1
|
Miao L, Yuan Z, Zhang S, Zhang G. Honokiol alleviates monosodium urate-induced gouty pain by inhibiting voltage-gated proton channels in mice. Inflammopharmacology 2024; 32:2413-2425. [PMID: 38829504 DOI: 10.1007/s10787-024-01498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE To investigate whether honokiol (HNK) acted as an analgesic in connection with inhibiting the voltage-gated proton channel (Hv1). METHODS The model of gouty arthritis was induced by injecting monosodium urate (MSU) crystals into the hind ankle joint of mice. HNK was given by intragastric administration. Ankle swelling degree and mechanical allodynia were evaluated using ankle joint circumference measurement and von Frey filaments, respectively. Hv1 current, tail current, and action potential in dorsal root ganglion (DRG) neurons were recorded with patch-clamp techniques. RESULTS HNK (10, 20, 40 mg/kg) alleviated inflammatory response and mechanical allodynia in a dose-dependent manner. In normal DRG neurons, 50 µM Zn2+ or 2-GBI significantly inhibited the Hv1 current and the current density of Hv1 increased with increasing pH gradient. The amplitude of Hv1 current significantly increased on the 3rd after MSU treatment, and HNK dose-dependently reversed the upregulation of Hv1 current. Compared with MSU group, 40 mg/kg HNK shifted the activation curve to the direction of more positive voltage and increased reversal potential to the normal level. In addition, 40 mg/kg HNK reversed the down-regulation of tail current deactivation time constant (τtail) but did not alter the neuronal excitability of DRG neurons in gouty mice. CONCLUSION HNK may be a potential analgesic by inhibiting Hv1 current.
Collapse
Affiliation(s)
- Lurong Miao
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ziqi Yuan
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Shijia Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
2
|
Ayuyan AG, Cherny VV, Chaves G, Musset B, Cohen FS, DeCoursey TE. Interaction with stomatin directs human proton channels into cholesterol-dependent membrane domains. Biophys J 2024:S0006-3495(24)00168-1. [PMID: 38444158 DOI: 10.1016/j.bpj.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Many membrane proteins are modulated by cholesterol. Here we report profound effects of cholesterol depletion and restoration on the human voltage-gated proton channel, hHV1, in excised patches but negligible effects in the whole-cell configuration. Despite the presence of a putative cholesterol-binding site, a CARC motif in hHV1, mutation of this motif did not affect cholesterol effects. The murine HV1 lacks a CARC sequence but displays similar cholesterol effects. These results argue against a direct effect of cholesterol on the HV1 protein. However, the data are fully explainable if HV1 preferentially associates with cholesterol-dependent lipid domains, or "rafts." The rafts would be expected to concentrate in the membrane/glass interface and to be depleted from the electrically accessible patch membrane. This idea is supported by evidence that HV1 channels can diffuse between seal and patch membranes when suction is applied. Simultaneous truncation of the large intracellular N and C termini of hHV1 greatly attenuated the cholesterol effect, but C truncation alone did not; this suggests that the N terminus is the region of attachment to lipid domains. Searching for abundant raft-associated proteins led to stomatin. Co-immunoprecipitation experiment results were consistent with hHV1 binding to stomatin. The stomatin-mediated association of HV1 with cholesterol-dependent lipid domains provides a mechanism for cells to direct HV1 to subcellular locations where it is needed, such as the phagosome in leukocytes.
Collapse
Affiliation(s)
- Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois.
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois
| | - Gustavo Chaves
- Institut für Physiologie, Pathophysiologie und Biophysik, CPPB, Paracelsus Medical University, Nürnberg, Germany
| | - Boris Musset
- Institut für Physiologie, Pathophysiologie und Biophysik, CPPB, Paracelsus Medical University, Nürnberg, Germany
| | - Fredric S Cohen
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois.
| |
Collapse
|
3
|
DeCoursey TE. Transcendent Aspects of Proton Channels. Annu Rev Physiol 2024; 86:357-377. [PMID: 37931166 PMCID: PMC10938948 DOI: 10.1146/annurev-physiol-042222-023242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, Illinois, USA;
| |
Collapse
|
4
|
Peña-Pichicoi A, Fernández M, Navarro-Quezada N, Alvear-Arias JJ, Carrillo CA, Carmona EM, Garate J, Lopez-Rodriguez AM, Neely A, Hernández-Ochoa EO, González C. N-terminal region is responsible for mHv1 channel activity in MDSCs. Front Pharmacol 2023; 14:1265130. [PMID: 37915407 PMCID: PMC10616795 DOI: 10.3389/fphar.2023.1265130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Voltage-gated proton channels (Hv1) are important regulators of the immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in mice and have been proposed as a potential therapeutic target to alleviate dysregulated immunosuppression in tumors. However, till date, there is a lack of evidence regarding the functioning of the Hvcn1 and reports on mHv1 isoform diversity in mice and MDSCs. A computational prediction has suggested that the Hvcn1 gene may express up to six transcript variants, three of which are translated into distinct N-terminal isoforms of mHv1: mHv1.1 (269 aa), mHv1.2 (269 + 42 aa), and mHv1.3 (269 + 4 aa). To validate this prediction, we used RT-PCR on total RNA extracted from MDSCs, and the presence of all six predicted mRNA variances was confirmed. Subsequently, the open-reading frames (ORFs) encoding for mHv1 isoforms were cloned and expressed in Xenopus laevis oocytes for proton current recording using a macro-patch voltage clamp. Our findings reveal that all three isoforms are mammalian mHv1 channels, with distinct differences in their activation properties. Specifically, the longest isoform, mHv1.2, displays a right-shifted conductance-voltage (GV) curve and slower opening kinetics, compared to the mid-length isoform, mHv1.3, and the shortest canonical isoform, mHv1.1. While mHv1.3 exhibits a V0.5 similar to that of mHv1.1, mHv1.3 demonstrates significantly slower activation kinetics than mHv1.1. These results suggest that isoform gating efficiency is inversely related to the length of the N-terminal end. To further explore this, we created the truncated mHv1.2 ΔN20 construct by removing the first 20 amino acids from the N-terminus of mHv1.2. This construct displayed intermediate activation properties, with a V0.5 value lying intermediate of mHv1.1 and mHv1.2, and activation kinetics that were faster than that of mHv1.2 but slower than that of mHv1.1. Overall, these findings indicate that alternative splicing of the N-terminal exon in mRNA transcripts encoding mHv1 isoforms is a regulatory mechanism for mHv1 function within MDSCs. While MDSCs have the capability to translate multiple Hv1 isoforms with varying gating properties, the Hvcn1 gene promotes the dominant expression of mHv1.1, which exhibits the most efficient gating among all mHv1 isoforms.
Collapse
Affiliation(s)
- Antonio Peña-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Nieves Navarro-Quezada
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian A. Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Emerson M. Carmona
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jose Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | | | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
5
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Boytsov D, Brescia S, Chaves G, Koefler S, Hannesschlaeger C, Siligan C, Goessweiner-Mohr N, Musset B, Pohl P. Trapped Pore Waters in the Open Proton Channel H V 1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205968. [PMID: 36683221 DOI: 10.1002/smll.202205968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated proton channel, HV 1, is crucial for innate immune responses. According to alternative hypotheses, protons either hop on top of an uninterrupted water wire or bypass titratable amino acids, interrupting the water wire halfway across the membrane. To distinguish between both hypotheses, the water mobility for the putative case of an uninterrupted wire is estimated. The predicted single-channel water permeability 2.3 × 10-12 cm3 s-1 reflects the permeability-governing number of hydrogen bonds between water molecules in single-file configuration and pore residues. However, the measured unitary water permeability does not confirm the predicted value. Osmotic deflation of reconstituted lipid vesicles reveals negligible water permeability of the HV 1 wild-type channel and the D174A mutant open at 0 mV. The conductance of 1400 H+ s-1 per wild-type channel agrees with the calculated diffusion limit for a ≈2 Å capture radius for protons. Removal of a charged amino acid (D174) at the pore mouth decreases H+ conductance by reducing the capture radius. At least one intervening amino acid contributes to H+ conductance while interrupting the water wire across the membrane.
Collapse
Affiliation(s)
- Danila Boytsov
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Stefania Brescia
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | - Gustavo Chaves
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Sabina Koefler
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| | | | - Boris Musset
- Institute of Physiology, Pathophysiology and Biophysics, CPPB, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, 40, Gruberstr, Austria
| |
Collapse
|
7
|
Chaves G, Ayuyan AG, Cherny VV, Morgan D, Franzen A, Fieber L, Nausch L, Derst C, Mahorivska I, Jardin C, DeCoursey TE, Musset B. Unexpected expansion of the voltage-gated proton channel family. FEBS J 2023; 290:1008-1026. [PMID: 36062330 PMCID: PMC10911540 DOI: 10.1111/febs.16617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Voltage-gated ion channels, whose first identified function was to generate action potentials, are divided into subfamilies with numerous members. The family of voltage-gated proton channels (HV ) is tiny. To date, all species found to express HV have exclusively one gene that codes for this unique ion channel. Here we report the discovery and characterization of three proton channel genes in the classical model system of neural plasticity, Aplysia californica. The three channels (AcHV 1, AcHV 2, and AcHV 3) are distributed throughout the whole animal. Patch-clamp analysis confirmed proton selectivity of these channels but they all differed markedly in gating. AcHV 1 gating resembled HV in mammalian cells where it is responsible for proton extrusion and charge compensation. AcHV 2 activates more negatively and conducts extensive inward proton current, properties likely to acidify the cytosol. AcHV 3, which differs from AcHV 1 and AcHV 2 in lacking the first arginine in the S4 helix, exhibits proton selective leak currents and weak voltage dependence. We report the expansion of the proton channel family, demonstrating for the first time the expression of three functionally distinct proton channels in a single species.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Artem G Ayuyan
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, MO, USA
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Jülich, Germany
| | - Lynne Fieber
- Department of Marine Biology and Ecology - Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Lydia Nausch
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Department of Agriculture, Food and Nutrition, Institute of Nutrition and Food Supply Management, University of Applied Sciences Weihenstephan-Triesdorf, Freising, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Iryna Mahorivska
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL, USA
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
8
|
Suárez-Delgado E, Orozco-Contreras M, Rangel-Yescas GE, Islas LD. Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid. eLife 2023; 12:85836. [PMID: 36695566 PMCID: PMC9925047 DOI: 10.7554/elife.85836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (ΔpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveal the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by ΔpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.
Collapse
Affiliation(s)
- Esteban Suárez-Delgado
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Maru Orozco-Contreras
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Gisela E Rangel-Yescas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Leon D Islas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
9
|
Abstract
Although human sperm is morphologically mature in the epididymis, it cannot fertilize eggs before capacitation. Cholesterol efflux from the sperm plasma membrane is a key molecular event essential for cytoplasmic alkalinization and hyperactivation, but the underlying mechanism remains unclear. The human voltage-gated proton (hHv1) channel functions as an acid extruder to regulate intracellular pHs of many cell types, including sperm. Aside from voltage and pH, Hv channels are also regulated by distinct ligands, such as Zn2+ and albumin. In the present work, we identified cholesterol as an inhibitory ligand of the hHv1 channel and further investigated the underlying mechanism using the single-molecule fluorescence resonance energy transfer (smFRET) approach. Our results indicated that cholesterol inhibits the hHv1 channel by stabilizing the voltage-sensing S4 segment at resting conformations, a similar mechanism also utilized by Zn2+. Our results suggested that the S4 segment is the central gating machinery in the hHv1 channel, on which voltage and distinct ligands are converged to regulate channel function. Identification of membrane cholesterol as an inhibitory ligand provides a mechanism by which the hHv1 channel regulates fertilization by linking the cholesterol efflux with cytoplasmic alkalinization, a change that triggers calcium influx through the CatSper channel. These events finally lead to hyperactivation, a remarkable change in the mobility pattern indicating fertilization competence of human sperm.
Collapse
|
10
|
Orts DJB, Arcisio-Miranda M. Cell glycosaminoglycans content modulates human voltage-gated proton channel (H V 1) gating. FEBS J 2021; 289:2593-2612. [PMID: 34800064 DOI: 10.1111/febs.16290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Voltage-gated proton channels (HV 1) have been found in many mammalian cells and play a crucial role in the immune system, male fertility, and cancer progression. Glycosaminoglycans play a significant role in various aspects of cell physiology, including the modulation of membrane receptors and ion channel function. We present here evidence that mechanosensitivity of the dimeric HV 1 channel transduce changes on cell membrane fluidity related to the defective biosynthesis of chondroitin sulfate and heparan sulfate in Chinese Hamster Ovary (CHO-745) cells into a leftward shift in the activation voltage dependence. This effect was accompanied by an increase in the H+ current, and an acceleration of the activation kinetics, under symmetrical or asymmetrical pH gradient (ΔpH) conditions. Similar gating alterations were evoked by two naturally occurring HV 1 N-terminal truncated isoforms expressed in wild-type CHO-K1 and CHO-745 cells. On three different monomeric HV 1 constructs, no alterations in the biophysical parameters were observed. Moreover, we have shown that HV 1 gating can be modulated by manipulating CHO-K1 cell membrane fluidity. Our results suggest that the defective biosynthesis of chondroitin sulfate and heparan sulfate on CHO-745 cell increases membrane fluidity and allosterically modulates the coupling between voltage- and ΔpH-sensing through the dimeric HV 1 channel.
Collapse
Affiliation(s)
- Diego J B Orts
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| | - Manoel Arcisio-Miranda
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| |
Collapse
|
11
|
Cherny VV, Musset B, Morgan D, Thomas S, Smith SME, DeCoursey TE. Engineered high-affinity zinc binding site reveals gating configurations of a human proton channel. J Gen Physiol 2021; 152:152076. [PMID: 32902579 PMCID: PMC7537347 DOI: 10.1085/jgp.202012664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated proton channel (HV1) is a voltage sensor that also conducts protons. The singular ability of protons to penetrate proteins complicates distinguishing closed and open channels. When we replaced valine with histidine at position 116 in the external vestibule of hHV1, current was potently inhibited by externally applied Zn2+ in a construct lacking the two His that bind Zn2+ in WT channels. High-affinity binding with profound effects at 10 nM Zn2+ at pHo 7 suggests additional groups contribute. We hypothesized that Asp185, which faces position 116 in our closed-state model, contributes to Zn2+ chelation. Confirming this prediction, V116H/D185N abolished Zn2+ binding. Studied in a C-terminal truncated monomeric construct, V116H channels activated rapidly. Anomalously, Zn2+ slowed activation, producing a time constant independent of both voltage and Zn2+ concentration. We hypothesized that slow turn-on of H+ current in the presence of Zn2+ reflects the rate of Zn2+ unbinding from the channel, analogous to drug-receptor dissociation reactions. This behavior in turn suggests that the affinity for Zn2+ is greater in the closed state of hHV1. Supporting this hypothesis, pulse pairs revealed a rapid component of activation whose amplitude decreased after longer intervals at negative voltages as closed channels bound Zn2+. The lower affinity of Zn2+ in open channels is consistent with the idea that structural rearrangements within the transmembrane region bring Arg205 near position 116, electrostatically expelling Zn2+. This phenomenon provides direct evidence that Asp185 opposes position 116 in closed channels and that Arg205 moves between them when the channel opens.
Collapse
Affiliation(s)
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Medizinische Privatuniversität, Nürnberg, Germany
| | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago IL
| | - Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
12
|
Rangel-Yescas G, Cervantes C, Cervantes-Rocha MA, Suárez-Delgado E, Banaszak AT, Maldonado E, Ramsey IS, Rosenbaum T, Islas LD. Discovery and characterization of H v1-type proton channels in reef-building corals. eLife 2021; 10:e69248. [PMID: 34355697 PMCID: PMC8346283 DOI: 10.7554/elife.69248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Voltage-dependent proton-permeable channels are membrane proteins mediating a number of important physiological functions. Here we report the presence of a gene encoding Hv1 voltage-dependent, proton-permeable channels in two species of reef-building corals. We performed a characterization of their biophysical properties and found that these channels are fast-activating and modulated by the pH gradient in a distinct manner. The biophysical properties of these novel channels make them interesting model systems. We have also developed an allosteric gating model that provides mechanistic insight into the modulation of voltage-dependence by protons. This work also represents the first functional characterization of any ion channel in scleractinian corals. We discuss the implications of the presence of these channels in the membranes of coral cells in the calcification and pH-regulation processes and possible consequences of ocean acidification related to the function of these channels.
Collapse
Affiliation(s)
- Gisela Rangel-Yescas
- Departmento de Fisiología, Facultad of Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Cervantes
- Departmento de Fisiología, Facultad of Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A Cervantes-Rocha
- Departmento de Fisiología, Facultad of Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Esteban Suárez-Delgado
- Departmento de Fisiología, Facultad of Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, United States
| | - Tamara Rosenbaum
- Departmento of Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leon D Islas
- Departmento de Fisiología, Facultad of Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Voltage and pH difference across the membrane control the S4 voltage-sensor motion of the Hv1 proton channel. Sci Rep 2020; 10:21293. [PMID: 33277511 PMCID: PMC7718894 DOI: 10.1038/s41598-020-77986-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
The voltage-gated proton channel Hv1 is expressed in a variety of cells, including macrophages, sperm, and lung epithelial cells. Hv1 is gated by both the membrane potential and the difference between the intra- and extracellular pH (ΔpH). The coupling of voltage- and ∆pH-sensing is such that Hv1 opens only when the electrochemical proton gradient is outwardly directed. However, the molecular mechanism of this coupling is not known. Here, we investigate the coupling between voltage- and ΔpH-sensing of Ciona intestinalis proton channel (ciHv1) using patch-clamp fluorometry (PCF) and proton uncaging. We show that changes in ΔpH can induce conformational changes of the S4 voltage sensor. Our results are consistent with the idea that S4 can detect both voltage and ΔpH.
Collapse
|
14
|
Smith RY, Morgan D, Sharma L, Cherny VV, Tidswell N, Molo MW, DeCoursey TE. Voltage-gated proton channels exist in the plasma membrane of human oocytes. Hum Reprod 2020; 34:1974-1983. [PMID: 31633762 DOI: 10.1093/humrep/dez178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Do human oocytes express voltage-gated proton channels? SUMMARY ANSWER Human oocytes exhibit voltage-gated proton currents. WHAT IS KNOWN ALREADY Voltage-gated proton currents have been reported in human sperm, where they contribute to capacitation and motility. No such studies of human oocytes exist. STUDY DESIGN, SIZE, DURATION Voltage-clamp studies were undertaken using entire oocytes and vesicles derived from oocytes and in excised patches of membrane from oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS Frozen, thawed human metaphase II oocytes were obtained from material donated to the gamete repository at the Rush Center for Advanced Reproductive Care. Prior to patch clamping, oocytes were warmed and equilibrated. Formation of an electrically tight seal requires exposing bare oolemma. Sections of the zona pellucida (ZP) were removed using a laser, followed by repeated pipetting, to further separate the oocyte from the ZP. Patch-clamp studies were performed using the whole-cell configuration on oocytes or vesicles derived from oocytes, and using inside-out patches of membrane, under conditions optimized to detect voltage-gated proton currents. MAIN RESULTS AND THE ROLE OF CHANCE Proton currents are present at significant levels in human oocytes where they exhibit properties similar to those reported in other human cells, as well as those in heterologous expression systems transfected with the HVCN1 gene that codes for the voltage-gated proton channel. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Human oocytes are large cells, which limits our ability to control the intracellular solution. Subtle effects of cryopreservation by vitrification and subsequent warming on properties of HVCN1, the HVCN1 gene product, cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS Possible functions for voltage-gated proton channels in human oocytes may now be contemplated. STUDY FUNDING/COMPETING INTEREST(S) NIH R35GM126902 (TED), Bears Care (DM). No competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R Ya Smith
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - D Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - L Sharma
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - V V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| | - N Tidswell
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - M W Molo
- Rush Center for Advanced Reproductive Care, Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
| | - T E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Bare DJ, Cherny VV, DeCoursey TE, Abukhdeir AM, Morgan D. Expression and function of voltage gated proton channels (Hv1) in MDA-MB-231 cells. PLoS One 2020; 15:e0227522. [PMID: 32374759 PMCID: PMC7202653 DOI: 10.1371/journal.pone.0227522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Expression of the voltage gated proton channel (Hv1) as identified by immunocytochemistry has been reported previously in breast cancer tissue. Increased expression of HV1 was correlated with poor prognosis and decreased overall and disease-free survival but the mechanism of its involvement in the disease is unknown. Here we present electrophysiological recordings of HV1 channel activity, confirming its presence and function in the plasma membrane of a breast cancer cell line, MDA-MB-231. With western blotting we identify significant levels of HV1 expression in 3 out of 8 “triple negative” breast cancer cell lines (estrogen, progesterone, and HER2 receptor expression negative). We examine the function of HV1 in breast cancer using MDA-MB-231 cells as a model by suppressing the expression of HV1 using shRNA (knock-down; KD) and by eliminating HV1 using CRISPR/Cas9 gene editing (knock-out; KO). Surprisingly, these two approaches produced incongruous effects. Knock-down of HV1 using shRNA resulted in slower cell migration in a scratch assay and a significant reduction in H2O2 release. In contrast, HV1 Knock-out cells did not show reduced migration or H2O2 release. HV1 KO but not KD cells showed an increased glycolytic rate accompanied by an increase in p-AKT (phospho-AKT, Ser473) activity. The expression of CD171/LCAM-1, an adhesion molecule and prognostic indicator for breast cancer, was reduced in HV1 KO cells. When we compared MDA-MB-231 xenograft growth rates in immunocompromised mice, tumors from HV1 KO cells grew less than WT in mass, with lower staining for the Ki-67 marker for cell proliferation rate. Therefore, deletion of HV1 expression in MDA-MB-231 cells limits tumor growth rate. The limited growth thus appears to be independent of oxidant production by NADPH oxidase molecules and to be mediated by cell adhesion molecules. Although HV1 KO and KD affect certain cellular mechanisms differently, both implicate HV1-mediated pathways for control of tumor growth in the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Dan J Bare
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Abde M Abukhdeir
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO, United States of America
| |
Collapse
|
16
|
Guidelli R, Becucci L, Aloisi G. Role of the time dependence of Boltzmann open probability in voltage-gated proton channels. Bioelectrochemistry 2020; 134:107520. [PMID: 32279034 DOI: 10.1016/j.bioelechem.2020.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Abstract
The modeling and simulation of experimental families of current-time (I-t) curves of dimeric voltage-gated proton channels and of proton-conducting voltage sensing domains (VSDs) with a minimum of free parameters requires the movement of protons to be controlled by the rate of increase of the Boltzmann open probability p over time in passing from the holding to the depolarizing potential. Families of I-t curves of protomers and proton-conducting VSDs can be satisfactorily fitted by the use of a single free parameter expressing the rate constant kp for the increase of p over time. Families of I-t curves of dimeric Hv1 channels can be fitted by a model that assumes an initial proton current I1 flowing along the two monomeric units, while they are still operating separately; I1 is gradually replaced by a slower and more potential-dependent current I2 flowing when the two monomers start operating jointly under the control of the coiled-coil domain. Here too, p is assumed to increase over time with a rate constant kp that doubles in passing from I1 to I2, with fit requiring three free parameters. Chord conductance yields erroneously high gating charges when fitted by the Boltzmann function, differently from slope conductance.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Giovanni Aloisi
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
17
|
Chaves G, Bungert-Plümke S, Franzen A, Mahorivska I, Musset B. Zinc modulation of proton currents in a new voltage-gated proton channel suggests a mechanism of inhibition. FEBS J 2020; 287:4996-5018. [PMID: 32160407 PMCID: PMC7754295 DOI: 10.1111/febs.15291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 02/03/2023]
Abstract
The HV1 voltage‐gated proton (HV1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best‐described physiological inhibitor of HV1 is Zn2+. Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV1 from Nicoletia phytophila, NpHV1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 μm. Zn2+ inhibition in NpHV1 was quantified by the slowing of the activation time constant and a positive shift of the conductance–voltage curve. Replacing aspartate in the S3‐S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage–conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3‐S4 linker. A simple Hodgkin Huxley model of NpHV1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high‐resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.
Collapse
Affiliation(s)
- Gustavo Chaves
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich, Jülich, Germany
| | - Iryna Mahorivska
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| | - Boris Musset
- Institut für Physiologie und Pathophysiologie, Paracelsus Universität Salzburg Standort Nürnberg, Nuremberg, Germany
| |
Collapse
|
18
|
Tang D, Yang Y, Xiao Z, Xu J, Yang Q, Dai H, Liang S, Tang C, Dong H, Liu Z. Scorpion toxin inhibits the voltage-gated proton channel using a Zn 2+ -like long-range conformational coupling mechanism. Br J Pharmacol 2020; 177:2351-2364. [PMID: 31975366 DOI: 10.1111/bph.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Blocking the voltage-gated proton channel HV 1 is a promising strategy for the treatment of diseases like ischaemia stroke and cancer. However, few HV 1 channel antagonists have been reported. Here, we have identified a novel HV 1 channel antagonist from scorpion venom and have elucidated its action mechanism. EXPERIMENTAL APPROACH HV 1 and NaV channels were heterologously expressed in mammalian cell lines and their currents recorded using whole-cell patch clamp. Site-directed mutagenesis was used to generate mutants. Toxins were recombinantly produced in Escherichia coli. AGAP/W38F-HV 1 interaction was modelled by molecular dynamics simulations. KEY RESULTS The scorpion toxin AGAP (anti-tumour analgesic peptide) potently inhibited HV 1 currents. One AGAP mutant has reduced NaV channel activity but intact HV 1 activity (AGAP/W38F). AGAP/W38F inhibited HV 1 channel activation by trapping its S4 voltage sensor in a deactivated state and inhibited HV 1 currents with less pH dependence than Zn2+ . Mutation analysis showed that the binding pockets of AGAP/W38F and Zn2+ in HV 1 channel partly overlapped (common sites are His140 and His193). The E153A mutation at the intracellular Coulombic network (ICN) in HV 1 channel markedly reduced AGAP/W38F inhibition, as observed for Zn2+ . Experimental data and MD simulations suggested that AGAP/W38F inhibited HV 1 channel using a Zn2+ -like long-range conformational coupling mechanism. CONCLUSION AND IMPLICATIONS Our results suggest that the Zn2+ binding pocket in HV 1 channel might be a hotspot for modulators and valuable for designing HV 1 channel ligands. Moreover, AGAP/W38F is a useful molecular probe to study HV 1 channel and a lead compound for drug development.
Collapse
Affiliation(s)
- Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Han Dai
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Jardin C, Chaves G, Musset B. Assessing Structural Determinants of Zn 2+ Binding to Human H V1 via Multiple MD Simulations. Biophys J 2020; 118:1221-1233. [PMID: 31972155 DOI: 10.1016/j.bpj.2019.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated proton channels (HV1) are essential for various physiological tasks but are strongly inhibited by Zn2+ cations. Some determinants of Zn2+ binding have been elucidated experimentally and in computational studies. However, the results have always been interpreted under the assumption that Zn2+ binds to monomeric HV1 despite evidence that HV1 expresses as a dimer and that the dimer has a higher affinity for zinc than the monomer and experimental data that suggest coordination in the dimer interface. The results of former studies are also controversial, e.g., supporting either one single or two binding sites. Some structural determinants of the binding are still elusive. We performed a series of molecular dynamics simulations to address different structures of the human proton channel, the monomer and two plausible dimer conformations, to compare their respective potential to interact with and bind Zn2+ via the essential histidines. The series consisted of several copies of the system to generate independent trajectories and increase the significance compared to a single simulation. The amount of time simulated totals 29.9 μs for 126 simulations of systems comprising ∼59,000 to ∼187,000 atoms. Our approach confirms the existence of two binding sites in monomeric and dimeric human HV1. The dimer interface is more efficient for attracting and binding Zn2+ via the essential histidines than the monomer or a dimer with the histidines in the periphery. The higher affinity is due to the residues in the dimer interface that create an attractive electrostatic potential funneling the zinc cations toward the binding sites.
Collapse
Affiliation(s)
- Christophe Jardin
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany
| | - Gustavo Chaves
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany
| | - Boris Musset
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany.
| |
Collapse
|
20
|
Balleza D, Rosas ME, Romero-Romero S. Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 2019; 13:455-476. [PMID: 31647368 PMCID: PMC6833973 DOI: 10.1080/19336950.2019.1674242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Mario E Rosas
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth , Bayreuth , Germany
| |
Collapse
|
21
|
Bayrhuber M, Maslennikov I, Kwiatkowski W, Sobol A, Wierschem C, Eichmann C, Frey L, Riek R. Nuclear Magnetic Resonance Solution Structure and Functional Behavior of the Human Proton Channel. Biochemistry 2019; 58:4017-4027. [PMID: 31365236 DOI: 10.1021/acs.biochem.9b00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human voltage-gated proton channel [Hv1(1) or VSDO(2)] plays an important role in the human innate immune system. Its structure differs considerably from those of other cation channels. It is built solely of a voltage-sensing domain and thus lacks the central pore domain, which is essential for other cation channels. Here, we determined the solution structure of an N- and C-terminally truncated human Hv1 (Δ-Hv1) in the resting state by nuclear magnetic resonance (NMR) spectroscopy. Δ-Hv1 comprises the typical voltage-sensing antiparallel four-helix bundle (S1-S4) preceded by an amphipathic helix (S0). The solution structure corresponds to an intermediate state between resting and activated forms of voltage-sensing domains. Furthermore, Zn2+-induced closing of proton channel Δ-Hv1 was studied with two-dimensional NMR spectroscopy, which showed that characteristic large scale dynamics of open Δ-Hv1 are absent in the closed state of the channel. Additionally, pH titration studies demonstrated that a higher H+ concentration is required for the protonation of side chains in the Zn2+-induced closed state than in the open state. These observations demonstrate both structural and dynamical changes involved in the process of voltage gating of the Hv1 channel and, in the future, may help to explain the unique properties of unidirectional conductance and the exceptional ion selectivity of the channel.
Collapse
Affiliation(s)
- Monika Bayrhuber
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Innokentiy Maslennikov
- Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States.,School of Pharmacy , Chapman University , 9401 Jeronimo Road , Irvine , California 92618 , United States
| | - Witek Kwiatkowski
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Alexander Sobol
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Christoph Wierschem
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Cédric Eichmann
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry , ETH Zürich , Wolfgang-Pauli-Strasse 10 , 8093 Zürich , Switzerland.,Structural Biology Laboratory , Salk Institute , 10010 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
22
|
De La Rosa V, Ramsey IS. Gating Currents in the Hv1 Proton Channel. Biophys J 2019; 114:2844-2854. [PMID: 29925021 DOI: 10.1016/j.bpj.2018.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
The Hv1 proton channel shares striking structural homology with fourth transmembrane helical segment-type voltage-sensor (VS) domains but manifests distinctive functional properties, including a proton-selective "aqueous" conductance and allosteric control of voltage-dependent gating by changes in the transmembrane pH gradient. The mechanisms responsible for Hv1's functional properties remain poorly understood, in part because methods for measuring gating currents that directly report VS activation have not yet been described. Here, we describe an approach that allows robust and reproducible measurement of gating-associated charge movements in Hv1. Gating currents reveal that VS activation and proton-selective aqueous conductance opening are thermodynamically distinct steps in the Hv1 activation pathway and show that pH changes directly alter VS activation. The availability of an assay for gating currents in Hv1 may aid future efforts to elucidate the molecular mechanisms of gating cooperativity, pH-dependent modulation, and H+ selectivity in a model VS domain protein.
Collapse
Affiliation(s)
- Victor De La Rosa
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
23
|
Papp F, Lomash S, Szilagyi O, Babikow E, Smith J, Chang TH, Bahamonde MI, Toombes GES, Swartz KJ. TMEM266 is a functional voltage sensor regulated by extracellular Zn 2. eLife 2019; 8:42372. [PMID: 30810529 PMCID: PMC6392501 DOI: 10.7554/elife.42372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-activated ion channels contain S1-S4 domains that sense membrane voltage and control opening of ion-selective pores, a mechanism that is crucial for electrical signaling. Related S1-S4 domains have been identified in voltage-sensitive phosphatases and voltage-activated proton channels, both of which lack associated pore domains. hTMEM266 is a protein of unknown function that is predicted to contain an S1-S4 domain, along with partially structured cytoplasmic termini. Here we show that hTMEM266 forms oligomers, undergoes both rapid (µs) and slow (ms) structural rearrangements in response to changes in voltage, and contains a Zn2+ binding site that can regulate the slow conformational transition. Our results demonstrate that the S1-S4 domain in hTMEM266 is a functional voltage sensor, motivating future studies to identify cellular processes that may be regulated by the protein. The ability of hTMEM266 to respond to voltage on the µs timescale may be advantageous for designing new genetically encoded voltage indicators.
Collapse
Affiliation(s)
- Ferenc Papp
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Suvendu Lomash
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Orsolya Szilagyi
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Erika Babikow
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Jaime Smith
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Maria Isabel Bahamonde
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Ewan Stephen Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
24
|
Role of human Hv1 channels in sperm capacitation and white blood cell respiratory burst established by a designed peptide inhibitor. Proc Natl Acad Sci U S A 2018; 115:E11847-E11856. [PMID: 30478045 DOI: 10.1073/pnas.1816189115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Using a de novo peptide inhibitor, Corza6 (C6), we demonstrate that the human voltage-gated proton channel (hHv1) is the main pathway for H+ efflux that allows capacitation in sperm and permits sustained reactive oxygen species (ROS) production in white blood cells (WBCs). C6 was identified by a phage-display strategy whereby ∼1 million novel peptides were fabricated on an inhibitor cysteine knot (ICK) scaffold and sorting on purified hHv1 protein. Two C6 peptides bind to each dimeric channel, one on the S3-S4 loop of each voltage sensor domain (VSD). Binding is cooperative with an equilibrium affinity (K d) of ∼1 nM at -50 mV. As expected for a VSD-directed toxin, C6 inhibits by shifting hHv1 activation to more positive voltages, slowing opening and speeding closure, effects that diminish with membrane depolarization.
Collapse
|
25
|
Gerdes B, Rixen RM, Kramer K, Forbrig E, Hildebrandt P, Steinem C. Quantification of Hv1-induced proton translocation by a lipid-coupled Oregon Green 488-based assay. Anal Bioanal Chem 2018; 410:6497-6505. [PMID: 30027319 DOI: 10.1007/s00216-018-1248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Passive proton translocation across membranes through proton channels is generally measured with assays that allow a qualitative detection of the H+-transfer. However, if a quantitative and time-resolved analysis is required, new methods have to be developed. Here, we report on the quantification of pH changes induced by the voltage-dependent proton channel Hv1 using the commercially available pH-sensitive fluorophore Oregon Green 488-DHPE (OG488-DHPE). We successfully expressed and isolated Hv1 from Escherichia coli and reconstituted the protein in large unilamellar vesicles. Reconstitution was verified by surface enhanced infrared absorption (SEIRA) spectroscopy and proton activity was measured by a standard 9-amino-6-chloro-2-methoxyacridine assay. The quantitative OG488-DHPE assay demonstrated that the proton translocation rate of reconstituted Hv1 is much smaller than those reported in cellular systems. The OG488-DHPE assay further enabled us to quantify the KD-value of the Hv1-inhibitor 2-guanidinobenzimidazole, which matches well with that found in cellular experiments. Our results clearly demonstrate the applicability of the developed in vitro assay to measure proton translocation in a quantitative fashion; the assay allows to screen for new inhibitors and to determine their characteristic parameters. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin Gerdes
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Rebecca M Rixen
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Kristina Kramer
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Enrico Forbrig
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany. .,Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
26
|
Ratanayotha A, Kawai T, Higashijima SI, Okamura Y. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils. Physiol Rep 2018; 5:5/15/e13345. [PMID: 28774948 PMCID: PMC5555884 DOI: 10.14814/phy2.13345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022] Open
Abstract
Voltage‐gated proton channels (Hv1/VSOP) are expressed in various cells types, including phagocytes, and are involved in diverse physiological processes. Although hvcn1, the gene encoding Hv1, has been identified across a wide range of species, most of the knowledge about its physiological function and expression profile is limited to mammals. In this study, we investigated the basic properties of DrHv1, the Hv1 ortholog in zebrafish (Danio rerio) which is an excellent animal model owing to the transparency, as well as its functional expression in native cells. Electrophysiological analysis using a heterologous expression system confirmed the properties of a voltage‐gated proton channel are conserved in DrHv1 with differences in threshold and activation kinetics as compared to mouse (Mus musculus) Hv1 (mHv1). RT‐PCR analysis revealed that hvcn1 is expressed in zebrafish neutrophils, as is the case in mammals. Subsequent electrophysiological analysis confirmed the functional expression of DrHv1 in zebrafish neutrophils, which suggests Hv1 function in phagocytes is conserved among vertebrates. We also found that DrHv1 is comparatively resistant to extracellular Zn2+, which is a potent inhibitor of mammalian Hv1, and this phenomenon appears to reflect variation in the Zn2+‐coordinating residue (histidine) within the extracellular linker region in mammalian Hv1. Notably, the serum Zn2+ concentration is much higher in zebrafish than in mouse, raising the possibility that Zn2+ sensitivity was acquired in accordance with a change in the serum Zn2+ concentration. This study highlights the biological variation and importance of Hv1 in different animal species.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichi Higashijima
- Laboratory of Behavioral Neurobiology, Department of Biodesign Research, Okazaki Institute for Integrative Bioscience, Okazaki, Aichi, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Cherny VV, Morgan D, Thomas S, Smith SME, DeCoursey TE. Histidine 168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hH V1. J Gen Physiol 2018; 150:851-862. [PMID: 29743300 PMCID: PMC5987877 DOI: 10.1085/jgp.201711968] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/27/2018] [Indexed: 01/28/2023] Open
Abstract
Voltage-gated proton channels open appropriately in myriad physiological situations because their gating is powerfully modulated by both pHo and pHi. Cherny et al. serendipitously identify a histidine at the inner end of the S3 helix that is required for the response to pHi. We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis, HtHV1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtHV1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pHi). The H+ conductance (gH)-V relationship in the voltage-gated proton channel (HV1) from other species shifts 40 mV when either pHi or pHo (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of HV1 in many species and in numerous human tissues. The HtHV1 channel exhibits normal pHo dependence but anomalously weak pHi dependence. In this study, we show that a single point mutation in human hHV1—changing His168 to Gln168, the corresponding residue in HtHV1—compromises the pHi dependence of gating in the human channel so that it recapitulates the HtHV1 response. This location was previously identified as a contributor to the rapid gating kinetics of HV1 in Strongylocentrotus purpuratus. His168 mutation in human HV1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pHo dependence, but changing pHi shifts the gH-V relationship on average by <20 mV/unit. Thus, His168 is critical to pHi sensing in hHV1. His168, located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in HV1 that significantly impairs pH sensing when mutated. Because pHo dependence remains intact, the selective erosion of pHi dependence supports the idea that there are distinct internal and external pH sensors. Although His168 may itself be a pHi sensor, the converse mutation, Q229H, does not normalize the pHi sensitivity of the HtHV1 channel. We hypothesize that the imidazole group of His168 interacts with nearby Phe165 or other parts of hHV1 to transduce pHi into shifts of voltage-dependent gating.
Collapse
Affiliation(s)
| | - Deri Morgan
- Department of Physiology & Biophysics, Rush University, Chicago, IL
| | - Sarah Thomas
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA
| | | |
Collapse
|
28
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
29
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
30
|
Bennett AL, Ramsey IS. CrossTalk opposing view: proton transfer in Hv1 utilizes a water wire, and does not require transient protonation of a conserved aspartate in the S1 transmembrane helix. J Physiol 2017; 595:6797-6799. [PMID: 29023730 DOI: 10.1113/jp274553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley L Bennett
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ian Scott Ramsey
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
31
|
Berger TK, Fußhöller DM, Goodwin N, Bönigk W, Müller A, Dokani Khesroshahi N, Brenker C, Wachten D, Krause E, Kaupp UB, Strünker T. Post-translational cleavage of Hv1 in human sperm tunes pH- and voltage-dependent gating. J Physiol 2017; 595:1533-1546. [PMID: 27859356 DOI: 10.1113/jp273189] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In human sperm, proton flux across the membrane is controlled by the voltage-gated proton channel Hv1. We show that sperm harbour both Hv1 and an N-terminally cleaved isoform termed Hv1Sper. The pH-control of Hv1Sper and Hv1 is distinctively different. Hv1Sper and Hv1 can form heterodimers that combine features of both constituents. Cleavage and heterodimerization of Hv1 might represent an adaptation to the specific requirements of pH control in sperm. ABSTRACT In human sperm, the voltage-gated proton channel Hv1 controls the flux of protons across the flagellar membrane. Here, we show that sperm harbour Hv1 and a shorter isoform, termed Hv1Sper. Hv1Sper is generated from Hv1 by removal of 68 amino acids from the N-terminus by post-translational proteolytic cleavage. The pH-dependent gating of the channel isoforms is distinctly different. In both Hv1 and Hv1Sper, the conductance-voltage relationship is determined by the pH difference across the membrane (∆pH). However, simultaneous changes in intracellular and extracellular pH that leave ΔpH constant strongly shift the activation curve of Hv1Sper but not that of Hv1, demonstrating that cleavage of the N-terminus tunes pH sensing in Hv1. Moreover, we show that Hv1 and Hv1Sper assemble as heterodimers that combine features of both constituents. We suggest that cleavage and heterodimerization of Hv1 represents an adaptation to the specific requirements of pH control in sperm.
Collapse
Affiliation(s)
- Thomas K Berger
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - David M Fußhöller
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Normann Goodwin
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Astrid Müller
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Nasim Dokani Khesroshahi
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Christoph Brenker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Center of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Dagmar Wachten
- Max-Planck Research Group Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Eberhard Krause
- Leibniz-Institute for Molecular Pharmacology, Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Center of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| |
Collapse
|
32
|
Randolph AL, Mokrab Y, Bennett AL, Sansom MS, Ramsey IS. Proton currents constrain structural models of voltage sensor activation. eLife 2016; 5. [PMID: 27572256 PMCID: PMC5065317 DOI: 10.7554/elife.18017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic 'aqueous' H+ conductance (GAQ). Mutation of a highly conserved 'gating charge' residue in the S4 helix (R1H) confers a resting-state H+ 'shuttle' conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1.
Collapse
Affiliation(s)
- Aaron L Randolph
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ashley L Bennett
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| | - Mark Sp Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Medical College of Virginia Campus, Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
33
|
Chaves G, Derst C, Franzen A, Mashimo Y, Machida R, Musset B. Identification of an HV
1 voltage-gated proton channel in insects. FEBS J 2016; 283:1453-64. [DOI: 10.1111/febs.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Gustavo Chaves
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Christian Derst
- Zoologisches Institut; Biozentrum Universität zu Köln; Germany
| | - Arne Franzen
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
| | - Yuta Mashimo
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Ryuichiro Machida
- Sugadaira Montane Research Center; University of Tsukuba; Ueda Japan
| | - Boris Musset
- Institute of Complex Systems; Zelluläre Biophysik (ICS-4) Forschungszentrum Jülich; Germany
- Institut für Physiologie und Pathophysiologie; Paracelsus Universität Salzburg Standort Nürnberg; Nuremberg Germany
| |
Collapse
|
34
|
Li Q, Shen R, Treger JS, Wanderling SS, Milewski W, Siwowska K, Bezanilla F, Perozo E. Resting state of the human proton channel dimer in a lipid bilayer. Proc Natl Acad Sci U S A 2015; 112:E5926-35. [PMID: 26443860 PMCID: PMC4640771 DOI: 10.1073/pnas.1515043112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The voltage-gated proton channel Hv1 plays a critical role in the fast proton translocation that underlies a wide range of physiological functions, including the phagocytic respiratory burst, sperm motility, apoptosis, and metastatic cancer. Both voltage activation and proton conduction are carried out by a voltage-sensing domain (VSD) with strong similarity to canonical VSDs in voltage-dependent cation channels and enzymes. We set out to determine the structural properties of membrane-reconstituted human proton channel (hHv1) in its resting conformation using electron paramagnetic resonance spectroscopy together with biochemical and computational methods. We evaluated existing structural templates and generated a spectroscopically constrained model of the hHv1 dimer based on the Ci-VSD structure at resting state. Mapped accessibility data revealed deep water penetration through hHv1, suggesting a highly focused electric field, comprising two turns of helix along the fourth transmembrane segment. This region likely contains the H(+) selectivity filter and the conduction pore. Our 3D model offers plausible explanations for existing electrophysiological and biochemical data, offering an explicit mechanism for voltage activation based on a one-click sliding helix conformational rearrangement.
Collapse
Affiliation(s)
- Qufei Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Jeremy S Treger
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Sherry S Wanderling
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wieslawa Milewski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Klaudia Siwowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
35
|
Cherny VV, Morgan D, Musset B, Chaves G, Smith SME, DeCoursey TE. Tryptophan 207 is crucial to the unique properties of the human voltage-gated proton channel, hHV1. ACTA ACUST UNITED AC 2015; 146:343-56. [PMID: 26458876 PMCID: PMC4621752 DOI: 10.1085/jgp.201511456] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 01/19/2023]
Abstract
Part of the "signature sequence" that defines the voltage-gated proton channel (H(V1)) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence H(V1) genes. Replacing Trp207 in human HV1 (hH(V1)) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30-38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hH(V1). Cation-π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo >8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of H(V1) that is essential to its biological functions, was compromised. In the WT hH(V1), ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in H(V1) from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in H(V1) of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating.
Collapse
Affiliation(s)
- Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gustavo Chaves
- Institute of Complex Systems 4 Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Susan M E Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
36
|
Hv1 proton channel opening is preceded by a voltage-independent transition. Biophys J 2015; 107:1564-72. [PMID: 25296308 DOI: 10.1016/j.bpj.2014.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/31/2023] Open
Abstract
The voltage sensing domain (VSD) of the voltage-gated proton channel Hv1 mediates a H(+)-selective conductance that is coordinately controlled by the membrane potential (V) and the transmembrane pH gradient (ΔpH). Allosteric control of Hv1 channel opening by ΔpH (V-ΔpH coupling) is manifested by a characteristic shift of approximately 40 mV per ΔpH unit in the activation. To further understand the mechanism for V-ΔpH coupling in Hv1, H(+) current kinetics of activation and deactivation in excised membrane patches were analyzed as a function of the membrane potential and the pH in the intracellular side of the membrane (pHI). In this study, it is shown for the first time to our knowledge that the opening of Hv1 is preceded by a voltage-independent transition. A similar process has been proposed to constitute the step involving coupling between the voltage-sensing and pore domains in tetrameric voltage-gated channels. However, for Hv1, the VSD functions as both the voltage sensor and the conduction pathway, suggesting that the voltage independent transition is intrinsic to the voltage-sensing domain. Therefore, this article proposes that the underlying mechanism for the activation of Hv1 involves a process similar to VSD relaxation, a process previously described for voltage-gated channels and voltage-controlled enzymes. Finally, deactivation seemingly occurs as a strictly voltage dependent process, implying that the kinetic event leading to opening of the proton conductance are different than those involved in the closing. Thus, from this work it is proposed that Hv1 activity displays hysteresis.
Collapse
|
37
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|
38
|
Mutua J, Jinno Y, Sakata S, Okochi Y, Ueno S, Tsutsui H, Kawai T, Iwao Y, Okamura Y. Functional diversity of voltage-sensing phosphatases in two urodele amphibians. Physiol Rep 2014; 2:e12061. [PMID: 25347851 PMCID: PMC4187576 DOI: 10.14814/phy2.12061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Voltage-sensing phosphatases (VSPs) share the molecular architecture of the voltage sensor domain (VSD) with voltage-gated ion channels and the phosphoinositide phosphatase region with the phosphatase and tensin homolog (PTEN), respectively. VSPs enzymatic activities are regulated by the motions of VSD upon depolarization. The physiological role of these proteins has remained elusive, and insights may be gained by investigating biological variations in different animal species. Urodele amphibians are vertebrates with potent activities of regeneration and also show diverse mechanisms of polyspermy prevention. We cloned cDNAs of VSPs from the testes of two urodeles; Hynobius nebulosus and Cynops pyrrhogaster, and compared their expression and voltage-dependent activation. Their molecular architecture is highly conserved in both Hynobius VSP (Hn-VSP) and Cynops VSP (Cp-VSP), including the positively-charged arginine residues in the S4 segment of the VSD and the enzymatic active site for substrate binding, yet the C-terminal C2 domain of Hn-VSP is significantly shorter than that of Cp-VSP and other VSP orthologs. RT-PCR analysis showed that gene expression pattern was distinct between two VSPs. The voltage sensor motions and voltage-dependent phosphatase activities were investigated electrophysiologically by expression in Xenopus oocytes. Both VSPs showed "sensing" currents, indicating that their voltage sensor domains are functional. The phosphatase activity of Cp-VSP was found to be voltage dependent, as shown by its ability to regulate the conductance of coexpressed GIRK2 channels, but Hn-VSP lacked such phosphatase activity due to the truncation of its C2 domain.
Collapse
Affiliation(s)
- Joshua Mutua
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Souhei Sakata
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Okochi
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shuichi Ueno
- Laboratory of Molecular Developmental Biology, Department of Applied Molecular Biosciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hidekazu Tsutsui
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Iwao
- Laboratory of Molecular Developmental Biology, Department of Applied Molecular Biosciences, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yasushi Okamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Jin C, Sun J, Stilphen CA, Smith SME, Ocasio H, Bermingham B, Darji S, Guha A, Patel R, Geurts AM, Jacob HJ, Lambert NA, O'Connor PM. HV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats. Hypertension 2014; 64:541-50. [PMID: 24935944 DOI: 10.1161/hypertensionaha.114.03549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (P<0.05) and more rapid recovery of intracellular pH in wild-type rats (ΔpHI 0.005 versus 0.002 U/s, P=0.046, respectively). Superoxide production was enhanced by low intracellular sodium (<10 mmol/L) in both thick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Chunhua Jin
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Jingping Sun
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Carly A Stilphen
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Susan M E Smith
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Hiram Ocasio
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Brent Bermingham
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Sandip Darji
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Avirup Guha
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Roshan Patel
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Aron M Geurts
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Howard J Jacob
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Nevin A Lambert
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.)
| | - Paul M O'Connor
- From the Department of Physiology (C.J, J.S., C.A.S., H.O., B.B., S.D., A.G., R.P., P.M.O.) and Department of Pharmacology and Toxicology (N.A.L.), Georgia Regents University, Augusta; Department of Physiology, Medical College of Wisconsin, Milwaukee (A.M.G., H.J.J.); and Department of Biology & Physics, Kennesaw State University, Atlanta, GA (S.M.E.S.).
| |
Collapse
|
40
|
Andersen AP, Moreira JMA, Pedersen SF. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130098. [PMID: 24493746 DOI: 10.1098/rstb.2013.0098] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major changes in intra- and extracellular pH homoeostasis are shared features of most solid tumours. These changes stem in large part from the metabolic shift of most cancer cells towards glycolytic metabolism and other processes associated with net acid production. In combination with oncogenic signalling and impact from factors in the tumour microenvironment, this upregulates acid-extruding plasma membrane transport proteins which maintain intracellular pH normal or even more alkaline compared with that of normal cells, while in turn acidifying the external microenvironment. Mounting evidence strongly indicates that this contributes significantly to cancer development by favouring e.g. cancer cell migration, invasion and chemotherapy resistance. Finally, while still under-explored, it seems likely that non-cancer cells in the tumour microenvironment also exhibit altered pH regulation and that this may contribute to their malignant properties. Thus, the physical tumour microenvironment and the cancer and stromal cells within it undergo important reciprocal interactions which modulate the tumour pH profile, in turn severely impacting on the course of cancer progression. Here, we summarize recent knowledge of tumour metabolism and the tumour microenvironment, placing it in the context of tumour pH regulation, and discuss how interfering with these properties may be exploited clinically.
Collapse
Affiliation(s)
- Anne Poder Andersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | | | | |
Collapse
|
41
|
Abstract
The past decade has seen increasing use of the patch-clamp technique on neutrophils and eosinophils. The main goal of these electrophysiological studies has been to elucidate the mechanisms underlying the phagocyte respiratory burst. NADPH oxidase activity, which defines the respiratory burst in granulocytes, is electrogenic because electrons from NADPH are transported across the cell membrane, where they reduce oxygen to form superoxide anion (O2 (-)). This passage of electrons comprises an electrical current that would rapidly depolarize the membrane if the charge movement were not balanced by proton efflux. The patch-clamp technique enables simultaneous recording of NADPH oxidase-generated electron current and H(+) flux through the closely related H(+) channel. Increasing evidence suggests that other ion channels may play crucial roles in degranulation, phagocytosis, and chemotaxis, highlighting the importance of electrophysiological studies to advance knowledge of granulocyte function. Several configurations of the patch-clamp technique exist. Each has advantages and limitations that are discussed here. Meaningful measurements of ion channels cannot be achieved without an understanding of their fundamental properties. We describe the types of measurements that are necessary to characterize a particular ion channel.
Collapse
|
42
|
Morgan D, Musset B, Kulleperuma K, Smith SME, Rajan S, Cherny VV, Pomès R, DeCoursey TE. Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. ACTA ACUST UNITED AC 2013; 142:625-40. [PMID: 24218398 PMCID: PMC3840923 DOI: 10.1085/jgp.201311045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Extraordinary selectivity is crucial to all proton-conducting molecules, including the human voltage-gated proton channel (hHV1), because the proton concentration is >106 times lower than that of other cations. Here we use “selectivity filter scanning” to elucidate the molecular requirements for proton-specific conduction in hHV1. Asp112, in the middle of the S1 transmembrane helix, is an essential part of the selectivity filter in wild-type (WT) channels. After neutralizing Asp112 by mutating it to Ala (D112A), we introduced Asp at each position along S1 from 108 to 118, searching for “second site suppressor” activity. Surprisingly, most mutants lacked even the anion conduction exhibited by D112A. Proton-specific conduction was restored only with Asp or Glu at position 116. The D112V/V116D channel strikingly resembled WT in selectivity, kinetics, and ΔpH-dependent gating. The S4 segment of this mutant has similar accessibility to WT in open channels, because R211H/D112V/V116D was inhibited by internally applied Zn2+. Asp at position 109 allowed anion permeation in combination with D112A but did not rescue function in the nonconducting D112V mutant, indicating that selectivity is established externally to the constriction at F150. The three positions that permitted conduction all line the pore in our homology model, clearly delineating the conduction pathway. Evidently, a carboxyl group must face the pore directly to enable conduction. Molecular dynamics simulations indicate reorganization of hydrogen bond networks in the external vestibule in D112V/V116D. At both positions where it produces proton selectivity, Asp frequently engages in salt linkage with one or more Arg residues from S4. Surprisingly, mean hydration profiles were similar in proton-selective, anion-permeable, and nonconducting constructs. That the selectivity filter functions in a new location helps to define local environmental features required to produce proton-selective conduction.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kulleperuma K, Smith SME, Morgan D, Musset B, Holyoake J, Chakrabarti N, Cherny VV, DeCoursey TE, Pomès R. Construction and validation of a homology model of the human voltage-gated proton channel hHV1. ACTA ACUST UNITED AC 2013; 141:445-65. [PMID: 23530137 PMCID: PMC3607825 DOI: 10.1085/jgp.201210856] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The topological similarity of voltage-gated proton channels (HV1s) to the voltage-sensing domain (VSD) of other voltage-gated ion channels raises the central question of whether HV1s have a similar structure. We present the construction and validation of a homology model of the human HV1 (hHV1). Multiple structural alignment was used to construct structural models of the open (proton-conducting) state of hHV1 by exploiting the homology of hHV1 with VSDs of K+ and Na+ channels of known three-dimensional structure. The comparative assessment of structural stability of the homology models and their VSD templates was performed using massively repeated molecular dynamics simulations in which the proteins were allowed to relax from their initial conformation in an explicit membrane mimetic. The analysis of structural deviations from the initial conformation based on up to 125 repeats of 100-ns simulations for each system reveals structural features consistently retained in the homology models and leads to a consensus structural model for hHV1 in which well-defined external and internal salt-bridge networks stabilize the open state. The structural and electrostatic properties of this open-state model are compatible with proton translocation and offer an explanation for the reversal of charge selectivity in neutral mutants of Asp112. Furthermore, these structural properties are consistent with experimental accessibility data, providing a valuable basis for further structural and functional studies of hHV1. Each Arg residue in the S4 helix of hHV1 was replaced by His to test accessibility using Zn2+ as a probe. The two outermost Arg residues in S4 were accessible to external solution, whereas the innermost one was accessible only to the internal solution. Both modeling and experimental data indicate that in the open state, Arg211, the third Arg residue in the S4 helix in hHV1, remains accessible to the internal solution and is located near the charge transfer center, Phe150.
Collapse
Affiliation(s)
- Kethika Kulleperuma
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
45
|
Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains. Neuron 2013; 77:274-87. [PMID: 23352164 DOI: 10.1016/j.neuron.2012.11.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 11/22/2022]
Abstract
Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made of two VSDs and lacks the PD. The location of the activation gate in the VSD is unknown and open channel blockers for VSDs have not yet been identified. Here, we describe a class of small molecules which act as open channel blockers on the Hv1 VSD and find that a highly conserved phenylalanine in the charge transfer center of the VSD plays a key role in blocker binding. We then use one of the blockers to show that Hv1 contains two intracellular and allosterically coupled gates.
Collapse
|
46
|
Smith SM, DeCoursey TE. Consequences of dimerization of the voltage-gated proton channel. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:335-60. [PMID: 23663974 PMCID: PMC3963466 DOI: 10.1016/b978-0-12-386931-9.00012-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The human voltage-gated proton channel, hHV1, appears to exist mainly as a dimer. Teleologically, this is puzzling because each protomer retains the main properties that characterize this protein: proton conduction that is regulated by conformational (channel opening and closing) changes that occur in response to both voltage and pH. The HV1 dimer is mainly linked by C-terminal coiled-coil interactions. Several types of mutations produce monomeric constructs that open approximately five times faster than the wild-type dimeric channel but with weaker voltage dependence. Intriguingly, the quintessential function of the HV1 dimer, opening to allow H(+) conduction, occurs cooperatively. Both protomers undergo a conformational change, but both must undergo this transition before either can conduct. The teleological purpose of dimerization may be to steepen the voltage dependence of channel opening, at least in phagocytes. In other cells, the purpose is not understood. Finally, several single-celled species have HV that are likely monomeric.
Collapse
Affiliation(s)
- Susan M.E. Smith
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta GA 30322 USA
| | - Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago IL 60612 USA
| |
Collapse
|
47
|
Meech R. A contribution to the history of the proton channel. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:533-557. [PMID: 23365805 PMCID: PMC3556693 DOI: 10.1002/wmts.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The low numbers of hydrogen ions in physiological solutions encouraged the assumption that H(+) currents flowing through conductive pathways would be so small as to be unmeasurable even if theoretically possible. Evidence for an H(+)-based action potential in the luminescent dinoflagellate Noctiluca and for an H(+)-conducting channel created by the secretions of the bacterium Bacillus brevis, did little to alter this perception. The clear demonstration of H(+) conduction in molluscan neurons might have provided the breakthrough but the new pathway was without an easily demonstrable function, and escaped general attention. Indeed the extreme measures that must be taken to successfully isolate H(+) currents meant that it was some years before proton channels were identified in mammalian cells. However, with the general availability of patch-clamp techniques and evidence for an important role in mammalian neutrophils, the stage was set for a series of structure/function studies with the potential to make the proton channel the best understood channel of all. In addition, widespread genomic searches have established that proton channels play important roles in processes ranging from fertilization of the human ovum to the progression of breast cancer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collapse
Affiliation(s)
- Robert Meech
- School of Physiology & Pharmacology, University of Bristol, Medical Sciences Building, University WalkBristol BS8 1TD, UK
| |
Collapse
|
48
|
Musset B, Decoursey T. Biophysical properties of the voltage gated proton channel H(V)1. ACTA ACUST UNITED AC 2012; 1:605-620. [PMID: 23050239 DOI: 10.1002/wmts.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biophysical properties of the voltage gated proton channel (H(V)1) are the key elements of its physiological function. The voltage gated proton channel is a unique molecule that in contrast to all other ion channels is exclusively selective for protons. Alone among proton channels, it has voltage and time dependent gating like other "classical" ion channels. H(V)1 is furthermore a sensor for the pH in the cell and the surrounding media. Its voltage dependence is strictly coupled to the pH gradient across the membrane. This regulation restricts opening of the channel to specific voltages at any given pH gradient, therefore allowing H(V)1 to perform its physiological task in the tissue it is expressed in. For H(V)1 there is no known blocker. The most potent channel inhibitor is zinc (Zn(2+)) which prevents channel opening. An additional characteristic of H(V)1 is its strong temperature dependence of both gating and conductance. In contrast to single-file water filled pores like the gramicidin channel, H(V)1 exhibits pronounced deuterium effects and temperature effects on conduction, consistent with a different conduction mechanism than other ion channels. These properties may be explained by the recent identification of an aspartate in the pore of H(V)1 that is essential to its proton selectivity.
Collapse
Affiliation(s)
- Boris Musset
- Rush Medical Center, molec. biophysics and physiology, DeCoursey, Thomas; Rush Medical Center
| | | |
Collapse
|
49
|
Rebolledo S, Qiu F, Peter Larsson H. Molecular structure and function of Hv1 channels. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|