1
|
Kojima K, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. J Biol Chem 2024; 300:107175. [PMID: 38499150 PMCID: PMC11007431 DOI: 10.1016/j.jbc.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
3
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Kojima K, Matsutani Y, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. SCIENCE ADVANCES 2021; 7:eabj1316. [PMID: 34597144 PMCID: PMC10938493 DOI: 10.1126/sciadv.abj1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates generally have a single type of rod for scotopic vision and multiple types of cones for photopic vision. Noteworthily, nocturnal geckos transmuted ancestral photoreceptor cells into rods containing not rhodopsin but cone pigments, and, subsequently, diurnal geckos retransmuted these rods into cones containing cone pigments. High sensitivity of scotopic vision is underlain by the rod’s low background noise, which originated from a much lower spontaneous activation rate of rhodopsin than of cone pigments. Here, we revealed that nocturnal gecko cone pigments decreased their spontaneous activation rates to mimic rhodopsin, whereas diurnal gecko cone pigments recovered high rates similar to those of typical cone pigments. We also identified amino acid residues responsible for the alterations of the spontaneous activation rates. Therefore, we concluded that the switch between diurnality and nocturnality in geckos required not only morphological transmutation of photoreceptors but also adjustment of the spontaneous activation rates of visual pigments.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Corbo JC. Vitamin A 1/A 2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev Biol 2021; 475:145-155. [PMID: 33684435 DOI: 10.1016/j.ydbio.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Vertebrate rod and cone photoreceptors detect light via a specialized organelle called the outer segment. This structure is packed with light-sensitive molecules known as visual pigments that consist of a G-protein-coupled, seven-transmembrane protein known as opsin, and a chromophore prosthetic group, either 11-cis retinal ('A1') or 11-cis 3,4-didehydroretinal ('A2'). The enzyme cyp27c1 converts A1 into A2 in the retinal pigment epithelium. Replacing A1 with A2 in a visual pigment red-shifts its spectral sensitivity and broadens its bandwidth of absorption at the expense of decreased photosensitivity and increased thermal noise. The use of vitamin A2-based visual pigments is strongly associated with the occupation of aquatic habitats in which the ambient light is red-shifted. By modulating the A1/A2 ratio in the retina, an organism can dynamically tune the spectral sensitivity of the visual system to better match the predominant wavelengths of light in its environment. As many as a quarter of all vertebrate species utilize A2, at least during a part of their life cycle or under certain environmental conditions. A2 utilization therefore represents an important and widespread mechanism of sensory plasticity. This review provides an up-to-date account of the A1/A2 chromophore exchange system.
Collapse
Affiliation(s)
- Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, United States.
| |
Collapse
|
6
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
7
|
Zhang H, Sajdak BS, Merriman DK, McCall MA, Carroll J, Lipinski DM. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 32492111 PMCID: PMC7415905 DOI: 10.1167/iovs.61.6.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose The majority of small animal species used in research are nocturnal, with retinae that are anatomically and functionally dissimilar from humans, complicating their use as disease models. Herein we characterize the retinal structure and electrophysiological function of the diurnal, cone-dominant 13-lined ground squirrel (13-LGS) retina during euthermia and in hibernation. Methods Full-field electroretinography (ERG) was performed in 13-LGS and Brown Norway (BN) rat models to establish baseline values for retinal function in each species, including following intravitreal injection of pharmacologic agents to selectively block the contributions of ON- and OFF-bipolar cells. The effect of hibernation-associated retinal remodeling on electrophysiological function was assessed in 13-LGS during torpor and emergence, with correlative histology performed using transmission electron microscopy. Results Under light-adapted conditions, the a-, b-, and d-wave amplitude of the 13-LGS was significantly greater than that of the BN rat. Retinal function was absent in the 13-LGS during hibernation and correlated to widespread disruption of photoreceptor and RPE structure. Remarkably, both retinal function and structure recovered rapidly on emergence from hibernation, with ERG responses reaching normal amplitude within 6 hours. Conclusions ERG responses for both BN rats and 13-LGS reflect the relative proportions of cone photoreceptors present within the retinae, indicating that the cone-dominant 13-LGS may be a potentially useful model for studying human central retinal function and disease. That retinal remodeling and restoration of electrophysiological function occurs rapidly on emergence from hibernation implies the 13-LGS may also be a useful tool for studying aspects of retinal physiology and recovery from injury.
Collapse
|
8
|
Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, Oatis JE, Kono M, Cornwall MC, Yau KW. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes. Curr Biol 2020; 30:4921-4931.e5. [PMID: 33065015 PMCID: PMC8561704 DOI: 10.1016/j.cub.2020.09.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Retinal rod and cone photoreceptors mediate vision in dim and bright light, respectively, by transducing absorbed photons into neural electrical signals. Their phototransduction mechanisms are essentially identical. However, one difference is that, whereas a rod visual pigment remains stable in darkness, a cone pigment has some tendency to dissociate spontaneously into apo-opsin and retinal (the chromophore) without isomerization. This cone-pigment property is long known but has mostly been overlooked. Importantly, because apo-opsin has weak constitutive activity, it triggers transduction to produce electrical noise even in darkness. Currently, the precise dark apo-opsin contents across cone subtypes are mostly unknown, as are their dark activities. We report here a study of goldfish red (L), green (M), and blue (S) cones, finding with microspectrophotometry widely different apo-opsin percentages in darkness, being ∼30% in L cones, ∼3% in M cones, and negligible in S cones. L and M cones also had higher dark apo-opsin noise than holo-pigment thermal isomerization activity. As such, given the most likely low signal amplification at the pigment-to-transducin/phosphodiesterase phototransduction step, especially in L cones, apo-opsin noise may not be easily distinguishable from light responses and thus may affect cone vision near threshold.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rikard Frederiksen
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajan Adhikari
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Li-Hui Cao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John E Oatis
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Hart NS, Lamb TD, Patel HR, Chuah A, Natoli RC, Hudson NJ, Cutmore SC, Davies WIL, Collin SP, Hunt DM. Visual Opsin Diversity in Sharks and Rays. Mol Biol Evol 2020; 37:811-827. [PMID: 31770430 DOI: 10.1093/molbev/msz269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date. We used microspectrophotometry to measure the spectral absorbance of the visual pigments in the outer segments of individual photoreceptors from several ray and shark species, and we sequenced the opsin mRNAs obtained from the retinas of the same species, as well as from additional elasmobranch species. We reveal the phylogenetically widespread occurrence of dichromatic color vision in rays based on two cone opsins, RH2 and LWS. We also confirm that all shark species studied to date appear to be cone monochromats but report that in different species the single cone opsin may be of either the LWS or the RH2 class. From this, we infer that cone monochromacy in sharks has evolved independently on multiple occasions. Together with earlier discoveries in secondarily aquatic marine mammals, this suggests that cone-based color vision may be of little use for large marine predators, such as sharks, pinnipeds, and cetaceans.
Collapse
Affiliation(s)
- Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Hardip R Patel
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo C Natoli
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Shaun P Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Donner K, Yovanovich CAM. A frog's eye view: Foundational revelations and future promises. Semin Cell Dev Biol 2020; 106:72-85. [PMID: 32466970 DOI: 10.1016/j.semcdb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
From the mid-19th century until the 1980's, frogs and toads provided important research models for many fundamental questions in visual neuroscience. In the present century, they have been largely neglected. Yet they are animals with highly developed vision, a complex retina built on the basic vertebrate plan, an accessible brain, and an experimentally useful behavioural repertoire. They also offer a rich diversity of species and life histories on a reasonably restricted physiological and evolutionary background. We suggest that important insights may be gained from revisiting classical questions in anurans with state-of-the-art methods. At the input to the system, this especially concerns the molecular evolution of visual pigments and photoreceptors, at the output, the relation between retinal signals, brain processing and behavioural decision-making.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; PB 65 (Viikinkaari 1), 00014, University of Helsinki, Finland.
| | - Carola A M Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, Brazil; Rua do Matão, Trav. 14, N°101, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
11
|
Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision. Neuron 2019; 104:576-587.e11. [PMID: 31519460 DOI: 10.1016/j.neuron.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/28/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
All sensory information is encoded in neural spike trains. It is unknown how the brain utilizes this neural code to drive behavior. Here, we unravel the decoding rules of the brain at the most elementary level by linking behavioral decisions to retinal output signals in a single-photon detection task. A transgenic mouse line allowed us to separate the two primary retinal outputs, ON and OFF pathways, carrying information about photon absorptions as increases and decreases in spiking, respectively. We measured the sensitivity limit of rods and the most sensitive ON and OFF ganglion cells and correlated these results with visually guided behavior using markerless head and eye tracking. We show that behavior relies only on the ON pathway even when the OFF pathway would allow higher sensitivity. Paradoxically, behavior does not rely on the spike code with maximal information but instead relies on a decoding strategy based on increases in spiking.
Collapse
|
12
|
Jokela-Määttä M, Viljanen M, Nevala N, Donner K, Brönmark C. Photoreceptors and eyes of pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus from a clear and a brown lake. JOURNAL OF FISH BIOLOGY 2019; 95:200-213. [PMID: 30047140 DOI: 10.1111/jfb.13759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
The photoreceptors and eyes of four fish species commonly cohabiting Fennoscandian lakes with different light transmission properties were compared: pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus. Each species was represented by individuals from a clear (greenish) and a humic (dark brown) lake in southern Finland: Lake Vesijärvi (LV; peak transmission around 570 nm) and Lake Tuusulanjärvi (LT; peak transmission around 630 nm). In the autumn, all species had almost purely A2-based visual pigments. Rod absorption spectra peaked at c.526 nm (S. lucioperca), c. 533 nm (E. lucius) and c. 540 nm (P. fluviatilis and R. rutilus), with no differences between the lakes. Esox lucius rods had remarkably long outer segments, 1.5-2.8-fold longer than those of the other species. All species possessed middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone pigments in single, twin or double cones. Rutilus rutilus also had two types of short-wavelength sensitive (SWS) cones: UV-sensitive [SWS1] and blue-sensitive (SWS2) cones, although in the samples from LT no UV cones were found. No other within-species differences in photoreceptor cell complements, absorption spectra or morphologies were found between the lakes. However, E. lucius eyes had a significantly lower focal ratio in LT compared with LV, enhancing sensitivity at the expense of acuity in the dark-brown lake. Comparing species, S. lucioperca was estimated to have the highest visual sensitivity, at least two times higher than similar-sized E. lucius, thanks to the large relative size of the eye (pupil) and the presence of a reflecting tapetum behind the retina. High absolute sensitivity will give a competitive edge also in terms of short reaction times and long visual range.
Collapse
Affiliation(s)
- Mirka Jokela-Määttä
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| | - Martta Viljanen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Noora Nevala
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
- Department of Neuroscience, University of Sussex, Brighton, UK
| | - Kristian Donner
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Christer Brönmark
- Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Sakurai K. Physiological Characteristics of Photoreceptors in the Lamprey, Lethenteron japonicum. Zoolog Sci 2019; 34:326-330. [PMID: 28770673 DOI: 10.2108/zs170044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lampreys are among the most basal vertebrates, and similar to jawed vertebrates, they have two types of photoreceptors: long photoreceptors (LP; putative cones) and short photoreceptors (SP; putative rods). It is intriguing to examine the physiological properties of vision in these animals. Although there is an accumulating body of histological and biochemical studies of photoreceptors of the lamprey Lethenteron japonicum, many physiological characteristics of this species have not been described. In the present study, single-cell recordings of photoreceptors in the upstream migrant lamprey were performed to investigate the physiological properties of SP and LP of the lamprey Lethenteron japonicum. It was found that the sensitivity in LP at 560 nm was 2000 photons µm-2, whereas that in SP at 520 nm was 67 photons µm-2, which is approximately a 30-fold difference. Moreover, the response kinetics of LP was remarkably faster than those of SP, which is consistent with previous studies of other Northern hemisphere lampreys. Unexpectedly, the amplitude of single-photon response in the lamprey SP was approximately 0.12 pA, less than 1% of the circulating current. The small amplitude in lamprey SP may degrade the ability to detect single photons of this species. The spectral sensitivity analysis revealed that approximately 30% of all the chromophores are composed of A2 retinal, which may account for the relatively low amplitude of single-photon response in SP.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Sato K, Yamashita T, Kojima K, Sakai K, Matsutani Y, Yanagawa M, Yamano Y, Wada A, Iwabe N, Ohuchi H, Shichida Y. Pinopsin evolved as the ancestral dim-light visual opsin in vertebrates. Commun Biol 2018; 1:156. [PMID: 30302400 PMCID: PMC6167363 DOI: 10.1038/s42003-018-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Pinopsin is the opsin most closely related to vertebrate visual pigments on the phylogenetic tree. This opsin has been discovered among many vertebrates, except mammals and teleosts, and was thought to exclusively function in their brain for extraocular photoreception. Here, we show the possibility that pinopsin also contributes to scotopic vision in some vertebrate species. Pinopsin is distributed in the retina of non-teleost fishes and frogs, especially in their rod photoreceptor cells, in addition to their brain. Moreover, the retinal chromophore of pinopsin exhibits a thermal isomerization rate considerably lower than those of cone visual pigments, but comparable to that of rhodopsin. Therefore, pinopsin can function as a rhodopsin-like visual pigment in the retinas of these lower vertebrates. Since pinopsin diversified before the branching of rhodopsin on the phylogenetic tree, two-step adaptation to scotopic vision would have occurred through the independent acquisition of pinopsin and rhodopsin by the vertebrate lineage.
Collapse
Affiliation(s)
- Keita Sato
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Yumiko Yamano
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
15
|
Shen YC, Sasaki T, Matsuyama T, Yamashita T, Shichida Y, Okitsu T, Yamano Y, Wada A, Ishizuka T, Yawo H, Imamoto Y. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018; 57:5544-5556. [DOI: 10.1021/acs.biochem.8b00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Chung Shen
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshikazu Sasaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Take Matsuyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods. J Neurosci 2017; 36:6973-87. [PMID: 27358455 DOI: 10.1523/jneurosci.3544-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 05/17/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that is activated when its 11-cis-retinal moiety is photoisomerized to all-trans retinal. This step initiates a cascade of reactions by which rods signal changes in light intensity. Like other GPCRs, rhodopsin is deactivated through receptor phosphorylation and arrestin binding. Full recovery of receptor sensitivity is then achieved when rhodopsin is regenerated through a series of steps that return the receptor to its ground state. Here, we show that dephosphorylation of the opsin moiety of rhodopsin is an extremely slow but requisite step in the restoration of the visual pigment to its ground state. We make use of a novel observation: isolated mouse retinae kept in standard media for routine physiologic recordings display blunted dephosphorylation of rhodopsin. Isoelectric focusing followed by Western blot analysis of bleached isolated retinae showed little dephosphorylation of rhodopsin for up to 4 h in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometeric determinations of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single-cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. We propose a model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires >3 h in complete darkness. SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) constitute the largest superfamily of proteins that compose ∼4% of the mammalian genome whose members share a common membrane topology. Signaling by GPCRs regulate a wide variety of physiological processes, including taste, smell, hearing, vision, and cardiovascular, endocrine, and reproductive homeostasis. An important feature of GPCR signaling is its timely termination. This normally occurs when, after their activation, GPCRs are rapidly phosphorylated by specific receptor kinases and subsequently bound by cognate arrestins. Recovery of receptor sensitivity to the ground state then requires dephosphorylation of the receptor and unbinding of arrestin, processes that are poorly understood. Here we investigate in mouse rod photoreceptors the relationship between rhodopsin dephosphorylation and recovery of visual sensitivity.
Collapse
|
17
|
Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Proc Natl Acad Sci U S A 2017; 114:5437-5442. [PMID: 28484015 DOI: 10.1073/pnas.1620010114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the retinal chromophore has been suggested to contribute to the rod's background noise, which limits the visual threshold for scotopic vision. Therefore, rhodopsin must exhibit low thermal isomerization rate compared with cone visual pigments to adapt to scotopic condition. In this study, we determined whether amphibian blue-sensitive cone pigments in green rods exhibit low thermal isomerization rates to act as rhodopsin-like pigments for scotopic vision. Anura blue-sensitive cone pigments exhibit low thermal isomerization rates similar to rhodopsin, whereas Urodela pigments exhibit high rates like other vertebrate cone pigments present in cones. Furthermore, by mutational analysis, we identified a key amino acid residue, Thr47, that is responsible for the low thermal isomerization rates of Anura blue-sensitive cone pigments. These results strongly suggest that, through this mutation, anurans acquired special blue-sensitive cone pigments in their green rods, which could form the molecular basis for scotopic color vision with normal red rods containing green-sensitive rhodopsin.
Collapse
|
18
|
Yovanovich CAM, Koskela SM, Nevala N, Kondrashev SL, Kelber A, Donner K. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160066. [PMID: 28193811 PMCID: PMC5312016 DOI: 10.1098/rstb.2016.0066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
| | - Sanna M Koskela
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Noora Nevala
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Sergei L Kondrashev
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Kristian Donner
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| |
Collapse
|
19
|
Nagloo N, Collin SP, Hemmi JM, Hart NS. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni. J Exp Biol 2016; 219:1394-404. [DOI: 10.1242/jeb.135673] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Crocodilians are apex amphibious predators that occupy a range of tropical habitats. In this study, we examined whether their semi-aquatic lifestyle and ambush hunting mode are reflected in specific adaptations in the peripheral visual system. Design-based stereology and microspectrophotometry were used to assess spatial resolving power and spectral sensitivity of saltwater (Crocodylus porosus) and freshwater crocodiles (Crocodylus johnstoni). Both species possess a foveal streak that spans the naso-temporal axis and mediates high spatial acuity across the central visual field. The saltwater crocodile and freshwater crocodile have a peak spatial resolving power of 8.8 and 8.0 cycles deg−1, respectively. Measurement of the outer segment dimensions and spectral absorbance revealed five distinct photoreceptor types consisting of three single cones, one twin cone and a rod. The three single cones (saltwater/freshwater crocodile) are violet (424/426 nm λmax), green (502/510 nm λmax) and red (546/554 nm λmax) sensitive, indicating the potential for trichromatic colour vision. The visual pigments of both members of the twin cones have the same λmax as the red-sensitive single cone and the rod has a λmax at 503/510 nm (saltwater/freshwater). The λmax values of all types of visual pigment occur at longer wavelengths in the freshwater crocodile compared with the saltwater crocodile. Given that there is a greater abundance of long wavelength light in freshwater compared with a saltwater environment, the photoreceptors would be more effective at detecting light in their respective habitats. This suggests that the visual systems of both species are adapted to the photic conditions of their respective ecological niche.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jan M. Hemmi
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| |
Collapse
|
20
|
Li Z, Dai J. Biophotons Contribute to Retinal Dark Noise. Neurosci Bull 2016; 32:246-52. [PMID: 27059222 DOI: 10.1007/s12264-016-0029-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/06/2016] [Indexed: 01/28/2023] Open
Abstract
The discovery of dark noise in retinal photoreceptors resulted in a long-lasting controversy over its origin and the underlying mechanisms. Here, we used a novel ultra-weak biophoton imaging system (UBIS) to detect biophotonic activity (emission) under dark conditions in rat and bullfrog (Rana catesbeiana) retinas in vitro. We found a significant temperature-dependent increase in biophotonic activity that was completely blocked either by removing intracellular and extracellular Ca(2+) together or inhibiting phosphodiesterase 6. These findings suggest that the photon-like component of discrete dark noise may not be caused by a direct contribution of the thermal activation of rhodopsin, but rather by an indirect thermal induction of biophotonic activity, which then activates the retinal chromophore of rhodopsin. Therefore, this study suggests a possible solution regarding the thermal activation energy barrier for discrete dark noise, which has been debated for almost half a century.
Collapse
Affiliation(s)
- Zehua Li
- Wuhan Institute for Neuroscience and Neuroengineering, South Central University for Nationalities, Wuhan, 430074, China.,Department of Neurobiology, College of Life Sciences, South Central University for Nationalities, Wuhan, 430074, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South Central University for Nationalities, Wuhan, 430074, China. .,Department of Neurobiology, College of Life Sciences, South Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
21
|
Donner K, Zak P, Viljanen M, Lindström M, Feldman T, Ostrovsky M. Eye spectral sensitivity in fresh- and brackish-water populations of three glacial-relict Mysis species (Crustacea): physiology and genetics of differential tuning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:297-312. [PMID: 26984686 PMCID: PMC4819508 DOI: 10.1007/s00359-016-1079-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Abstract
Absorbance spectra of single rhabdoms were studied by microspectrophotometry (MSP) and spectral sensitivities of whole eyes by electroretinography (ERG) in three glacial-relict species of opossum shrimps (Mysis). Among eight populations from Fennoscandian fresh-water lakes (L) and seven populations from the brackish-water Baltic Sea (S), L spectra were systematically red-shifted by 20-30 nm compared with S spectra, save for one L and one S population. The difference holds across species and bears no consistent adaptive relation to the current light environments. In the most extensively studied L-S pair, two populations of M. relicta (L(p) and S(p)) separated for less than 10,000 years, no differences translating into amino acid substitutions have been found in the opsin genes, and the chromophore of the visual pigments as analyzed by HPLC is pure A1. However, MSP experiments with spectrally selective bleaching show the presence of two rhodopsins (λ(max) ≈ 525-530 nm, MWS, and 565-570 nm, LWS) expressed in different proportions. ERG recordings of responses to "red" and "blue" light linearly polarized at orthogonal angles indicate segregation of the pigments into different cells differing in polarization sensitivity. We propose that the pattern of development of LWS and MWS photoreceptors is governed by an ontogenetic switch responsive to some environmental signal(s) other than light that generally differ(s) between lakes and sea, and that this reaction norm is conserved from a common ancestor of all three species.
Collapse
Affiliation(s)
- Kristian Donner
- Department of Biosciences, University of Helsinki, P.O.Box 65 (Viikinkaari 1), 00014, Helsinki, Finland.
| | - Pavel Zak
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Martta Viljanen
- Department of Biosciences, University of Helsinki, P.O.Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Magnus Lindström
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Tatiana Feldman
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Ostrovsky
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Salari V, Scholkmann F, Bokkon I, Shahbazi F, Tuszynski J. The Physical Mechanism for Retinal Discrete Dark Noise: Thermal Activation or Cellular Ultraweak Photon Emission? PLoS One 2016; 11:e0148336. [PMID: 26950936 PMCID: PMC4780715 DOI: 10.1371/journal.pone.0148336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.
Collapse
Affiliation(s)
- Vahid Salari
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Research Office for Complex Physical and Biological Systems (ROCoS), 8038 Zurich, Switzerland
| | - Istvan Bokkon
- Vision Research Institute, 25 Rita Street, Lowell, MA 01854, United States of America
- Psychoszomatic OutPatient Department of the National Center for Spinal Disorders, Budapest H-1126, Hungary
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Jack Tuszynski
- Department of Physics, University of Alberta, T6G 2J1, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
23
|
Hofmann L, Palczewski K. Advances in understanding the molecular basis of the first steps in color vision. Prog Retin Eye Res 2015; 49:46-66. [PMID: 26187035 DOI: 10.1016/j.preteyeres.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023]
Abstract
Serving as one of our primary environmental inputs, vision is the most sophisticated sensory system in humans. Here, we present recent findings derived from energetics, genetics and physiology that provide a more advanced understanding of color perception in mammals. Energetics of cis-trans isomerization of 11-cis-retinal accounts for color perception in the narrow region of the electromagnetic spectrum and how human eyes can absorb light in the near infrared (IR) range. Structural homology models of visual pigments reveal complex interactions of the protein moieties with the light sensitive chromophore 11-cis-retinal and that certain color blinding mutations impair secondary structural elements of these G protein-coupled receptors (GPCRs). Finally, we identify unsolved critical aspects of color tuning that require future investigation.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Asteriti S, Grillner S, Cangiano L. A Cambrian origin for vertebrate rods. eLife 2015; 4. [PMID: 26095697 PMCID: PMC4502669 DOI: 10.7554/elife.07166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022] Open
Abstract
Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod photoreceptor at an unknown stage preceding the last common ancestor of extant jawed vertebrates (∼420 million years ago Ma). The jawless lampreys provide a unique opportunity to constrain the timing of this advance, as their line diverged ∼505 Ma and later displayed high-morphological stability. We recorded with patch electrodes the inner segment photovoltages and with suction electrodes the outer segment photocurrents of Lampetra fluviatilis retinal photoreceptors. Several key functional features of jawed vertebrate rods are present in their phylogenetically homologous photoreceptors in lamprey: crucially, the efficient amplification of the effect of single photons, measured by multiple parameters, and the flow of rod signals into cones. These results make convergent evolution in the jawless and jawed vertebrate lines unlikely and indicate an early origin of rods, implying strong selective pressure toward dim-light vision in Cambrian ecosystems. DOI:http://dx.doi.org/10.7554/eLife.07166.001 The eyes of humans and many other animals with backbones contain two different types of cells that can detect light, which are known as rod and cone cells. Rod cells are much more sensitive to light than cone cells. The rods allow us to see in dim light by amplifying weak light signals and transmitting information to other cells, including the cones themselves. It is thought that the rod cell evolved from the cone cell in the common ancestors of mammals, fish, and other animals with backbones and jaws at least 420 million years ago. Lampreys are jawless fish that diverged from the ancestors of jawed animals around 505 million years ago, in the middle of a period of great evolutionary innovation called the Cambrian. They have changed relatively little since that time so they provide a snapshot of what our ancestors' eyes might have been like back then. Like the rod and cone cells of jawed animals, the eyes of adult lampreys also have two types of photoreceptors. However, it was not clear whether the lamprey photoreceptor cells work in a similar way to rod and cone cells. Asteriti et al. collected lampreys in Sweden and France during their breeding season and used patch and suction electrodes to measure the activity of their photoreceptor cells. The experiments show that the short photoreceptor cells are more sensitive to light than the long photoreceptors and are able to amplify weak light signals. Also, the short photoreceptors send signals to the long photoreceptors in a similar way to how rod cells send information to cone cells. The similarities between lamprey photoreceptor cells and those of jawed animals support the idea that they have a common origin in evolutionary history. Therefore, Asteriti et al. conclude that the ability to see in low light evolved before these groups of animals diverged about 505 million years ago. The picture that emerges is one in which our remote ancestors inhabiting the Cambrian seas already possessed dim-light vision. This would have allowed them to colonize deep waters or to move at twilight, an adaptation suggestive of intense competition or predation from other life forms. DOI:http://dx.doi.org/10.7554/eLife.07166.002
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Origin of the low thermal isomerization rate of rhodopsin chromophore. Sci Rep 2015; 5:11081. [PMID: 26061742 PMCID: PMC4462023 DOI: 10.1038/srep11081] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Low dark noise is a prerequisite for rod cells, which mediate our dim-light vision. The low dark noise is achieved by the extremely stable character of the rod visual pigment, rhodopsin, which evolved from less stable cone visual pigments. We have developed a biochemical method to quickly evaluate the thermal activation rate of visual pigments. Using an isomerization locked chromophore, we confirmed that thermal isomerization of the chromophore is the sole cause of thermal activation. Interestingly, we revealed an unexpected correlation between the thermal stability of the dark state and that of the active intermediate MetaII. Furthermore, we assessed key residues in rhodopsin and cone visual pigments by mutation analysis and identified two critical residues (E122 and I189) in the retinal binding pocket which account for the extremely low thermal activation rate of rhodopsin.
Collapse
|
26
|
Belikov N, Yakovleva M, Feldman T, Demina O, Khodonov A, Lindström M, Donner K, Ostrovsky M. Lake and sea populations of Mysis relicta (Crustacea, Mysida) with different visual-pigment absorbance spectra use the same A1 chromophore. PLoS One 2014; 9:e88107. [PMID: 24516590 PMCID: PMC3917887 DOI: 10.1371/journal.pone.0088107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
Glacial-relict species of the genus Mysis (opossum shrimps) inhabiting both fresh-water lakes and brackish sea waters in northern Europe show a consistent lake/sea dichotomy in eye spectral sensitivity. The absorbance peak (λmax) recorded by microspectrophotometry in isolated rhabdoms is invariably 20-30 nm red-shifted in "lake" compared with "sea" populations. The dichotomy holds across species, major opsin lineages and light environments. Chromophore exchange from A1 to A2 (retinal → 3,4-didehydroretinal) is a well-known mechanism for red-shifting visual pigments depending on environmental conditions or stages of life history, present not only in fishes and amphibians, but in some crustaceans as well. We tested the hypothesis that the lake/sea dichotomy in Mysis is due to the use of different chromophores, focussing on two populations of M. relicta from, respectively, a Finnish lake and the Baltic Sea. They are genetically very similar, having been separated for less than 10 kyr, and their rhabdoms show a typical lake/sea difference in λmax (554 nm vs. 529 nm). Gene sequencing has revealed no differences translating into amino acid substitutions in the transmembrane parts of their opsins. We determined the chromophore identity (A1 or A2) in the eyes of these two populations by HPLC, using as standards pure chromophores A1 and A2 as well as extracts from bovine (A1) and goldfish (A2) retinas. We found that the visual-pigment chromophore in both populations is A1 exclusively. Thus the spectral difference between these two populations of M. relicta is not due to the use of different chromophores. We argue that this conclusion is likely to hold for all populations of M. relicta as well as its European sibling species.
Collapse
Affiliation(s)
- Nikolai Belikov
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yakovleva
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Feldman
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Biological Faculty, Moscow State University, Moscow, Russia
| | - Olga Demina
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Andrei Khodonov
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Magnus Lindström
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Kristian Donner
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikhail Ostrovsky
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
27
|
Frederiksen R, Boyer NP, Nickle B, Chakrabarti KS, Koutalos Y, Crouch RK, Oprian D, Cornwall MC. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. ACTA ACUST UNITED AC 2013; 139:493-505. [PMID: 22641642 PMCID: PMC3362518 DOI: 10.1085/jgp.201110685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhong M, Kawaguchi R, Kassai M, Sun H. Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients 2012; 4:2069-96. [PMID: 23363998 PMCID: PMC3546623 DOI: 10.3390/nu4122069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023] Open
Abstract
Light is both the ultimate energy source for most organisms and a rich information source. Vitamin A-based chromophore was initially used in harvesting light energy, but has become the most widely used light sensor throughout evolution from unicellular to multicellular organisms. Vitamin A-based photoreceptor proteins are called opsins and have been used for billions of years for sensing light for vision or the equivalent of vision. All vitamin A-based light sensors for vision in the animal kingdom are G-protein coupled receptors, while those in unicellular organisms are light-gated channels. This first major switch in evolution was followed by two other major changes: the switch from bistable to monostable pigments for vision and the expansion of vitamin A's biological functions. Vitamin A's new functions such as regulating cell growth and differentiation from embryogenesis to adult are associated with increased toxicity with its random diffusion. In contrast to bistable pigments which can be regenerated by light, monostable pigments depend on complex enzymatic cycles for regeneration after every photoisomerization event. Here we discuss vitamin A functions and transport in the context of the natural history of vitamin A-based light sensors and propose that the expanding functions of vitamin A and the choice of monostable pigments are the likely evolutionary driving forces for precise, efficient, and sustained vitamin A transport.
Collapse
Affiliation(s)
- Ming Zhong
- Department of Physiology, Jules Stein Eye Institute, and Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
29
|
Saarinen P, Pahlberg J, Herczeg G, Viljanen M, Karjalainen M, Shikano T, Merilä J, Donner K. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius). ACTA ACUST UNITED AC 2012; 215:2760-73. [PMID: 22837448 DOI: 10.1242/jeb.068122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The visual pigments of rods and cones were studied in eight Fennoscandian populations of nine-spined stickleback (Pungitius pungitius). The wavelength of maximum absorbance of the rod pigment (λ(max)) varied between populations from 504 to 530 nm. Gene sequencing showed that the rod opsins of all populations were identical in amino acid composition, implying that the differences were due to varying proportions of chromophores A1 and A2. Four spectral classes of cones were found (two S-cones, M-cones and L-cones), correlating with the four classes of vertebrate cone pigments. For quantitative estimation of chromophore proportions, we considered mainly rods and M-cones. In four populations, spectra of both photoreceptor types indicated A2 dominance (population mean λ(max)=525-530 nm for rods and 535-544 nm for M-cones). In the four remaining populations, however, rod spectra (mean λ(max)=504-511 nm) indicated strong A1 dominance, whereas M-cone spectra (mean λ(max)=519-534 nm) suggested substantial fractions of A2. Quantitative analysis of spectra by three methods confirmed that rods and cones in these populations use significantly different chromophore proportions. The outcome is a shift of M-cone spectra towards longer wavelengths and a better match to the photic environment (light spectra peaking >560 nm in all the habitats) than would result from the chromophore proportions of the rods. Chromophore content was also observed to vary partly independently in M- and L-cones with potential consequences for colour discrimination. This is the first demonstration that selective processing of chromophore in rods and cones, and in different cone types, may be ecologically relevant.
Collapse
Affiliation(s)
- Pia Saarinen
- Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sineshchekov OA, Govorunova EG, Wang J, Spudich JL. Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal. Biochemistry 2012; 51:4499-506. [PMID: 22577956 DOI: 10.1021/bi2018859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrogenic microbial rhodopsins (ion pumps and channelrhodopsins) are widely used to control the activity of neurons and other cells by light (optogenetics). Long-wavelength absorption by optogenetic tools is desirable for increasing the penetration depth of the stimulus light by minimizing tissue scattering and absorption by hemoglobin. A2 retinal (3,4-dehydroretinal) is a natural retinoid that serves as the chromophore in red-shifted visual pigments of several lower aquatic animals. Here we show that A2 retinal reconstitutes a fully functional archaerhodopsin-3 (AR-3) proton pump and four channelrhodopsin variants (CrChR1, CrChR2, CaChR1, and MvChR1). Substitution of A1 with A2 retinal significantly shifted the spectral sensitivity of all tested rhodopsins to longer wavelengths without altering other aspects of their function. The spectral shift upon substitution of A1 with A2 in AR-3 was close to that measured in other archaeal rhodopsins. Notably, the shifts in channelrhodopsins were larger than those measured in archaeal rhodopsins and close to those in animal visual pigments with similar absorption maxima of their A1-bound forms. Our results show that chromophore substitution provides a complementary strategy for improving the efficiency of optogenetic tools.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|
31
|
Audzijonyte A, Pahlberg J, Viljanen M, Donner K, Väinölä R. Opsin gene sequence variation across phylogenetic and population histories in Mysis (Crustacea: Mysida) does not match current light environments or visual-pigment absorbance spectra. Mol Ecol 2012; 21:2176-96. [PMID: 22429275 DOI: 10.1111/j.1365-294x.2012.05516.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The hypothesis that selection on the opsin gene is efficient in tuning vision to the ambient light environment of an organism was assessed in 49 populations of 12 Mysis crustacean species, inhabiting arctic marine waters, coastal littoral habitats, freshwater lakes ('glacial relicts') and the deep Caspian Sea. Extensive sequence variation was found within and among taxa, but its patterns did not match expectations based on light environments, spectral sensitivity of the visual pigment measured by microspectrophotometry or the history of species and populations. The main split in the opsin gene tree was between lineages I and II, differing in six amino acids. Lineage I was present in marine and Caspian Sea species and in the North American freshwater Mysis diluviana, whereas lineage II was found in the European and circumarctic fresh- and brackish-water Mysis relicta, Mysis salemaai and Mysis segerstralei. Both lineages were present in some populations of M. salemaai and M. segerstralei. Absorbance spectra of the visual pigment in nine populations of the latter three species showed a dichotomy between lake (λ(max) =554-562 nm) and brackish-water (Baltic Sea) populations (λ(max) = 521-535 nm). Judged by the shape of spectra, this difference was not because of different chromophores (A2 vs. A1), but neither did it coincide with the split in the opsin tree (lineages I/II), species identity or current light environments. In all, adaptive evolution of the opsin gene in Mysis could not be demonstrated, but its sequence variation did not conform to a neutral expectation either, suggesting evolutionary constraints and/or unidentified mechanisms of spectral tuning.
Collapse
Affiliation(s)
- Asta Audzijonyte
- Finnish Museum of Natural History, PO Box 17, FI-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
32
|
Kaila VRI, Send R, Sundholm D. The effect of protein environment on photoexcitation properties of retinal. J Phys Chem B 2012; 116:2249-58. [PMID: 22166007 DOI: 10.1021/jp205918m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinal is the photon absorbing chromophore of rhodopsin and other visual pigments, enabling the vertebrate vision process. The effects of the protein environment on the primary photoexcitation process of retinal were studied by time-dependent density functional theory (TDDFT) and the algebraic diagrammatic construction through second order (ADC(2)) combined with our recently introduced reduction of virtual space (RVS) approximation method. The calculations were performed on large full quantum chemical cluster models of the bluecone (BC) and rhodopsin (Rh) pigments with 165-171 atoms. Absorption wavelengths of 441 and 491 nm were obtained at the B3LYP level of theory for the respective models, which agree well with the experimental values of 414 and 498 nm. Electrostatic rather than structural strain effects were shown to dominate the spectral tuning properties of the surrounding protein. The Schiff base retinal and a neighboring Glu-113 residue were found to have comparable proton affinities in the ground state of the BC model, whereas in the excited state, the proton affinity of the Schiff base is 5.9 kcal/mol (0.26 eV) higher. For the ground and excited states of the Rh model, the proton affinity of the Schiff base is 3.2 kcal/mol (0.14 eV) and 7.9 kcal/mol (0.34 eV) higher than for Glu-113, respectively. The protein environment was found to enhance the bond length alternation (BLA) of the retinyl chain and blueshift the first absorption maxima of the protonated Schiff base in the BC and Rh models relative to the chromophore in the gas phase. The protein environment was also found to decrease the intensity of the second excited state, thus improving the quantum yield of the photoexcitation process. Relaxation of the BC model on the excited state potential energy surface led to a vanishing BLA around the isomerization center of the conjugated retinyl chain, rendering the retinal accessible for cis-trans isomerization. The energy of the relaxed excited state was found to be 30 kcal/mol (1.3 eV) above the minimum ground state energy, and might be related to the transition state of the thermal activation process.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
33
|
Reuter T. Fifty years of dark adaptation 1961–2011. Vision Res 2011; 51:2243-62. [DOI: 10.1016/j.visres.2011.08.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
|
34
|
Abstract
Vision begins with photoisomerization of visual pigments. Thermal energy can complement photon energy to drive photoisomerization, but it also triggers spontaneous pigment activation as noise that interferes with light detection. For half a century, the mechanism underlying this dark noise has remained controversial. We report here a quantitative relation between a pigment's photoactivation energy and its peak-absorption wavelength, λ(max). Using this relation and assuming that pigment activations by light and heat go through the same ground-state isomerization energy barrier, we can predict the relative noise of diverse pigments with multi-vibrational-mode thermal statistics. The agreement between predictions and our measurements strongly suggests that pigment noise arises from canonical isomerization. The predicted high noise for pigments with λ(max) in the infrared presumably explains why they apparently do not exist in nature.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
35
|
Why different regions of the retina have different spectral sensitivities: A review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis Neurosci 2011; 28:281-93. [DOI: 10.1017/s0952523811000113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractVision is used in nearly all aspects of animal behavior, from prey and predator detection to mate selection and parental care. However, the light environment typically is not uniform in every direction, and visual tasks may be specific to particular parts of an animal’s field of view. These spatial differences may explain the presence of several adaptations in the eyes of vertebrates that alter spectral sensitivity of the eye in different directions. Mechanisms that alter spectral sensitivity across the retina include (but are not limited to) variations in: corneal filters, oil droplets, macula lutea, tapeta, chromophore ratios, photoreceptor classes, and opsin expression. The resultant variations in spectral sensitivity across the retina are referred to as intraretinal variability in spectral sensitivity (IVSS). At first considered an obscure and rare phenomenon, it is becoming clear that IVSS is widespread among all vertebrates, and examples have been found from every major group. This review will describe the mechanisms mediating differences in spectral sensitivity, which are in general well understood, as well as explore the functional significance of intraretinal variability, which for the most part is unclear at best.
Collapse
|
36
|
Lórenz-Fonfría VA, Furutani Y, Ota T, Ido K, Kandori H. Protein fluctuations as the possible origin of the thermal activation of rod photoreceptors in the dark. J Am Chem Soc 2010; 132:5693-703. [PMID: 20356096 DOI: 10.1021/ja907756e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient retinal photoisomerization, signal transduction, and amplification contribute to single-photon electrical responses in vertebrates visual cells. However, spontaneous discrete electrical signals arising in the dark, with identical intensity and time profiles as those generated by genuine single photons (dark events), limit the potential capability of the rod visual system to discern single photons from thermal noise. It is accepted that the light and the thermal activation of the rod photoreceptor rhodopsin (Rho) triggers the light and the dark events, respectively. However the activation barrier for the dark events (80-110 kJ/mol) appears to be only half of the barrier for light-dependent activation of Rho (> or =180 kJ/mol). On the basis of these observations, it has been postulated that both processes should follow different pathways, but the molecular mechanism for the thermal activation process still remains an open question and subject of debate. Here, performing infrared difference spectroscopy measurements, we found that the -OH group of Thr118 from bovine Rho exhibits a slow but measurable hydrogen/deuterium exchange (HDX) under native conditions. Given the location of Thr118 in the X-ray structures, isolated from the aqueous phase and in steric contact with the buried retinal chromophore, we assume that a protein structural fluctuation must drive the retinal binding pocket (RBP) transiently open. We characterized the kinetics (rate and activation enthalpy) and thermodynamics (equilibrium constant and enthalpy) of this fluctuation from the global analysis of the HDX of Thr118-OH as a function of the temperature and pH. In parallel, using HPLC chromatography, we determined the kinetics of the thermal isomerization of the protonated 11-cis retinal in solution, as a model for retinal thermal isomerization in an open RBP. Finally, we propose a quantitative two-step model in which the dark activation of Rho is triggered by thermal isomerization of the retinal in a transiently opened RBP, which accurately reproduced both the experimental activation barrier and the rate of the dark events. We conclude that the absolute sensitivity threshold of our visual system is limited by structural fluctuations of the chromophore binding pocket rather than in the chromophore itself.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
37
|
Kefalov VJ, Cornwall MC, Fain GL. Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments. Methods Mol Biol 2010; 652:95-114. [PMID: 20552424 DOI: 10.1007/978-1-60327-325-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The visual pigment in vertebrate photoreceptors is a G protein-coupled receptor that consists of a protein, opsin, covalently attached to a chromophore, 11-cis-retinal. Activation of the visual pigment by light triggers a transduction cascade that produces experimentally measurable electrical responses in photoreceptors. The interactions between opsin and chromophore can be investigated with electrophysiologial recordings in intact amphibian and mouse rod and cone photoreceptor cells. Here we describe methods for substituting the native chromophore with various chromophore analogs to investigate how specific parts of the chromophore affect the signaling properties of the visual pigment and the function of photoreceptors. We also describe methods for genetically substituting the native rod opsin gene with cone opsins or with mutant rod opsins to investigate and compare their signaling properties. These methods are useful not only for understanding the relation between the properties of visual pigments and the function of photoreceptors but also for understanding the mechanisms by which mutations in rod opsin produce night blindness and other visual disorders.
Collapse
Affiliation(s)
- Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
38
|
Jokela-Määttä M, Vartio A, Paulin L, Donner K. Individual variation in rod absorbance spectra correlated with opsin gene polymorphism in sand goby (Pomatoschistus minutus). J Exp Biol 2009; 212:3415-21. [DOI: 10.1242/jeb.031344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Rod absorbance spectra, characterized by the wavelength of peak absorbance(λmax) were related to the rod opsin sequences of individual sand gobies (Pomatoschistus minutus) from four allopatric populations[Adriatic Sea (A), English Channel (E), Swedish West Coast (S) and Baltic Sea(B)]. Rod λmax differed between populations in a manner correlated with differences in the spectral light transmission of the respective water bodies [λmax: (A)≈503 nm; (E and S)≈505–506 nm; (B)≈508 nm]. A distinguishing feature of B was the wide within-population variation of λmax (505.6–511.3 nm). The rod opsin gene was sequenced in marked individuals whose rod absorbance spectra had been accurately measured. Substitutions were identified using EMBL/GenBank X62405 English sand goby sequence as reference and interpreted using two related rod pigments, the spectrally similar one of the Adriatic P. marmoratus (λmax≈507 nm) and the relatively red-shifted Baltic P. microps(λmax≈515 nm) as outgroups. The opsin sequence of all E individuals was identical to that of the reference, whereas the S and B fish all had the substitution N151N/T or N151T. The B fish showed systematic within-population polymorphism, the sequence of individuals withλ max at 505.6–507.5 nm were identical to S, but those with λmax at 509–511.3 nm additionally had F261F/Y. The substitution F261Y is known to red-shift the rod pigment and was found in all P. microps. We propose that ambiguous selection pressures in the Baltic Sea and/or gene flow from the North Sea preserves polymorphism and is phenotypically evident as a wide variation in λmax.
Collapse
Affiliation(s)
- Mirka Jokela-Määttä
- Department of Biological and Environmental Sciences, University of Helsinki,Helsinki, Finland
| | - Annika Vartio
- Department of Biological and Environmental Sciences, University of Helsinki,Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristian Donner
- Department of Biological and Environmental Sciences, University of Helsinki,Helsinki, Finland
| |
Collapse
|
39
|
Miyagishima KJ, Cornwall MC, Sampath AP. Metabolic constraints on the recovery of sensitivity after visual pigment bleaching in retinal rods. ACTA ACUST UNITED AC 2009; 134:165-75. [PMID: 19687232 PMCID: PMC2737229 DOI: 10.1085/jgp.200910267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The shutoff of active intermediates in the phototransduction cascade and the reconstitution of the visual pigment play key roles in the recovery of sensitivity after the exposure to bright light in both rod and cone photoreceptors. Physiological evidence from bleached salamander rods suggests this recovery of sensitivity occurs faster at the outer segment base compared with the tip. Microfluorometric measurements of similarly bleached salamander rods demonstrate that the reduction of all-trans retinal to all-trans retinol also occurs more rapidly at the outer segment base than at the tip. The experiments reported here were designed to test the hypothesis that these two phenomena are linked, e.g., that slowed recovery of sensitivity at the tip of outer segments is rate limited by the reduction of all-trans retinal and results from a shortage of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH), the reducing agent for all-trans retinal reduction. Extracellular measurements of membrane current and sensitivity were made from isolated salamander rods under dark-adapted and bleached conditions while intracellular NADPH concentration was varied by dialysis from a micropipette attached to the inner segment. Sensitivity at the base and tip of the outer segment was assessed before and after bleaching. After exposure to a light that photoactivates 50% of the visual pigment, rods were completely insensitive for nearly 10 minutes, after which the base recovered sensitivity and responsiveness with a time constant of ∼200 seconds, but tip sensitivity recovered more slowly with a time constant of ∼680 seconds. Dialysis of 5 mM NADPH into the rod promoted an earlier recovery and eliminated the previously observed tip/base difference. Dialysis of 1.66 mM NADPH failed to eliminate the tip/base recovery difference, suggesting the steady-state NADPH concentration in rods is ∼1 mM. These results indicate the inner segment is the primary source of reducing equivalents after pigment bleaching, with the reduction of all-trans retinal to all-trans retinol playing a key step in the recovery of sensitivity.
Collapse
Affiliation(s)
- Kiyoharu J Miyagishima
- Systems Biology and Disease Graduate Program, Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
40
|
Estevez ME, Kolesnikov AV, Ala-Laurila P, Crouch RK, Govardovskii VI, Cornwall MC. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones. J Gen Physiol 2009; 134:137-50. [PMID: 19635855 PMCID: PMC2717693 DOI: 10.1085/jgp.200910232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/13/2009] [Indexed: 11/21/2022] Open
Abstract
Cone photoreceptors of the vertebrate retina terminate their response to light much faster than rod photoreceptors. However, the molecular mechanisms underlying this rapid response termination in cones are poorly understood. The experiments presented here tested two related hypotheses: first, that the rapid decay rate of metarhodopsin (Meta) II in red-sensitive cones depends on interactions between the 9-methyl group of retinal and the opsin part of the pigment molecule, and second, that rapid Meta II decay is critical for rapid recovery from saturation of red-sensitive cones after exposure to bright light. Microspectrophotometric measurements of pigment photolysis, microfluorometric measurements of retinol production, and single-cell electrophysiological recordings of flash responses of salamander cones were performed to test these hypotheses. In all cases, cones were bleached and their visual pigment was regenerated with either 11-cis retinal or with 11-cis 9-demethyl retinal, an analogue of retinal lacking the 9-methyl group. Meta II decay was four to five times slower and subsequent retinol production was three to four times slower in red-sensitive cones lacking the 9-methyl group of retinal. This was accompanied by a significant slowing of the recovery from saturation in cones lacking the 9-methyl group after exposure to bright (>0.1% visual pigment photoactivated) but not dim light. A mathematical model of the turn-off process of phototransduction revealed that the slower recovery of photoresponse can be explained by slower Meta decay of 9-demethyl visual pigment. These results demonstrate that the 9-methyl group of retinal is required for steric chromophore-opsin interactions that favor both the rapid decay of Meta II and the rapid response recovery after exposure to bright light in red-sensitive cones.
Collapse
Affiliation(s)
- Maureen E Estevez
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Ala-Laurila P, Cornwall MC, Crouch RK, Kono M. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. J Biol Chem 2009; 284:16492-16500. [PMID: 19386593 DOI: 10.1074/jbc.m109.004697] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
11-cis-retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5'-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.
Collapse
Affiliation(s)
- Petri Ala-Laurila
- From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - M Carter Cornwall
- From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
42
|
Heikkinen H, Nymark S, Donner K, Koskelainen A. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods. Vision Res 2009; 49:1717-28. [PMID: 19348836 DOI: 10.1016/j.visres.2009.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
Abstract
Flash responses of L-cones and rods were recorded as ERG mass potentials in the frog retina at different temperatures (2-25 degrees C). The purpose was to elucidate factors that make cones faster and less sensitive than rods, particularly the possible role of thermal activation of L-cone visual pigment in maintaining a "light-adapted" state even in darkness. Up to ca. 15 degrees C, cones and rods were desensitized roughly equally by warming (Q(10) approximately 2.2-2.7), retaining a 5-fold sensitivity difference. In this range, the cone/rod difference must depend on factors other than thermal activation of the visual pigment. Above 15 degrees C, cones showed an additional component of desensitization compared with rods, coupled to accelerated response shut-off. This behavior is consistent with light-adaptation from temperature-dependent intrinsic activity (dark light). The apparent dark light as measured by the minimum background intensities needed to affect sensitivity and/or kinetics increased by ca. 10-fold between 15 and 25 degrees C, whereas reported increases in visual-pigment activation rates over this range are less than 5-fold. We conclude that the dark state of frog L-cones above 15 degrees C may be largely set by thermal activation of the phototransduction machinery, but only part of the experimentally determined dark light can be ascribed to the visual pigment.
Collapse
Affiliation(s)
- H Heikkinen
- Department of Biomedical Engineering and Computational Science, Helsinki University of Technology, FI-02015 HUT, Finland.
| | | | | | | |
Collapse
|
43
|
Abstract
While color vision mediated by rod photoreceptors in dim light is possible (Kelber & Roth, 2006), most animals, including humans, do not see in color at night. This is because their retinas contain only a single class of rod photoreceptors. Many of these same animals have daylight color vision, mediated by multiple classes of cone photoreceptors. We develop a general formulation, based on Bayesian decision theory, to evaluate the efficacy of various retinal photoreceptor mosaics. The formulation evaluates each mosaic under the assumption that its output is processed to optimally estimate the image. It also explicitly takes into account the statistics of the environmental image ensemble. Using the general formulation, we consider the trade-off between monochromatic and dichromatic retinal designs as a function of overall illuminant intensity. We are able to demonstrate a set of assumptions under which the prevalent biological pattern represents optimal processing. These assumptions include an image ensemble characterized by high correlations between image intensities at nearby locations, as well as high correlations between intensities in different wavelength bands. They also include a constraint on receptor photopigment biophysics and/or the information carried by different wavelengths that produces an asymmetry in the signal-to-noise ratio of the output of different receptor classes. Our results thus provide an optimality explanation for the evolution of color vision for daylight conditions and monochromatic vision for nighttime conditions. An additional result from our calculations is that regular spatial interleaving of two receptor classes in a dichromatic retina yields performance superior to that of a retina where receptors of the same class are clumped together.
Collapse
|
44
|
Quantal noise from human red cone pigment. Nat Neurosci 2008; 11:565-71. [PMID: 18425122 DOI: 10.1038/nn.2110] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/20/2008] [Indexed: 01/01/2023]
Abstract
The rod pigment, rhodopsin, shows spontaneous isomerization activity. This quantal noise produces a dark light of approximately 0.01 photons s(-1) rod(-1) in human, setting the threshold for rod vision. The spontaneous isomerization activity of human cone pigments has long remained a mystery because the effect of a single isomerized pigment molecule in cones, unlike that in rods, is small and beyond measurement. We have now overcome this problem by expressing human red cone pigment transgenically in mouse rods in order to exploit their large single-photon response, especially after genetic removal of a key negative-feedback regulation. Extrapolating the measured quantal noise of transgenic cone pigment to native human red cones, we obtained a dark rate of approximately 10 false events s(-1) cone(-1), almost 10(3)-fold lower than the overall dark transduction noise previously reported in primate cones. Our measurements provide a rationale for why mammalian red, green and blue cones have comparable sensitivities, unlike their amphibian counterparts.
Collapse
|