1
|
Guo Y, Fu Y, Sun W. 50 Hz Magnetic Field Exposure Inhibited Spontaneous Movement of Zebrafish Larvae through ROS-Mediated syn2a Expression. Int J Mol Sci 2023; 24:ijms24087576. [PMID: 37108734 PMCID: PMC10144198 DOI: 10.3390/ijms24087576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf) were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 μT, respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did not affect the basic development parameters including hatching rate, mortality and malformation rate, yet MF at 200 μT could significantly induce spontaneous movement (SM) hypoactivity in zebrafish larvae. Histological examination presented morphological abnormalities of the brain such as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to MF at 200 μT inhibited syn2a transcription and expression, and increased reactive oxygen species (ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity. However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via ROS-mediated syn2a expression in a nonlinear manner.
Collapse
Affiliation(s)
- Yixin Guo
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiti Fu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Schwark R, Andrade R, Bykhovskaia M. Synapsin II Directly Suppresses Epileptic Seizures In Vivo. Brain Sci 2022; 12:brainsci12030325. [PMID: 35326282 PMCID: PMC8946686 DOI: 10.3390/brainsci12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.
Collapse
Affiliation(s)
- Ryan Schwark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- The Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- Correspondence:
| |
Collapse
|
3
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
4
|
Silva M, Tran V, Marty A. Calcium-dependent docking of synaptic vesicles. Trends Neurosci 2021; 44:579-592. [PMID: 34049722 DOI: 10.1016/j.tins.2021.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The concentration of calcium ions in presynaptic terminals regulates transmitter release, but underlying mechanisms have remained unclear. Here we review recent studies that shed new light on this issue. Fast-freezing electron microscopy and total internal reflection fluorescence microscopy studies reveal complex calcium-dependent vesicle movements including docking on a millisecond time scale. Recordings from so-called 'simple synapses' indicate that calcium not only triggers exocytosis, but also modifies synaptic strength by controlling a final, rapid vesicle maturation step before release. Molecular studies identify several calcium-sensitive domains on Munc13 and on synaptotagmin-1 that are likely involved in bringing the vesicular and plasma membranes closer together in response to calcium elevation. Together, these results suggest that calcium-dependent vesicle docking occurs in a wide range of time domains and plays a crucial role in several phenomena including synaptic facilitation, post-tetanic potentiation, and neuromodulator-induced potentiation.
Collapse
Affiliation(s)
- Melissa Silva
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Van Tran
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France
| | - Alain Marty
- Université de Paris, SPPIN-Saints Pères Paris Institute for the Neurosciences, CNRS, F-75006 Paris, France.
| |
Collapse
|
5
|
Mirza FJ, Zahid S. The Role of Synapsins in Neurological Disorders. Neurosci Bull 2017; 34:349-358. [PMID: 29282612 DOI: 10.1007/s12264-017-0201-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Synapsins serve as flagships among the presynaptic proteins due to their abundance on synaptic vesicles and contribution to synaptic communication. Several studies have emphasized the importance of this multi-gene family of neuron-specific phosphoproteins in maintaining brain physiology. In the recent times, increasing evidence has established the relevance of alterations in synapsins as a major determinant in many neurological disorders. Here, we give a comprehensive description of the diverse roles of the synapsin family and the underlying molecular mechanisms that contribute to several neurological disorders. These physiologically important roles of synapsins associated with neurological disorders are just beginning to be understood. A detailed understanding of the diversified expression of synapsins may serve to strategize novel therapeutic approaches for these debilitating neurological disorders.
Collapse
Affiliation(s)
- Fatima Javed Mirza
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
6
|
Samigullin DV, Khaziev EF, Zhilyakov NV, Bukharaeva EA, Nikolsky EE. Loading a Calcium Dye into Frog Nerve Endings Through the Nerve Stump: Calcium Transient Registration in the Frog Neuromuscular Junction. J Vis Exp 2017. [PMID: 28715368 PMCID: PMC5609652 DOI: 10.3791/55122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
One of the most feasible methods of measuring presynaptic calcium levels in presynaptic nerve terminals is optical recording. It is based on using calcium-sensitive fluorescent dyes that change their emission intensity or wavelength depending on the concentration of free calcium in the cell. There are several methods used to stain cells with calcium dyes. Most common are the processes of loading the dyes through a micropipette or pre-incubating with the acetoxymethyl ester forms of the dyes. However, these methods are not quite applicable to neuromuscular junctions (NMJs) due to methodological issues that arise. In this article, we present a method for loading a calcium-sensitive dye through the frog nerve stump of the frog nerve into the nerve endings. Since entry of external calcium into nerve terminals and the subsequent binding to the calcium dye occur within the millisecond time-scale, it is necessary to use a fast imaging system to record these interactions. Here, we describe a protocol for recording the calcium transient with a fast CCD camera.
Collapse
Affiliation(s)
- Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Scientific Centre, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Open Laboratory of Neuropharmacology, Kazan Federal University; Department of Radiophotonics and Microwave Technologies, A.N. Tupolev Kazan National Research Technical University;
| | - Eduard F Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Scientific Centre, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Open Laboratory of Neuropharmacology, Kazan Federal University; Department of Radiophotonics and Microwave Technologies, A.N. Tupolev Kazan National Research Technical University
| | - Nikita V Zhilyakov
- Laboratory of Biophysics of Synaptic Processes, Kazan Scientific Centre, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Open Laboratory of Neuropharmacology, Kazan Federal University
| | - Ellya A Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Scientific Centre, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Open Laboratory of Neuropharmacology, Kazan Federal University
| | - Eugeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Scientific Centre, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Open Laboratory of Neuropharmacology, Kazan Federal University; Department of Medical and Biological Physics, Kazan State Medical University
| |
Collapse
|
7
|
Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype. J Neurosci 2017; 37:1757-1771. [PMID: 28087765 DOI: 10.1523/jneurosci.0844-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.
Collapse
|
8
|
Rothman JS, Kocsis L, Herzog E, Nusser Z, Silver RA. Physical determinants of vesicle mobility and supply at a central synapse. eLife 2016; 5. [PMID: 27542193 PMCID: PMC5025287 DOI: 10.7554/elife.15133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI:http://dx.doi.org/10.7554/eLife.15133.001
Collapse
Affiliation(s)
- Jason Seth Rothman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Laszlo Kocsis
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Etienne Herzog
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Team Synapse in Cognition, Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Robin Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Islamov RR, Samigullin DV, Rizvanov AA, Bondarenko NI, Nikolskiy EE. Synaptosome-associated protein 25 (SNAP25) synthesis in terminal buttons of mouse motor neuron. DOKL BIOCHEM BIOPHYS 2015; 464:272-4. [PMID: 26518545 DOI: 10.1134/s1607672915050026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/23/2022]
Abstract
Previously, we formulated the hypothesis of compartmentalized protein synthesis in axons of motor neurons. In the axon hillock, along the entire length of the axon and in its ending, specific proteins are locally synthesized, which ensure the function of each compartment. In support of this hypothesis, in this work we studied the local protein synthesis in mouse motor nerve ending.
Collapse
Affiliation(s)
- R R Islamov
- Kazan State Medical University, ul. Butlerova 49, Kazan, 420012, Tatarstan, Russia
| | - D V Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Russia. .,Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia.
| | - A A Rizvanov
- Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| | - N I Bondarenko
- Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| | - E E Nikolskiy
- Kazan State Medical University, ul. Butlerova 49, Kazan, 420012, Tatarstan, Russia.,Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Russia.,Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| |
Collapse
|
10
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
11
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 2014; 33:18319-30. [PMID: 24227741 DOI: 10.1523/jneurosci.5293-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Some forms of idiopathic epilepsy in animals and humans are associated with deficiency of synapsin, a phosphoprotein that reversibly associates with synaptic vesicles. We have previously shown that the epileptic phenotype seen in synapsin II knock-out mice (SynII(-)) can be rescued by the genetic deletion of the Rab3a protein. Here we have examined the cellular basis for this rescue using whole-cell recordings from CA1 hippocampal pyramidal cells in brain slices. We find that SynII(-) neurons have increased spontaneous activity and a reduced threshold for the induction of epileptiform activity by 4-aminopyridine (4-AP). Using selective recordings of glutamatergic and GABAergic activity we show that in wild-type neurons low concentrations of 4-AP facilitate glutamatergic and GABAergic transmission in a balanced way, whereas in SynII(-) neurons this balance is shifted toward excitation. This imbalance reflects a deficit in inhibitory synaptic transmission that appears to be secondary to reduced Ca(2+) sensitivity in SynII(-) neurons. This suggestion is supported by our finding that synaptic and epileptiform activity at SynII(-) and wild-type synapses is similar when GABAergic transmission is blocked. Deletion of Rab3a results in glutamatergic synapses that have a compromised responsiveness to either low 4-AP concentrations or elevated extracellular Ca(2+). These changes mitigate the overexcitable phenotype observed in SynII(-) neurons. Thus, Rab3a deletion appears to restore the excitatory/inhibitory imbalance observed in SynII(-) hippocampal slices indirectly, not by correcting the deficit in GABAergic synaptic transmission but rather by impairing excitatory glutamatergic synaptic transmission.
Collapse
|
13
|
Vasileva M, Renden R, Horstmann H, Gitler D, Kuner T. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area. Front Cell Neurosci 2013; 7:270. [PMID: 24391547 PMCID: PMC3868894 DOI: 10.3389/fncel.2013.00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa-known to sustain repetitive transmission in glutamatergic terminals-was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.
Collapse
Affiliation(s)
- Mariya Vasileva
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Robert Renden
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
14
|
Corradi A, Fadda M, Piton A, Patry L, Marte A, Rossi P, Cadieux-Dion M, Gauthier J, Lapointe L, Mottron L, Valtorta F, Rouleau GA, Fassio A, Benfenati F, Cossette P. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Hum Mol Genet 2013; 23:90-103. [PMID: 23956174 PMCID: PMC3857945 DOI: 10.1093/hmg/ddt401] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2 knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2 as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.
Collapse
Affiliation(s)
- Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV 3, Genova 16132, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Medrihan L, Cesca F, Raimondi A, Lignani G, Baldelli P, Benfenati F. Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nat Commun 2013; 4:1512. [PMID: 23443540 PMCID: PMC3586721 DOI: 10.1038/ncomms2515] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/18/2013] [Indexed: 01/05/2023] Open
Abstract
In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca2+-dependent manner by a functional interaction with presynaptic Ca2+ channels, revealing a new role in synaptic transmission for synapsins. The arrival of action potentials at nerve terminals often leads to synchronous neurotransmitter release. Medrihan and colleagues use electrophysiology on mouse hippocampal neurons to show that the vesicle protein Synapsin II promotes GABAergic asynchronous release by interacting with calcium channels.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. J Neurosci 2012; 32:3969-80. [PMID: 22442064 DOI: 10.1523/jneurosci.5058-11.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic terminals are specialized sites for information transmission where vesicles fuse with the plasma membrane and are locally recycled. Recent work has extended this classical view, with the observation that a subset of functional vesicles is dynamically shared between adjacent terminals by lateral axonal transport. Conceptually, such transport would be expected to disrupt vesicle retention around the active zone, yet terminals are characterized by a high-density vesicle cluster, suggesting that counteracting stabilizing mechanisms must operate against this tendency. The synapsins are a family of proteins that associate with synaptic vesicles and determine vesicle numbers at the terminal, but their specific function remains controversial. Here, using multiple quantitative fluorescence-based approaches and electron microscopy, we show that synapsin is instrumental for resisting vesicle dispersion and serves as a regulatory element for controlling lateral vesicle sharing between synapses. Deleting synapsin disrupts the organization of presynaptic vesicle clusters, making their boundaries hard to define. Concurrently, the fraction of vesicles amenable to transport is increased, and more vesicles are translocated to the axon. Importantly, in neurons from synapsin knock-out mice the resting and recycling pools are equally mobile. Synapsin, when present, specifically restricts the mobility of resting pool vesicles without affecting the division of vesicles between these pools. Specific expression of synapsin IIa, the sole isoform affecting synaptic depression, rescues the knock-out phenotype. Together, our results show that synapsin is pivotal for maintaining synaptic vesicle cluster integrity and that it contributes to the regulated sharing of vesicles between terminals.
Collapse
|
17
|
Wendt A, Speidel D, Danielsson A, Esguerra JLS, Bogen IL, Walaas SI, Salehi A, Eliasson L. Synapsins I and II are not required for insulin secretion from mouse pancreatic β-cells. Endocrinology 2012; 153:2112-9. [PMID: 22334712 DOI: 10.1210/en.2011-1702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synapsins are a family of phosphoproteins that modulate the release of neurotransmitters from synaptic vesicles. The release of insulin from pancreatic β-cells has also been suggested to be regulated by synapsins. In this study, we have utilized a knock out mouse model with general disruptions of the synapsin I and II genes [synapsin double knockout (DKO)]. Stimulation with 20 mm glucose increased insulin secretion 9-fold in both wild-type (WT) and synapsin DKO islets, whereas secretion in the presence of 70 mm K(+) and 1 mm glucose was significantly enhanced in the synapsin DKO mice compared to WT. Exocytosis in single β-cells was investigated using patch clamp. The exocytotic response, measured by capacitance measurements and elicited by a depolarization protocol designed to visualize exocytosis of vesicles from the readily releasable pool and from the reserve pool, was of the same size in synapsin DKO and WT β-cells. The increase in membrane capacitance corresponding to readily releasable pool was approximately 50fF in both genotypes. We next investigated the voltage-dependent Ca(2+) influx. In both WT and synapsin DKO β-cells the Ca(2+) current peaked at 0 mV and measured peak current (I(p)) and net charge (Q) were of similar magnitude. Finally, ultrastructural data showed no variation in total number of granules (N(v)) or number of docked granules (N(s)) between the β-cells from synapsin DKO mice and WT control. We conclude that neither synapsin I nor synapsin II are directly involved in the regulation of glucose-stimulated insulin secretion and Ca(2)-dependent exocytosis in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Anna Wendt
- Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, 20502 Malmö, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
At least two rate-limiting mechanisms in vesicle trafficking operate at mouse Schaffer collateral synapses, but their molecular/physical identities are unknown. The first mechanism determines the baseline rate at which reserve vesicles are supplied to a readily releasable pool. The second causes the supply rate to depress threefold when synaptic transmission is driven hard for extended periods. Previous models invoked depletion of a reserve vesicle pool to explain the reductions in the supply rate, but the mass-action assumption at their core is not compatible with kinetic measurements of neurotransmission under maximal-use conditions. Here we develop a new theoretical model of rate-limiting steps in vesicle trafficking that is compatible with previous and new measurements. A physical interpretation is proposed where local reserve pools consisting of four vesicles are tethered to individual release sites and are replenished stochastically in an all-or-none fashion. We then show that the supply rate depresses more rapidly in synapsin knock-outs and that the phenotype can be fully explained by changing the value of the single parameter in the model that would specify the size of the local reserve pools. Vesicle-trafficking rates between pools were not affected. Finally, optical imaging experiments argue against alternative interpretations of the theoretical model where vesicle trafficking is inhibited without reserve pool depletion. This new conceptual framework will be useful for distinguishing which of the multiple molecular and cell biological mechanisms involved in vesicle trafficking are rate limiting at different levels of synaptic throughput and are thus candidates for physiological and pharmacological modulation.
Collapse
|
19
|
Dyck BA, Beyaert MGR, Ferro MA, Mishra RK. Medial prefrontal cortical synapsin II knock-down induces behavioral abnormalities in the rat: examining synapsin II in the pathophysiology of schizophrenia. Schizophr Res 2011; 130:250-9. [PMID: 21689907 DOI: 10.1016/j.schres.2011.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 01/11/2023]
Abstract
Synapsin II is a synaptic vesicle-associated phosphoprotein that has been implicated in the pathophysiology of schizophrenia. Studies have demonstrated reductions in synapsin II mRNA and protein in medial prefrontal cortical post-mortem samples from patients with schizophrenia, genetic associations between synapsin II and schizophrenia, and synapsin II protein regulation by dopamine receptor activation. Collectively, this research indicates a relationship between synapsin II dysregulation and schizophrenia; however, it remains unknown whether perturbations in synapsin II play a role in the pathophysiology of this disease. The aim of this project was to evaluate animals with selective knock-down of synapsin II in the medial prefrontal cortex. After continuous infusion of synapsin II antisense sequences, animals were examined for the presence of schizophrenic-like behavioral phenotypes and assessed on the response to clinically relevant antipsychotic drugs. Our results indicate that rats with selective reductions in medial prefrontal cortical synapsin II demonstrate deficits in sensorimotor gating (prepulse inhibition), reduced social behavior, and hyperlocomotion, which are corrected by the atypical antipsychotic drug olanzapine. Additionally, synapsin II knock-down disrupts serial search efficiency. These behavioral changes are accompanied by reductions in vesicular neurotransmitter transporter protein concentrations for glutamate (VGLUT1 and VGLUT2) and GABA (VGAT), without affecting dopamine (VMAT2). These results implicate a causal role for decreased synapsin II in the medial prefrontal cortex in the pathophysiology of schizophrenia and the mechanisms of aberrant prefrontal cortical circuitry, and suggest that synapsin II may potentially serve as a novel therapeutic target for this disorder.
Collapse
Affiliation(s)
- Bailey A Dyck
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
20
|
Bykhovskaia M. Synapsin regulation of vesicle organization and functional pools. Semin Cell Dev Biol 2011; 22:387-92. [PMID: 21827866 DOI: 10.1016/j.semcdb.2011.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles are organized in clusters, and synapsin maintains vesicle organization and abundance in nerve terminals. At the functional level, vesicles can be subdivided into three pools: the releasable pool, the recycling pool, and the reserve pool, and synapsin mediates transitions between these pools. Synapsin directs vesicles into the reserve pool, and synapsin II isoform has a primary role in this function. In addition, synapsin actively delivers vesicles to active zones. Finally, synapsin I isoform mediates coupling release events to action potentials at the latest stages of exocytosis. Thus, synapsin is involved in multiple stages of the vesicle cycle, including vesicle clustering, maintaining the reserve pool, vesicle delivery to active zones, and synchronizing release events. These processes are regulated via a dynamic synapsin phosphorylation/dephosphorylation cycle which involves multiple phosphorylation sites and several pathways. Different synapsin isoforms have unique and non-redundant roles in the multifaceted synapsin function.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Universidad Central del Caribe, Neuroscience Department, 2U6 Ave Laurel, Bayamon, PR 00956, USA.
| |
Collapse
|
21
|
Adeli M, Kalantari M, Parsamanesh M, Sadeghi E, Mahmoudi M. Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:806-17. [PMID: 21419867 DOI: 10.1016/j.nano.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/18/2010] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to their functional groups and then release the drug inside the cancer cells in mouse tissue connective fibroblast adhesive cell line L929. It was found that the molecular self-assemblies quickly transfer through the cell membrane and slowly release the drug into the intracellular environment. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and cell cycle assays showed that the molecular self-assemblies degrade back into individual molecules that can be broken down by the cell metabolically, confirming that they can be used as new drug-delivery systems with high treatment efficacy and minimum side effects for future cancer therapy, thus forming a firm foundation for further study and improvement. FROM THE CLINICAL EDITOR This study investigates polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers as promising candidates for biomedical applications, including cancer therapy.
Collapse
Affiliation(s)
- Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Synaptic vesicles are acidified by a proton pump (vATPase), which allows vesicular uptake of neurotransmitters. After vesicle exocytosis, continued operation of the vATPase would seem to serve no useful function. In this issue of Neuron, however, Zhang and colleagues show that continued pumping alkalinizes the cytoplasm, accelerating endocytosis.
Collapse
Affiliation(s)
- Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | | |
Collapse
|
23
|
Zhang Z, Nguyen KT, Barrett EF, David G. Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 2011; 68:1097-108. [PMID: 21172612 DOI: 10.1016/j.neuron.2010.11.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (∼ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
24
|
Akbergenova Y, Bykhovskaia M. Synapsin regulates vesicle organization and activity-dependent recycling at Drosophila motor boutons. Neuroscience 2010; 170:441-52. [PMID: 20638447 DOI: 10.1016/j.neuroscience.2010.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/28/2022]
Abstract
Synapsin is a phosphoprotein reversibly associated with synaptic vesicles. We investigated synapsin function in mediating synaptic activity during intense stimulation at Drosophila motor boutons. Electron microscopy analysis of synapsin(-) boutons demonstrated that synapsin maintains vesicle clustering over the periphery of the bouton. Cyclosporin A pretreatment disrupted peripheral vesicle clustering, presumably due to increasing synapsin phosphorylated state. Labeling recycling vesicles with a fluorescent dye FM1-43 followed by photoconversion of the dye into electron dense product demonstrated that synapsin deficiency does not affect mixing of the reserve and recycling vesicle pools but selectively reduces the size of the reserve pool. Intense stimulation produced a significant increase in vesicle abundance and vesicle redistribution toward the central core of synapsin (+) boutons, while in synapsin (-) boutons the area occupied by vesicles did not change and the increase in vesicle numbers was not as prominent. However, intense stimulation produced an increase in basal release at synapsin(-) but not in synapsin(+) boutons, suggesting that synapsin may direct vesicles to the reserve pool. Finally, synapsin deficiency inhibited an increase in quantal size and formation of endosome-like cisternae, which was activated either by intense electrical stimulation or by high K(+) application. Taken together, these results elucidate a novel synapsin function, specifically, promoting vesicle reuptake and reserve pool formation upon intense stimulation.
Collapse
Affiliation(s)
- Y Akbergenova
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | | |
Collapse
|
25
|
Coleman WL, Bykhovskaia M. Cooperative regulation of neurotransmitter release by Rab3a and synapsin II. Mol Cell Neurosci 2010; 44:190-200. [PMID: 20338242 DOI: 10.1016/j.mcn.2010.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 11/16/2022] Open
Abstract
To understand how the presynaptic proteins synapsin and Rab3a may interact in the regulation of the synaptic vesicle cycle and the release process, we derived a double knockout (DKO) mouse lacking both synapsin II and Rab3a. We found that Rab3a deletion rescued epileptic-like seizures typical for synapsin II gene deleted animals (Syn II(-)). Furthermore, action potential evoked release was drastically reduced in DKO synapses, although spontaneous release remained normal. At low Ca2+ conditions, quantal content was equally reduced in Rab3a(-) and DKO synapses, but as Ca2+ concentration increased, the increase in quantal content was more prominent in Rab3a(-). Electron microscopy analysis revealed that DKO synapses have a combined phenotype, with docked vesicles being reduced similar to Rab3a(-), and intraterminal vesicles being depleted similar to Syn II(-). Consistently, both Syn II(-) and DKO terminals had increased synaptic depression and incomplete recovery. Taken together, our results suggest that synapsin II and Rab3a have separate roles in maintaining the total store of synaptic vesicles and cooperate in promoting the latest steps of neuronal secretion.
Collapse
Affiliation(s)
- William L Coleman
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
26
|
Role of AP-2alpha transcription factor in the regulation of synapsin II gene expression by dopamine D1 and D2 receptors. J Mol Neurosci 2009; 41:267-77. [PMID: 19842069 DOI: 10.1007/s12031-009-9299-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/02/2009] [Indexed: 01/11/2023]
Abstract
Synapsins are a family of neuron-specific phosphoproteins involved in synaptic vesicle docking, synaptogenesis, and synaptic plasticity. Previous studies have reported an increase in synapsin II protein by dopaminergic agents in the striatum, medial prefrontal cortex, and nucleus accumbens. This study investigated the mechanistic pathway involved in synapsin II regulation by dopaminergic drugs using primary midbrain neurons to determine which of several transcription factors regulates synapsin II expression. Protein kinase A (PKA) participation in the signaling pathway was examined using selective PKA inhibitors, which reduced synapsin II expression in cell cultures while dopaminergic agents were unable to increase synapsin II in the presence of the PKA inhibitor. Transcription factor involvement was further investigated using separate cultures treated with antisense deoxyoligonucleotides (ADONs) against the following transcription factors: activating protein 2 alpha (AP-2alpha), early growth response factor 1 (EGR-1), or polyoma enhancer activator-3 (PEA-3). Selective knockdown of AP-2alpha by ADONs reduced synapsin II levels, whereas treatment with EGR-1 and PEA-3 ADONs did not affect synapsin II expression. Furthermore, dopaminergic agents were no longer able to influence synapsin II concentrations following AP-2alpha knockdown. Collectively, these results indicate that a cyclic adenosine-3',5'-monophosphate/PKA-dependent mechanism involving the AP-2alpha transcription factor is likely responsible for the increase in neuronal synapsin II following dopamine D1 receptor stimulation or dopamine D2 receptor inhibition.
Collapse
|
27
|
Coleman WL, Bykhovskaia M. Synapsin I accelerates the kinetics of neurotransmitter release in mouse motor terminals. Synapse 2009; 63:531-3. [PMID: 19226605 DOI: 10.1002/syn.20635] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- William L Coleman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
28
|
Rab3a-mediated vesicle recruitment regulates short-term plasticity at the mouse diaphragm synapse. Mol Cell Neurosci 2009; 41:286-96. [DOI: 10.1016/j.mcn.2009.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 11/24/2022] Open
|
29
|
The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem Int 2009; 55:13-21. [DOI: 10.1016/j.neuint.2009.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 11/20/2022]
|