. Goldstein is medical director of the medical intensive care unit, Northside Medical Center, and an associate professor at Northeastern Ohio Universities College of Medicine, Rootstown, Ohio. Hugh Owen is a pharmacist at Northside Medical Center
| | - Hugh Owen
- Kimberly P. Howe is corporate director of academic affairs, Northside Medical Center, Youngstown, Ohio. John M. Clochesy is a professor, University of South Florida College of Nursing, Tampa, Florida. Lawrence S. Goldstein is medical director of the medical intensive care unit, Northside Medical Center, and an associate professor at Northeastern Ohio Universities College of Medicine, Rootstown, Ohio. Hugh Owen is a pharmacist at Northside Medical Center
| |
Collapse
|
42
|
Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction. Crit Care Med 2015; 43:e133-42. [PMID: 25746508 DOI: 10.1097/ccm.0000000000000928] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. DESIGN This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. SETTING University research laboratory. SUBJECTS Young adult female Sprague-Dawley rats. INTERVENTIONS Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. MEASUREMENTS AND MAIN RESULTS Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. CONCLUSIONS Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Collapse
|
43
|
Abstract
Long periods of skeletal muscle inactivity (e.g. prolonged bed rest or limb immobilization) results in a loss of muscle protein and fibre atrophy. This disuse-induced muscle atrophy is due to both a decrease in protein synthesis and increased protein breakdown. Although numerous factors contribute to the regulation of the rates of protein breakdown and synthesis in skeletal muscle, it has been established that prolonged muscle inactivity results in increased radical production in the inactive muscle fibres. Further, this increase in radical production plays an important role in the regulation of redox-sensitive signalling pathways that regulate both protein synthesis and proteolysis in skeletal muscle. Indeed, it was suggested over 20 years ago that antioxidant supplementation has the potential to protect skeletal muscles against inactivity-induced fibre atrophy. Since this original proposal, experimental evidence has implied that a few compounds with antioxidant properties are capable of delaying inactivity-induced muscle atrophy. The objective of this review is to discuss the role that radicals play in the regulation of inactivity-induced skeletal muscle atrophy and to provide an analysis of the recent literature indicating that specific antioxidants have the potential to defer disuse muscle atrophy.
Collapse
|
44
|
Jung B, Gleeton D, Daurat A, Conseil M, Mahul M, Rao G, Matecki S, Lacampagne A, Jaber S. Conséquences de la ventilation mécanique sur le diaphragme. Rev Mal Respir 2015; 32:370-80. [DOI: 10.1016/j.rmr.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023]
|
45
|
Schellekens WJM, van Hees HWH, Linkels M, Dekhuijzen PNR, Scheffer GJ, van der Hoeven JG, Heunks LMA. Levosimendan affects oxidative and inflammatory pathways in the diaphragm of ventilated endotoxemic mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:69. [PMID: 25888356 PMCID: PMC4355991 DOI: 10.1186/s13054-015-0798-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/11/2015] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Controlled mechanical ventilation and endotoxemia are associated with diaphragm muscle atrophy and dysfunction. Oxidative stress and activation of inflammatory pathways are involved in the pathogenesis of diaphragmatic dysfunction. Levosimendan, a cardiac inotrope, has been reported to possess anti-oxidative and anti-inflammatory properties. The aim of the present study was to investigate the effects of levosimendan on markers for diaphragm nitrosative and oxidative stress, inflammation and proteolysis in a mouse model of endotoxemia and mechanical ventilation. METHODS Three groups were studied: (1) unventilated mice (CON, n =8), (2) mechanically ventilated endotoxemic mice (MV LPS, n =17) and (3) mechanically ventilated endotoxemic mice treated with levosimendan (MV LPS + L, n =17). Immediately after anesthesia (CON) or after 8 hours of mechanical ventilation, blood and diaphragm muscle were harvested for biochemical analysis. RESULTS Mechanical ventilation and endotoxemia increased expression of inducible nitric oxide synthase (iNOS) mRNA and cytokine levels of interleukin (IL)-1β, IL-6 and keratinocyte-derived chemokine, and decreased IL-10, in the diaphragm; however, they had no effect on protein nitrosylation and 4-hydroxy-2-nonenal protein concentrations. Levosimendan decreased nitrosylated proteins by 10% (P <0.05) and 4-hydroxy-2-nonenal protein concentrations by 13% (P <0.05), but it augmented the rise of iNOS mRNA by 47% (P <0.05). Levosimendan did not affect the inflammatory response in the diaphragm induced by mechanical ventilation and endotoxemia. CONCLUSIONS Mechanical ventilation in combination with endotoxemia results in systemic and diaphragmatic inflammation. Levosimendan partly decreased markers of nitrosative and oxidative stress, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Willem-Jan M Schellekens
- Department of Anesthesiology, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Marianne Linkels
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - P N Richard Dekhuijzen
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
46
|
Takahashi A, Inoue H, Mishima K, Ide F, Nakayama R, Hasaka A, Ryo K, Ito Y, Sakurai T, Hasegawa Y, Saito I. Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One 2015; 10:e0116008. [PMID: 25629520 PMCID: PMC4309588 DOI: 10.1371/journal.pone.0116008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
With the aim of discovering an effective method to treat dry mouth, we analyzed the effects of quercetin on salivary secretion and its mechanism of action. We created a mouse model with impaired salivary secretion by exposure to radiation and found that impaired secretion is suppressed by quercetin intake. Moreover, secretion levels were enhanced in quercetin-fed normal mice. To elucidate the mechanisms of these effects on salivary secretion, we conducted an analysis using mouse submandibular gland tissues, a human salivary gland epithelial cell line (HSY), and mouse aortic endothelial cells (MAECs). The results showed that quercetin augments aquaporin 5 (AQP5) expression and calcium uptake, and suppresses oxidative stress and inflammatory responses induced by radiation exposure, suggesting that quercetin intake may be an effective method to treat impaired salivary secretion.
Collapse
Affiliation(s)
- Ayako Takahashi
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroko Inoue
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Fumio Ide
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ryoko Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ayaka Hasaka
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Koufuchi Ryo
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yumi Ito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takashi Sakurai
- Department of Radiopraxis Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshinori Hasegawa
- Department of Human Genome Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
47
|
Sollanek KJ, Smuder AJ, Wiggs MP, Morton AB, Koch LG, Britton SL, Powers SK. Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. J Appl Physiol (1985) 2015; 118:849-57. [PMID: 25571991 DOI: 10.1152/japplphysiol.00797.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
Prolonged mechanical ventilation (MV) leads to rapid diaphragmatic atrophy and contractile dysfunction, which is collectively termed "ventilator-induced diaphragm dysfunction" (VIDD). Interestingly, endurance exercise training prior to MV has been shown to protect against VIDD. Further, recent evidence reveals that sedentary animals selectively bred to possess a high aerobic capacity possess a similar skeletal muscle phenotype to muscles from endurance trained animals. Therefore, we tested the hypothesis that animals with a high intrinsic aerobic capacity would naturally be afforded protection against VIDD. To this end, animals were selectively bred over 33 generations to create two divergent strains, differing in aerobic capacity: high-capacity runners (HCR) and low-capacity runners (LCR). Both groups of animals were subjected to 12 h of MV and compared with nonventilated control animals within the same strains. As expected, contrasted to LCR animals, the diaphragm muscle from the HCR animals contained higher levels of oxidative enzymes (e.g., citrate synthase) and antioxidant enzymes (e.g., superoxide dismutase and catalase). Nonetheless, compared with nonventilated controls, prolonged MV resulted in significant diaphragmatic atrophy and impaired diaphragm contractile function in both the HCR and LCR animals, and the magnitude of VIDD did not differ between strains. In conclusion, these data demonstrate that possession of a high intrinsic aerobic capacity alone does not afford protection against VIDD. Importantly, these results suggest that endurance exercise training differentially alters the diaphragm phenotype to resist VIDD. Interestingly, levels of heat shock protein 72 did not differ between strains, thus potentially representing an important area of difference between animals with intrinsically high aerobic capacity and exercise-trained animals.
Collapse
Affiliation(s)
- Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida; and
| |
Collapse
|
48
|
Smith IJ, Godinez GL, Singh BK, McCaughey KM, Alcantara RR, Gururaja T, Ho MS, Nguyen HN, Friera AM, White KA, McLaughlin JR, Hansen D, Romero JM, Baltgalvis KA, Claypool MD, Li W, Lang W, Yam GC, Gelman MS, Ding R, Yung SL, Creger DP, Chen Y, Singh R, Smuder AJ, Wiggs MP, Kwon OS, Sollanek KJ, Powers SK, Masuda ES, Taylor VC, Payan DG, Kinoshita T, Kinsella TM. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J 2014; 28:2790-803. [PMID: 24671708 PMCID: PMC4062832 DOI: 10.1096/fj.13-244210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.
Collapse
Affiliation(s)
- Ira J Smith
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Baljit K Singh
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | | | | | - Melissa S Ho
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Henry N Nguyen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Kathy A White
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Derek Hansen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Jason M Romero
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | | | - Mark D Claypool
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Wei Li
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Wayne Lang
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - George C Yam
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Marina S Gelman
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Rongxian Ding
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Stephanie L Yung
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Daniel P Creger
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Yan Chen
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Rajinder Singh
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael P Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Oh-Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kurt J Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Esteban S Masuda
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Vanessa C Taylor
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Donald G Payan
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Taisei Kinoshita
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| | - Todd M Kinsella
- Rigel Pharmaceuticals, South San Francisco, California, USA; and
| |
Collapse
|
49
|
Okutsu M, Call JA, Lira VA, Zhang M, Donet JA, French BA, Martin KS, Peirce-Cottler SM, Rembold CM, Annex BH, Yan Z. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail 2014; 7:519-30. [PMID: 24523418 DOI: 10.1161/circheartfailure.113.000841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. METHODS AND RESULTS We demonstrated that systemic administration of endogenous nitric oxide donor S-nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, as well as the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis (muscle creatine kinase [MCK]-EcSOD) in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF (α-myosin heavy chain-calsequestrin), MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced HF. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria, and vascular rarefaction in skeletal muscle. CONCLUSIONS EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.
Collapse
Affiliation(s)
- Mitsuharu Okutsu
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jarrod A Call
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Vitor A Lira
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Mei Zhang
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jean A Donet
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brent A French
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Kyle S Martin
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Shayn M Peirce-Cottler
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Christopher M Rembold
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brian H Annex
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Zhen Yan
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.).
| |
Collapse
|
50
|
Lawler JM, Kunst M, Hord JM, Lee Y, Joshi K, Botchlett RE, Ramirez A, Martinez DA. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. Am J Physiol Regul Integr Comp Physiol 2014; 306:R470-82. [PMID: 24477538 DOI: 10.1152/ajpregu.00371.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reduced mechanical loading during bedrest, spaceflight, and casting, causes rapid morphological changes in skeletal muscle: fiber atrophy and reduction of slow-twitch fibers. An emerging signaling event in response to unloading is the translocation of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma to the cytosol. We used EUK-134, a cell-permeable mimetic of superoxide dismutase and catalase, to test the role of redox signaling in nNOSμ translocation and muscle fiber atrophy as a result of short-term (54 h) hindlimb unloading. Fischer-344 rats were divided into ambulatory control, hindlimb-unloaded (HU), and hindlimb-unloaded + EUK-134 (HU-EUK) groups. EUK-134 mitigated the unloading-induced phenotype, including muscle fiber atrophy and muscle fiber-type shift from slow to fast. nNOSμ immunolocalization at the sarcolemma of the soleus was reduced with HU, while nNOSμ protein content in the cytosol increased with unloading. Translocation of nNOS from the sarcolemma to cytosol was virtually abolished by EUK-134. EUK-134 also mitigated dephosphorylation at Thr-32 of FoxO3a during HU. Hindlimb unloading elevated oxidative stress (4-hydroxynonenal) and increased sarcolemmal localization of Nox2 subunits gp91phox (Nox2) and p47phox, effects normalized by EUK-134. Thus, our findings are consistent with the hypothesis that oxidative stress triggers nNOSμ translocation from the sarcolemma and FoxO3a dephosphorylation as an early event during mechanical unloading. Thus, redox signaling may serve as a biological switch for nNOS to initiate morphological changes in skeletal muscle fibers.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology and Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | | | | | | | | | | | | | | |
Collapse
|