1
|
Müller S, Kartheus M, Hendinger E, Hübner DC, Schnell E, Rackow S, Bertsche A, Köhling R, Kirschstein T. Persistent Kv7.2/7.3 downregulation in the rat pilocarpine model of mesial temporal lobe epilepsy. Epilepsy Res 2024; 200:107296. [PMID: 38219422 DOI: 10.1016/j.eplepsyres.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Mutations within the Kv7.2 and Kv7.3 genes are well described causes for genetic childhood epilepsies. Knowledge on these channels in acquired focal epilepsy, especially in mesial temporal lobe epilepsy (mTLE), however, is scarce. Here, we used the rat pilocarpine model of drug-resistant mTLE to elucidate both expression and function by quantitative polymerase-chain reaction, immunohistochemistry, and electrophysiology, respectively. We found transcriptional downregulation of Kv7.2 and Kv7.3 as well as reduced Kv7.2 expression in epileptic CA1. Consequences were altered synaptic transmission, hyperexcitability which consisted of epileptiform afterpotentials, and increased susceptibility to acute GABAergic disinhibition. Importantly, blocking Kv7 channels with XE991 increased hyperexcitability in control tissue, but not in chronically epileptic tissue suggesting that the Kv7 deficit had precluded XE991 effects in this tissue. Conversely, XE991 resulted in comparable reduction of the paired-pulse ratio in both experimental groups implying preserved presynaptic Kv7.2 function of Schaffer collateral terminals. Consistent with Kv7.2/7.3 downregulation, the Kv7.3 channel opener β-hydroxybutyrate failed to mitigate hyperexcitability. Our findings demonstrate that compromised Kv7 function is not only relevant in genetic epilepsy, but also in acquired focal epilepsy. Moreover, they help explain reduced anti-seizure efficacy of Kv7 channel openers in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Steffen Müller
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Mareike Kartheus
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Elisabeth Hendinger
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | | | - Emma Schnell
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany
| | - Astrid Bertsche
- Department Neuropaediatrics, Hospital for Children and Adolescents, University Medicine Greifswald, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University Medicine Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Germany; Center of Transdisciplinary Neurosciences Rostock (CTNR), University Medicine Rostock, Germany.
| |
Collapse
|
2
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
3
|
Puhl CJ, Wefelmeyer W, Burrone J. Cholinergic Stimulation Modulates the Functional Composition of CA3 Cell Types in the Hippocampus. J Neurosci 2023; 43:4972-4983. [PMID: 37277177 PMCID: PMC10324996 DOI: 10.1523/jneurosci.0966-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/07/2023] Open
Abstract
The functional heterogeneity of hippocampal CA3 pyramidal neurons has emerged as a key aspect of circuit function. Here, we explored the effects of long-term cholinergic activity on the functional heterogeneity of CA3 pyramidal neurons in organotypic slices obtained from male rat brains. Application of agonists to either AChRs generally, or mAChRs specifically, induced robust increases in network activity in the low-gamma range. Prolonged AChR stimulation for 48 h uncovered a population of hyperadapting CA3 pyramidal neurons that typically fired a single, early action potential in response to current injection. Although these neurons were present in control networks, their proportions were dramatically increased following long-term cholinergic activity. Characterized by the presence of a strong M-current, the hyperadaptation phenotype was abolished by acute application of either M-channel antagonists or the reapplication of AChR agonists. We conclude that long-term mAChR activation modulates the intrinsic excitability of a subset of CA3 pyramidal cells, uncovering a highly plastic cohort of neurons that are sensitive to chronic ACh modulation. Our findings provide evidence for the activity-dependent plasticity of functional heterogeneity in the hippocampus.SIGNIFICANCE STATEMENT The large heterogeneity of neuron types in the brain, each with its own specific functional properties, provides the rich cellular tapestry needed to account for the vast diversity of behaviors. By studying the functional properties of neurons in the hippocampus, a region of the brain involved in learning and memory, we find that exposure to the neuromodulator acetylcholine can alter the relative number of functionally defined neuron types. Our findings suggest that the heterogeneity of neurons in the brain is not a static feature but can be modified by the ongoing activity of the circuits to which they belong.
Collapse
Affiliation(s)
- Christopher Jon Puhl
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
| | - Winnie Wefelmeyer
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
| | - Juan Burrone
- Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Kings College London, New Hunts House, Guys Hospital Campus, London, SE1 1UL, United Kingdom
| |
Collapse
|
4
|
Zhang T, Zhang X, Zhu W, Lu Z, Wang Y, Zhang Y. Study on the diversity of mental states and neuroplasticity of the brain during human-machine interaction. Front Neurosci 2022; 16:921058. [PMID: 36570838 PMCID: PMC9768214 DOI: 10.3389/fnins.2022.921058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction With the increasing demand for human-machine collaboration systems, more and more attention has been paid to the influence of human factors on the performance and security of the entire system. Especially in high-risk, high-precision, and difficult special tasks (such as space station maintenance tasks, anti-terrorist EOD tasks, surgical robot teleoperation tasks, etc.), there are higher requirements for the operator's perception and cognitive level. However, as the human brain is a complex and open giant system, the perception ability and cognitive level of the human are dynamically variable, so that it will seriously affect the performance and security of the whole system. Methods The method proposed in this paper innovatively explained this phenomenon from two dimensions of brain space and time and attributed the dynamic changes of perception, cognitive level, and operational skills to the mental state diversity and the brain neuroplasticity. In terms of the mental state diversity, the mental states evoked paradigm and the functional brain network analysis method during work were proposed. In terms of neuroplasticity, the cognitive training intervention paradigm and the functional brain network analysis method were proposed. Twenty-six subjects participated in the mental state evoked experiment and the cognitive training intervention experiment. Results The results showed that (1) the mental state of the subjects during work had the characteristics of dynamic change, and due to the influence of stimulus conditions and task patterns, the mental state showed diversity. There were significant differences between functional brain networks in different mental states, the information processing efficiency and the mechanism of brain area response had changed significantly. (2) The small-world attributes of the functional brain network of the subjects before and after the cognitive training experiment were significantly different. The brain had adjusted the distribution of information flow and resources, reducing costs and increasing efficiency as a whole. It was demonstrated that the global topology of the cortical connectivity network was reconfigured and neuroplasticity was altered through cognitive training intervention. Discussion In summary, this paper revealed that mental state and neuroplasticity could change the information processing efficiency and the response mechanism of brain area, thus causing the change of perception, cognitive level and operational skills, which provided a theoretical basis for studying the relationship between neural information processing and behavior.
Collapse
Affiliation(s)
- Teng Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Intelligent Robot, Xi’an Jiaotong University, Xi’an, China
| | - Wenjing Zhu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu Wang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yingjie Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Yousuf H, Nye AN, Moyer JR. Heterogeneity of neuronal firing type and morphology in retrosplenial cortex of male F344 rats. J Neurophysiol 2020; 123:1849-1863. [PMID: 32267193 DOI: 10.1152/jn.00577.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rodent granular retrosplenial cortex (gRSC) has reciprocal connections to the hippocampus to support fear memories. Although activity-dependent plasticity occurs within the RSC during memory formation, the intrinsic and morphological properties of RSC neurons are poorly understood. The present study used whole-cell recordings to examine intrinsic neuronal firing and morphology of neurons in layer 2/3 (L2/3) and layer 5 (L5) of the gRSC in adult male rats. Five different classifications were observed: regular-spiking (RS), regular-spiking afterdepolarization (RSADP), late-spiking (LS), burst-spiking (BS), and fast-spiking (FS) neurons. RSADP neurons were the most commonly observed neuronal class, identified by their robust spike frequency adaptation and pronounced afterdepolarization (ADP) following an action potential (AP). They also had the most extensive dendritic branching compared with other cell types. LS neurons were predominantly found in L2/3 and exhibited a long delay before onset of their initial AP. They also had reduced dendritic branching compared with other cell types. BS neurons were limited to L5 and generated an initial burst of two or more APs. FS neurons demonstrated sustained firing and little frequency adaptation and were the only nonpyramidal firing type. Relative to adults, RS neurons from juvenile rats (PND 14-30) lacked an ADP and were less excitable. Bath application of group 1 mGluR blockers attenuated the ADP in adult neurons. In other fear-related brain structures, the ADP has been shown to enhance excitability and synaptic plasticity. Thus, understanding cellular mechanisms of the gRSC will provide insight regarding its precise role in memory-related processes across the lifespan.NEW & NOTEWORTHY This is the first study to demonstrate that granular retrosplenial cortical (gRSC) neurons exhibit five distinctive firing types: regular spiking (RS), regular spiking with an afterdepolarization (RSADP), late spiking (LS), burst spiking (BS), and fast spiking (FS). RSADP neurons were the most frequently observed cell type in adult gRSC neurons. Interestingly, RS neurons without an ADP were most common in gRSC neurons of juvenile rats (PND 14-30). Thus, the ADP property, which was previously shown to enhance neuronal excitability, emerges during development.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Andrew N Nye
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.,Department of Biological Sciences University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Griego E, Galván EJ. Metabotropic Glutamate Receptors at the Aged Mossy Fiber - CA3 Synapse of the Hippocampus. Neuroscience 2020; 456:95-105. [PMID: 31917351 DOI: 10.1016/j.neuroscience.2019.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are a group of G-protein-coupled receptors that exert a broad array of modulatory actions at excitatory synapses of the central nervous system. In the hippocampus, the selective activation of the different mGluRs modulates the intrinsic excitability, the strength of synaptic transmission, and induces multiple forms of long-term plasticity. Despite the relevance of mGluRs in the normal function of the hippocampus, we know very little about the changes that mGluRs functionality undergoes during the non-pathological aging. Here, we review data concerning the physiological actions of mGluRs, with particular emphasis on hippocampal area CA3. Later, we examine changes in the expression and functionality of mGluRs during the aging process. We complement this review with original data showing an array of electrophysiological modifications observed in the synaptic transmission and intrinsic excitability of aged CA3 pyramidal cells in response to the pharmacological stimulation of the different mGluRs.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, Mexico.
| |
Collapse
|
8
|
Soldado-Magraner S, Brandalise F, Honnuraiah S, Pfeiffer M, Moulinier M, Gerber U, Douglas R. Conditioning by subthreshold synaptic input changes the intrinsic firing pattern of CA3 hippocampal neurons. J Neurophysiol 2019; 123:90-106. [PMID: 31721636 DOI: 10.1152/jn.00506.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unlike synaptic strength, intrinsic excitability is assumed to be a stable property of neurons. For example, learning of somatic conductances is generally not incorporated into computational models, and the discharge pattern of neurons in response to test stimuli is frequently used as a basis for phenotypic classification. However, it is increasingly evident that signal processing properties of neurons are more generally plastic on the timescale of minutes. Here we demonstrate that the intrinsic firing patterns of CA3 neurons of the rat hippocampus in vitro undergo rapid long-term plasticity in response to a few minutes of only subthreshold synaptic conditioning. This plasticity on the spike timing could also be induced by intrasomatic injection of subthreshold depolarizing pulses and was blocked by kinase inhibitors, indicating that discharge dynamics are modulated locally. Cluster analysis of firing patterns before and after conditioning revealed systematic transitions toward adapting and intrinsic burst behaviors, irrespective of the patterns initially exhibited by the cells. We used a conductance-based model to decide appropriate pharmacological blockade and found that the observed transitions are likely due to recruitment of low-voltage calcium and Kv7 potassium conductances. We conclude that CA3 neurons adapt their conductance profile to the subthreshold activity of their input, so that their intrinsic firing pattern is not a static signature, but rather a reflection of their history of subthreshold activity. In this way, recurrent output from CA3 neurons may collectively shape the temporal dynamics of their embedding circuits.NEW & NOTEWORTHY Although firing patterns are widely conserved across the animal phyla, it is still a mystery why nerve cells present such diversity of discharge dynamics upon somatic step currents. Adding a new timing dimension to the intrinsic plasticity literature, here we show that CA3 neurons rapidly adapt through the space of known firing patterns in response to the subthreshold signals that they receive from their embedding circuit, potentially adjusting their network processing to the temporal statistics of their circuit.
Collapse
Affiliation(s)
| | - Federico Brandalise
- Brain Research Institute, University of Zurich, Switzerland.,Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Suraj Honnuraiah
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Michael Pfeiffer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| | - Marie Moulinier
- Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Urs Gerber
- Brain Research Institute, University of Zurich, Switzerland
| | - Rodney Douglas
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
9
|
Martinello K, Giacalone E, Migliore M, Brown DA, Shah MM. The subthreshold-active K V7 current regulates neurotransmission by limiting spike-induced Ca 2+ influx in hippocampal mossy fiber synaptic terminals. Commun Biol 2019; 2:145. [PMID: 31044170 PMCID: PMC6486593 DOI: 10.1038/s42003-019-0408-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
Little is known about the properties and function of ion channels that affect synaptic terminal-resting properties. One particular subthreshold-active ion channel, the Kv7 potassium channel, is highly localized to axons, but its role in regulating synaptic terminal intrinsic excitability and release is largely unexplored. Using electrophysiological recordings together with computational modeling, we found that the KV7 current was active at rest in adult hippocampal mossy fiber synaptic terminals and enhanced their membrane conductance. The current also restrained action potential-induced Ca2+ influx via N- and P/Q-type Ca2+ channels in boutons. This was associated with a substantial reduction in the spike half-width and afterdepolarization following presynaptic spikes. Further, by constraining spike-induced Ca2+ influx, the presynaptic KV7 current decreased neurotransmission onto CA3 pyramidal neurons and short-term synaptic plasticity at the mossy fiber-CA3 synapse. This is a distinctive mechanism by which KV7 channels influence hippocampal neuronal excitability and synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - David A. Brown
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT UK
| | - Mala M. Shah
- UCL School of Pharmacy University College London, London, WC1N 1AX UK
| |
Collapse
|
10
|
Diverse synaptic and dendritic mechanisms of complex spike burst generation in hippocampal CA3 pyramidal cells. Nat Commun 2019; 10:1859. [PMID: 31015414 PMCID: PMC6478939 DOI: 10.1038/s41467-019-09767-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Complex spike bursts (CSBs) represent a characteristic firing pattern of hippocampal pyramidal cells (PCs). In CA1PCs, CSBs are driven by regenerative dendritic plateau potentials, produced by correlated entorhinal cortical and CA3 inputs that simultaneously depolarize distal and proximal dendritic domains. However, in CA3PCs neither the generation mechanisms nor the computational role of CSBs are well elucidated. We show that CSBs are induced by dendritic Ca2+ spikes in CA3PCs. Surprisingly, the ability of CA3PCs to produce CSBs is heterogeneous, with non-uniform synaptic input-output transformation rules triggering CSBs. The heterogeneity is partly related to the topographic position of CA3PCs; we identify two ion channel types, HCN and Kv2 channels, whose proximodistal activity gradients contribute to subregion-specific modulation of CSB propensity. Our results suggest that heterogeneous dendritic integrative properties, along with previously reported synaptic connectivity gradients, define functional subpopulations of CA3PCs that may support CA3 network computations underlying associative memory processes.
Collapse
|
11
|
Bielczyk NZ, Piskała K, Płomecka M, Radziński P, Todorova L, Foryś U. Time-delay model of perceptual decision making in cortical networks. PLoS One 2019; 14:e0211885. [PMID: 30768608 PMCID: PMC6377186 DOI: 10.1371/journal.pone.0211885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
It is known that cortical networks operate on the edge of instability, in which oscillations can appear. However, the influence of this dynamic regime on performance in decision making, is not well understood. In this work, we propose a population model of decision making based on a winner-take-all mechanism. Using this model, we demonstrate that local slow inhibition within the competing neuronal populations can lead to Hopf bifurcation. At the edge of instability, the system exhibits ambiguity in the decision making, which can account for the perceptual switches observed in human experiments. We further validate this model with fMRI datasets from an experiment on semantic priming in perception of ambivalent (male versus female) faces. We demonstrate that the model can correctly predict the drop in the variance of the BOLD within the Superior Parietal Area and Inferior Parietal Area while watching ambiguous visual stimuli.
Collapse
Affiliation(s)
| | | | - Martyna Płomecka
- Methods of Plasticity Research, Department of Psychology, University of Zürich, Zürich, Switzerland
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Radziński
- Faculty of Mathematics, University of Warsaw, Warsaw, Poland
| | - Lara Todorova
- Faculty of Social Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Urszula Foryś
- Faculty of Mathematics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Diao Y, Yan W, Sun W, Luo Y, Li J, Yin Y. The dual role of KCNQ/M channels upon OGD or OGD/R insults in cultured cortical neurons of mice: Timing is crucial in targeting M-channels against ischemic injur ies. J Cell Physiol 2018; 234:12714-12726. [PMID: 30523632 DOI: 10.1002/jcp.27889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
Abstract
KCNQ/M potassium channels play a vital role in neuronal excitability; however, it is required to explore their pharmacological modulation on N-Methyl- d-aspartic acid receptors (NMDARs)-mediated glutamatergic transmission of neurons upon ischemic insults. In the current study, both presynaptic glutamatergic release and activities of NMDARs were measured by NMDAR-induced miniature excitatory postsynaptic currents (mEPSCs) in cultured cortical neurons of C57 mice undergoing oxygen and glucose deprivation (OGD) or OGD/reperfusion (OGD/R). The KCNQ/M-channel opener, retigabine (RTG), suppressed the overactivation of postsynaptic NMDARs induced by OGD and then NO transient; RTG also decreased OGD-induced neuronal death measured with MTT assay, suggesting the beneficial role of KCNQ/M-channels for the neurons exposed to ischemic insults. However, when the neurons exposed to the subsequent reperfusion, KCNQ/M-channels played a differential role from its protective effect. OGD/R increased presynaptic glutamatergic release, which was further augmented by RTG or decreased by KCNQ/M-channel blocker, XE991. Reactive oxygen species (ROS) were produced partly in a NO-dependent manner. In addition, XE991 decreased neuronal injuries upon reperfusion measured with DCF and PI staining. Meanwhile, the addition of RTG upon OGD or XE991 upon reperfusion can reverse OGD or OGD/R-reduced mitochondrial membrane potential. Our present study indicates the dual role of KCNQ/M-channels in OGD and OGD/R, which will decide the fate of neurons. Provided that activation of KCNQ/M-channels has differential effects on neuronal injuries during OGD or OGD/R, we propose that therapy targeting KCNQ/M-channels may be effective for ischemic injuries but the proper timing is so crucial for the corresponding treatment.
Collapse
Affiliation(s)
- Yu Diao
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weijie Yan
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanlin Luo
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Yin
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Sodium Channel-Dependent and -Independent Mechanisms Underlying Axonal Afterdepolarization at Mouse Hippocampal Mossy Fibers. eNeuro 2018; 5:eN-NWR-0254-18. [PMID: 30225345 PMCID: PMC6140107 DOI: 10.1523/eneuro.0254-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022] Open
Abstract
Action potentials propagating along axons are often followed by prolonged afterdepolarization (ADP) lasting for several tens of milliseconds. Axonal ADP is thought to be an important factor in modulating the fidelity of spike propagation during repetitive firings. However, the mechanism as well as the functional significance of axonal ADP remain unclear, partly due to inaccessibility to small structures of axon for direct electrophysiological recordings. Here, we examined the ionic and electrical mechanisms underlying axonal ADP using whole-bouton recording from mossy fiber terminals in mice hippocampal slices. ADP following axonal action potentials was strongly enhanced by focal application of veratridine, an inhibitor of Na+ channel inactivation. In contrast, tetrodotoxin (TTX) partly suppressed ADP, suggesting that a Na+ channel–dependent component is involved in axonal ADP. The remaining TTX-resistant Na+ channel–independent component represents slow capacitive discharge reflecting the shape and electrical properties of the axonal membrane. We also addressed the functional impact of axonal ADP on presynaptic function. In paired-pulse stimuli, we found that axonal ADP minimally affected the peak height of subsequent action potentials, although the rising phase of action potentials was slightly slowed, possibly due to steady-state inactivation of Na+ channels by prolonged depolarization. Voltage clamp analysis of Ca2+ current elicited by action potential waveform commands revealed that axonal ADP assists short-term facilitation of Ca2+ entry into the presynaptic terminals. Taken together, these data show that axonal ADP maintains reliable firing during repetitive stimuli and plays important roles in the fine-tuning of short-term plasticity of transmitter release by modulating Ca2+ entry into presynaptic terminals.
Collapse
|
14
|
Lombardo J, Sun J, Harrington MA. Rapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons. PLoS One 2018; 13:e0193948. [PMID: 29579068 PMCID: PMC5868771 DOI: 10.1371/journal.pone.0193948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 02/21/2018] [Indexed: 11/25/2022] Open
Abstract
Activity-dependent changes in the properties of the motor system underlie the necessary adjustments in its responsiveness on the basis of the environmental and developmental demands of the organism. Although plastic changes in the properties of the spinal cord have historically been neglected because of the archaic belief that the spinal cord is constituted by a hardwired network that simply relays information to muscles, plenty of evidence has been accumulated showing that synapses impinging on spinal motoneurons undergo short- and long-term plasticity. In the brain, brief changes in the activity level of the network have been shown to be paralleled by changes in the intrinsic excitability of the neurons and are suggested to either reinforce or stabilize the changes at the synaptic level. However, rapid activity-dependent changes in the intrinsic properties of spinal motoneurons have never been reported. In this study, we show that in neonatal mice the intrinsic excitability of spinal motoneurons is depressed after relatively brief but sustained changes in the spinal cord network activity. Using electrophysiological techniques together with specific pharmacological blockers of KCNQ/Kv7 channels, we demonstrate their involvement in the reduction of the intrinsic excitability of spinal motoneurons. This action results from an increased M-current, the product of the activation of KCNQ/Kv7 channels, which leads to a hyperpolarization of the resting membrane potential and a decrease in the input resistance of spinal motoneurons. Computer simulations showed that specific up-regulations in KCNQ/Kv7 channels functions lead to a modulation of the intrinsic excitability of spinal motoneurons as observed experimentally. These results indicate that KCNQ/Kv7 channels play a fundamental role in the activity-dependent modulation of the excitability of spinal motoneurons.
Collapse
Affiliation(s)
- Joseph Lombardo
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
| | - Jianli Sun
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
| | - Melissa A. Harrington
- Department of Biology, Delaware State University, Dover, Delaware, United States of America
- * E-mail:
| |
Collapse
|
15
|
Van Pottelbergh T, Drion G, Sepulchre R. Robust Modulation of Integrate-and-Fire Models. Neural Comput 2018; 30:987-1011. [PMID: 29381445 DOI: 10.1162/neco_a_01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
By controlling the state of neuronal populations, neuromodulators ultimately affect behavior. A key neuromodulation mechanism is the alteration of neuronal excitability via the modulation of ion channel expression. This type of neuromodulation is normally studied with conductance-based models, but those models are computationally challenging for large-scale network simulations needed in population studies. This article studies the modulation properties of the multiquadratic integrate-and-fire model, a generalization of the classical quadratic integrate-and-fire model. The model is shown to combine the computational economy of integrate-and-fire modeling and the physiological interpretability of conductance-based modeling. It is therefore a good candidate for affordable computational studies of neuromodulation in large networks.
Collapse
Affiliation(s)
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liège, Liège 4000, Belgium
| | - Rodolphe Sepulchre
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.
| |
Collapse
|
16
|
Smithers HE, Terry JR, Brown JT, Randall AD. Aging-Associated Changes to Intrinsic Neuronal Excitability in the Bed Nucleus of the Stria Terminalis Is Cell Type-Dependent. Front Aging Neurosci 2017; 9:424. [PMID: 29311907 PMCID: PMC5744640 DOI: 10.3389/fnagi.2017.00424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022] Open
Abstract
Intrinsic neuronal excitability has been reported to change during normal aging. The bed nucleus of the stria terminalis (BNST), a limbic forebrain structure, is involved in fear, stress and anxiety; behavioral features that exhibit age-dependent properties. To examine the effect of aging on intrinsic neuronal properties in BNST we compared patch clamp recordings from cohorts of female mice at two ages, 3–4 months (Young) and 29–30 months (Aged) focusing on 2 types of BNST neurons. Aged Type I neurons exhibited a hyperpolarized resting membrane potential (RMP) of circa -80 mV compared to circa -70 mV in the Young. A key finding in this study is a hyper-excitability of Type II neurons with age reflected in an increase in firing frequency in response to depolarizing current injections; activation of Type II neurons is believed to dampen anxiety like responses. Such age-related changes in intrinsic neurophysiological function are likely to modulate how the limbic system, acting via BNST, shapes function in the HPA-axis.
Collapse
Affiliation(s)
- Hannah E Smithers
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - John R Terry
- College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Jon T Brown
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Andrew D Randall
- Hatherly Laboratory, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
17
|
Hummos A, Nair SS. An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 2017; 12:e0182648. [PMID: 28787026 PMCID: PMC5546630 DOI: 10.1371/journal.pone.0182648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022] Open
Abstract
Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states.
Collapse
Affiliation(s)
- Ali Hummos
- Department of Health Informatics, University of Missouri, Columbia, Missouri, United States of America
- Department of Psychiatry, University of Missouri, Columbia, Missouri, United States of America
| | - Satish S. Nair
- Department of Electrical & Computer Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Walsh DA, Brown JT, Randall AD. In vitro characterization of cell-level neurophysiological diversity in the rostral nucleus reuniens of adult mice. J Physiol 2017; 595:3549-3572. [PMID: 28295330 PMCID: PMC5451734 DOI: 10.1113/jp273915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS The nucleus reuniens (Re), a nucleus of the midline thalamus, is part of a cognitive network including the hippocampus and the medial prefrontal cortex. To date, very few studies have examined the electrophysiological properties of Re neurons at a cellular level. The majority of Re neurons exhibit spontaneous action potential firing at rest. This is independent of classical amino-acid mediated synaptic transmission. When driven by various forms of depolarizing current stimulus, Re neurons display considerable diversity in their firing patterns. As a result of the presence of a low threshold Ca2+ channel, spike output functions are strongly modulated by the prestimulus membrane potential. Finally, we describe a novel form of activity-dependant intrinsic plasticity that eliminates the high-frequency burst firing present in many Re neurons. These results provide a comprehensive summary of the intrinsic electrophysiological properties of Re neurons allowing us to better consider the role of the Re in cognitive processes. ABSTRACT The nucleus reuniens (Re) is the largest of the midline thalamic nuclei. We have performed a detailed neurophysiological characterization of neurons in the rostral Re of brain slices prepared from adult male mice. At resting potential (-63.7 ± 0.6 mV), ∼90% of Re neurons fired action potentials, typically continuously at ∼8 Hz. Although Re neurons experience a significant spontaneous barrage of fast, amino-acid-mediate synaptic transmission, this was not predominantly responsible for spontaneous spiking because firing persisted in the presence of glutamate and GABA receptor antagonists. With resting potential preset to -80 mV, -20 pA current injections revealed a mean input resistance of 615 MΩ and a mean time constant of 38 ms. Following cessation of this stimulus, a significant rebound potential was seen that was sometimes sufficiently large to trigger a short burst of very high frequency (100-300 Hz) firing. In most cells, short (2 ms), strong (2 nA) current injections elicited a single spike followed by a large afterdepolarizing potential which, when suprathreshold, generated high-frequency spiking. Similarly, in the majority of cells preset at -80 mV, 500 ms depolarizing current injections to cells led to a brief initial burst of very high-frequency firing, although this was lost when cells were preset at -72 mV. Biophysical and pharmacological experiments indicate a prominent role for T-type Ca2+ channels in the high-frequency bursting of Re neurons. Finally, we describe a novel form of activity-dependent intrinsic plasticity that persistently eliminates the burst firing potential of Re neurons.
Collapse
Affiliation(s)
- Darren A. Walsh
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
| | - Jonathan T. Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
| | - Andrew D. Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical SchoolHatherly LaboratoryExeterUK
- School of Clinical SciencesUniversity of BristolBristolUK
| |
Collapse
|
19
|
Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 2017; 18:208-220. [DOI: 10.1038/nrn.2017.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Role of low-voltage-activated calcium current and extracellular calcium in controlling the firing pattern of developing CA1 pyramidal neurons. Neuroscience 2017; 344:89-101. [DOI: 10.1016/j.neuroscience.2016.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
|
21
|
Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 2017; 8:14346. [PMID: 28146148 PMCID: PMC5296669 DOI: 10.1038/ncomms14346] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3–CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired. Alignment or anisotropic organisation within and between cells enables biological function but is challenging to engineer. Here, the authors align collagen fibres in a pre-strained polydimethylsiloxane mould to generate a 3D scaffold that guides hippocampal neuron axon growth to form CA3–CA1 neural circuits.
Collapse
|
22
|
Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer RM. Learning Universal Computations with Spikes. PLoS Comput Biol 2016; 12:e1004895. [PMID: 27309381 PMCID: PMC4911146 DOI: 10.1371/journal.pcbi.1004895] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/01/2016] [Indexed: 11/19/2022] Open
Abstract
Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them.
Collapse
Affiliation(s)
- Dominik Thalmeier
- Donders Institute, Department of Biophysics, Radboud University, Nijmegen, Netherlands
| | - Marvin Uhlmann
- Max Planck Institute for Psycholinguistics, Department for Neurobiology of Language, Nijmegen, Netherlands
- Donders Institute, Department for Neuroinformatics, Radboud University, Nijmegen, Netherlands
| | - Hilbert J. Kappen
- Donders Institute, Department of Biophysics, Radboud University, Nijmegen, Netherlands
| | - Raoul-Martin Memmesheimer
- Donders Institute, Department for Neuroinformatics, Radboud University, Nijmegen, Netherlands
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Atherton LA, Prince LY, Tsaneva-Atanasova K. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. J Comput Neurosci 2016; 41:91-106. [PMID: 27221619 PMCID: PMC4927618 DOI: 10.1007/s10827-016-0606-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 01/27/2023]
Abstract
The Pinsky-Rinzel model is a non-smooth 2-compartmental CA3 pyramidal cell model that has been used widely within the field of neuroscience. Here we propose a modified (smooth) system that captures the qualitative behaviour of the original model, while allowing the use of available, numerical continuation methods to perform full-system bifurcation and fast-slow analysis. We study the bifurcation structure of the full system as a function of the applied current and the maximal calcium conductance. We identify the bifurcations that shape the transitions between resting, bursting and spiking behaviours, and which lead to the disappearance of bursting when the calcium conductance is reduced. Insights gained from this analysis, are then used to firstly illustrate how the irregular spiking activity found between bursting and stable spiking states, can be influenced by phase differences in the calcium and dendritic voltage, which lead to corresponding changes in the calcium-sensitive potassium current. Furthermore, we use fast-slow analysis to investigate the mechanisms of bursting and show that bursting in the model is dependent on the intermediately slow variable, calcium, while the other slow variable, the activation gate of the afterhyperpolarisation current, does not contribute to setting the intraburst dynamics but participates in setting the interburst interval. Finally, we discuss how some of the described bifurcations affect spiking behaviour, during sharp-wave ripples, in a larger network of Pinsky-Rinzel cells.
Collapse
Affiliation(s)
- Laura A Atherton
- Engineering Mathematics, and Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, England, UK
| | - Luke Y Prince
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, England, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, & EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, Devon, EX4 4QF, UK.
| |
Collapse
|
24
|
Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks. Nat Commun 2016; 7:11552. [PMID: 27174042 PMCID: PMC4869174 DOI: 10.1038/ncomms11552] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/06/2016] [Indexed: 01/23/2023] Open
Abstract
CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order. The STDP curve is symmetric and broad (half-width ∼150 ms). Consistent with these STDP induction properties, AP–EPSP sequences lead to supralinear summation of spine [Ca2+] transients. Furthermore, afterdepolarizations (ADPs) following APs efficiently propagate into dendrites of CA3 pyramidal neurons, and EPSPs summate with dendritic ADPs. In autoassociative network models, storage and recall are more robust with symmetric than with asymmetric STDP rules. Thus, a specialized STDP induction rule allows reliable storage and recall of information in the hippocampal CA3 network. STDP is dependent on the timing of pre- and post-synaptic activity. Here, the authors describe a symmetric STDP induction rule at CA3-CA3 synapses, which induces LTP over a broad range of paring intervals. Modelling suggests that this STDP rule may enhance storage capacity and pattern completion in the CA3 cell network.
Collapse
|
25
|
Cooper BY, Johnson RD, Nutter TJ. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors. Neurotoxicology 2016; 54:99-110. [PMID: 27058124 DOI: 10.1016/j.neuro.2016.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Abstract
Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals.
Collapse
Affiliation(s)
- B Y Cooper
- Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - R D Johnson
- Dept. of Physiological Sciences, University of Florida College of Veterinary Science, Gainesville, FL 32610, USA.
| | - T J Nutter
- Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| |
Collapse
|
26
|
Abstract
The strength of cortical synapses distributes lognormally, with a long tail of strong synapses. Various properties of neuronal activity, such as the average firing rates of neurons, the rate and magnitude of spike bursts, the magnitude of population synchrony, and the correlations between presynaptic and postsynaptic spikes, also obey lognormal-like distributions reported in the rodent hippocampal CA1 and CA3 areas. Theoretical models have demonstrated how such a firing rate distribution emerges from neural network dynamics. However, how the other properties also display lognormal patterns remain unknown. Because these features are likely to originate from neural dynamics in CA3, we model a recurrent neural network with the weights of recurrent excitatory connections distributed lognormally to explore the underlying mechanisms and their functional implications. Using multi-timescale adaptive threshold neurons, we construct a low-frequency spontaneous firing state of bursty neurons. This state well replicates the observed statistical properties of population synchrony in hippocampal pyramidal cells. Our results show that the lognormal distribution of synaptic weights consistently accounts for the observed long-tailed features of hippocampal activity. Furthermore, our model demonstrates that bursts spread over the lognormal network much more effectively than single spikes, implying an advantage of spike bursts in information transfer. This efficiency in burst propagation is not found in neural network models with Gaussian-weighted recurrent excitatory synapses. Our model proposes a potential network mechanism to generate sharp waves in CA3 and associated ripples in CA1 because bursts occur in CA3 pyramidal neurons most frequently during sharp waves.
Collapse
|
27
|
KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol Sin 2016; 37:25-33. [PMID: 26687932 DOI: 10.1038/aps.2015.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.
Collapse
|
28
|
Tamagnini F, Novelia J, Kerrigan TL, Brown JT, Tsaneva-Atanasova K, Randall AD. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice. Front Cell Neurosci 2015; 9:372. [PMID: 26528126 PMCID: PMC4604241 DOI: 10.3389/fncel.2015.00372] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aβ suggests that elevated Aβ levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated "sag" were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP) elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective increase and reduction of K(+) and Na(+) voltage-gated channels maximal conductances. Finally, the after-hyperpolarization, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice. These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP; they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.
Collapse
Affiliation(s)
- Francesco Tamagnini
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Janet Novelia
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter, UK
| | - Talitha L Kerrigan
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Jon T Brown
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter, UK
| | - Andrew D Randall
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
29
|
Li S, Kalappa BI, Tzounopoulos T. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus. eLife 2015; 4. [PMID: 26312501 PMCID: PMC4592936 DOI: 10.7554/elife.07242] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus.
Collapse
Affiliation(s)
- Shuang Li
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Bopanna I Kalappa
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Thanos Tzounopoulos
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
30
|
Tamagnini F, Scullion S, Brown JT, Randall AD. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus 2015; 25:786-97. [PMID: 25515596 PMCID: PMC4791149 DOI: 10.1002/hipo.22403] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesco Tamagnini
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Sarah Scullion
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jon T Brown
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Andrew D Randall
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
31
|
Booth CA, Brown JT, Randall AD. Neurophysiological modification of CA1 pyramidal neurons in a transgenic mouse expressing a truncated form of disrupted-in-schizophrenia 1. Eur J Neurosci 2014; 39:1074-90. [PMID: 24712988 PMCID: PMC4232873 DOI: 10.1111/ejn.12549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/22/2023]
Abstract
A t(1;11) balanced chromosomal translocation transects the Disc1 gene in a large Scottish family and produces genome-wide linkage to schizophrenia and recurrent major depressive disorder. This study describes our in vitro investigations into neurophysiological function in hippocampal area CA1 of a transgenic mouse (DISC1tr) that expresses a truncated version of DISC1 designed to reproduce aspects of the genetic situation in the Scottish t(1;11) pedigree. We employed both patch-clamp and extracellular recording methods in vitro to compare intrinsic properties and synaptic function and plasticity between DISC1tr animals and wild-type littermates. Patch-clamp analysis of CA1 pyramidal neurons (CA1-PNs) revealed no genotype dependence in multiple subthreshold parameters, including resting potential, input resistance, hyperpolarization-activated ‘sag’ and resonance properties. Suprathreshold stimuli revealed no alteration to action potential (AP) waveform, although the initial rate of AP production was higher in DISC1tr mice. No difference was observed in afterhyperpolarizing potentials following trains of 5–25 APs at 50 Hz. Patch-clamp analysis of synaptic responses in the Schaffer collateral commissural (SC) pathway indicated no genotype-dependence of paired pulse facilitation, excitatory postsynaptic potential summation or AMPA/NMDA ratio. Extracellular recordings also revealed an absence of changes to SC synaptic responses and indicated input–output and short-term plasticity were also unaltered in the temporoammonic (TA) input. However, in DISC1tr mice theta burst-induced long-term potentiation was enhanced in the SC pathway but completely lost in the TA pathway. These data demonstrate that expressing a truncated form of DISC1 affects intrinsic properties of CA1-PNs and produces pathway-specific effects on long-term synaptic plasticity.
Collapse
Affiliation(s)
- Clair A Booth
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
32
|
Hummos A, Franklin CC, Nair SS. Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 2014; 24:1430-48. [PMID: 24978936 PMCID: PMC9121438 DOI: 10.1002/hipo.22324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023]
Abstract
Acetylcholine regulates memory encoding and retrieval by inducing the hippocampus to switch between pattern separation and pattern completion modes. However, both processes can introduce significant variations in the level of network activity and potentially cause a seizure-like spread of excitation. Thus, mechanisms that keep network excitation within certain bounds are necessary to prevent such instability. We developed a biologically realistic computational model of the hippocampus to investigate potential intrinsic mechanisms that might stabilize the network dynamics during encoding and retrieval. The model was developed by matching experimental data, including neuronal behavior, synaptic current dynamics, network spatial connectivity patterns, and short-term synaptic plasticity. Furthermore, it was constrained to perform pattern completion and separation under the effects of acetylcholine. The model was then used to investigate the role of short-term synaptic depression at the recurrent synapses in CA3, and inhibition by basket cell (BC) interneurons and oriens lacunosum-moleculare (OLM) interneurons in stabilizing these processes. Results showed that when CA3 was considered in isolation, inhibition solely by BCs was not sufficient to control instability. However, both inhibition by OLM cells and short-term depression at the recurrent CA3 connections stabilized the network activity. In the larger network including the dentate gyrus, the model suggested that OLM inhibition could control the network during high cholinergic levels while depressing synapses at the recurrent CA3 connections were important during low cholinergic states. Our results demonstrate that short-term plasticity is a critical property of the network that enhances its robustness. Furthermore, simulations suggested that the low and high cholinergic states can each produce runaway excitation through unique mechanisms and different pathologies. Future studies aimed at elucidating the circuit mechanisms of epilepsy could benefit from considering the two modulatory states separately.
Collapse
Affiliation(s)
- Ali Hummos
- Department of Health Informatics, University of Missouri, Columbia, Missouri
- Department of Psychiatry, University of Missouri, Columbia, Missouri
| | - Charles C. Franklin
- Department of Electrical & Computer Engineering, University of Missouri, Columbia, Missouri
| | - Satish S. Nair
- Department of Electrical & Computer Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
33
|
Chrol-Cannon J, Jin Y. Computational modeling of neural plasticity for self-organization of neural networks. Biosystems 2014; 125:43-54. [PMID: 24769242 DOI: 10.1016/j.biosystems.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence.
Collapse
Affiliation(s)
- Joseph Chrol-Cannon
- Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Yaochu Jin
- Department of Computing, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
34
|
Kerrigan TL, Brown JT, Randall AD. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse. Neuropharmacology 2014; 79:515-24. [PMID: 24055500 PMCID: PMC3989024 DOI: 10.1016/j.neuropharm.2013.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Abstract
Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9-10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled 'Neurodevelopment Disorder'.
Collapse
Affiliation(s)
- T L Kerrigan
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - J T Brown
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, The Hatherly Building, Exeter EX4 4PS, UK
| | - A D Randall
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, The Hatherly Building, Exeter EX4 4PS, UK.
| |
Collapse
|
35
|
Tamagnini F, Scullion S, Brown JT, Randall AD. Low concentrations of the solvent dimethyl sulphoxide alter intrinsic excitability properties of cortical and hippocampal pyramidal cells. PLoS One 2014; 9:e92557. [PMID: 24647720 PMCID: PMC3960278 DOI: 10.1371/journal.pone.0092557] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Dimethylsulfoxide (DMSO) is a widely used solvent in biology. It has many applications perhaps the most common of which is in aiding the preparation of drug solutions from hydrophobic chemical entities. Recent studies have suggested that this molecule may be able to induce apoptosis in neural tissues urging caution regarding its introduction into humans, for example as part of stem cell transplants. Here we have used in vitro electrophysiological methods applied to murine brain slices to examine whether a few hours treatment with 0.05% DMSO (a concentration regarded by many as innocuous) alters intrinsic excitability properties of neurones. We investigated pyramidal neurones in two distinct brain regions, namely area CA1 of the hippocampus and layer 2 of perirhinal cortex. In the former there was no effect on resting potential but input resistance was decreased by DMSO pre-treatment. In line with this action potential count for any level of depolarizing current stimulus was reduced by ∼25% following DMSO treatment. Ih-mediated “sag” was also increased in CA1 pyramids and action potential waveform analysis demonstrated that DMSO treatment moved action potential threshold towards resting potential. In perirhinal cortex a decreased action potential output for various depolarizing current stimuli was also seen. In these cells action potential threshold was unaltered by DMSO but a significant increase in action potential width was apparent. These data indicate that pre-treatment with this widely employed solvent can elicit multifaceted neurophysiological changes in mammalian neurones at concentrations below those frequently encountered in the published literature.
Collapse
Affiliation(s)
- Francesco Tamagnini
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| | - Sarah Scullion
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Jonathan T. Brown
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, Exeter, United Kingdom
| | - Andrew D. Randall
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Institute of Biomedical and Clinical Sciences, Medical School, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Osinga HM, Tsaneva-Atanasova KT. Geometric analysis of transient bursts. CHAOS (WOODBURY, N.Y.) 2013; 23:046107. [PMID: 24387586 DOI: 10.1063/1.4826655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We consider the effect of a brief stimulation from the rest state of a minimal neuronal model with multiple time scales. Such transient dynamics brings out the intrinsic bursting capabilities of the system. Our main goal is to show that a minimum of three dimensions is enough to generate spike-adding phenomena in transient responses, and that the onset of a new spike can be tracked using existing continuation packages. We take a geometric approach to illustrate how the underlying fast subsystem organises the spike adding in much the same way as for spike adding in periodic bursts, but the bifurcation analysis for spike onset is entirely different. By using a generic model, we further strengthen claims made in our earlier work that our numerical method for spike onset can be used for a broad class of systems.
Collapse
Affiliation(s)
- Hinke M Osinga
- Department of Mathematics, the University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Krasimira T Tsaneva-Atanasova
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
37
|
Hyun JH, Eom K, Lee KH, Ho WK, Lee SH. Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons. J Physiol 2013; 591:5525-40. [PMID: 23981714 DOI: 10.1113/jphysiol.2013.259002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The intrinsic excitability of neurons plays a critical role in the encoding of memory at Hebbian synapses and in the coupling of synaptic inputs to spike generation. It has not been studied whether somatic firing at a physiologically relevant frequency can induce intrinsic plasticity in hippocampal CA3 pyramidal cells (CA3-PCs). Here, we show that a conditioning train of 20 action potentials (APs) at 10 Hz causes a persistent reduction in the input conductance and an acceleration of the AP onset time in CA3-PCs, but not in CA1-PCs. Induction of such long-term potentiation of intrinsic excitability (LTP-IE) was accompanied by a reduction in the D-type K(+) current, and was abolished by the inhibition of endocytosis or protein tyrosine kinase (PTK). Consistently, the CA3-PCs from Kv1.2 knock-out mice displayed no LTP-IE with the same conditioning. Furthermore, the induction of LTP-IE depended on the back-propagating APs (bAPs) and intact distal apical dendrites. These results indicate that LTP-IE is mediated by the internalization of Kv1.2 channels from the distal regions of apical dendrites, which is triggered by bAP-induced dendritic Ca(2+) signalling and the consequent activation of PTK.
Collapse
Affiliation(s)
- Jung Ho Hyun
- S.-H. Lee: Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Republic of Korea.
| | | | | | | | | |
Collapse
|
38
|
Nowacki J, Osinga HM, Tsaneva-Atanasova KT. Continuation-Based Numerical Detection of After-Depolarization and Spike-Adding Thresholds. Neural Comput 2013; 25:877-900. [DOI: 10.1162/neco_a_00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The changes in neuronal firing pattern are signatures of brain function, and it is of interest to understand how such changes evolve as a function of neuronal biophysical properties. We address this important problem by the analysis and numerical investigation of a class of mechanistic mathematical models. We focus on a hippocampal pyramidal neuron model and study the occurrence of bursting related to the after-depolarization (ADP) that follows a brief current injection. This type of burst is a transient phenomenon that is not amenable to the classical bifurcation analysis done, for example, for periodic bursting oscillators. In this letter, we show how to formulate such transient behavior as a two-point boundary value problem (2PBVP), which can be solved using well-known continuation methods. The 2PBVP is formulated such that the transient response is represented by a finite orbit segment for which onsets of ADP and additional spikes in a burst can be detected as bifurcations during a one-parameter continuation. This in turn provides us with a direct method to approximate the boundaries of regions in a two-parameter plane where certain model behavior of interest occurs. More precisely, we use two-parameter continuation of the detected onset points to identify the boundaries between regions with and without ADP and bursts with different numbers of spikes. Our 2PBVP formulation is a novel approach to parameter sensitivity analysis that can be applied to a wide range of problems.
Collapse
Affiliation(s)
| | - Hinke M. Osinga
- Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
| | - Krasimira T. Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, U.K
| |
Collapse
|
39
|
Alarcón G, Martinez J, Kerai SV, Lacruz ME, Quiroga RQ, Selway RP, Richardson MP, García Seoane JJ, Valentín A. In vivo neuronal firing patterns during human epileptiform discharges replicated by electrical stimulation. Clin Neurophysiol 2012; 123:1736-44. [PMID: 22410162 PMCID: PMC3432232 DOI: 10.1016/j.clinph.2012.02.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To describe neuronal firing patterns observed during human spontaneous interictal epileptiform discharges (IEDs) and responses to single pulse electrical stimulation (SPES). METHODS Activity of single neurons was recorded during IEDs and after SPES in 11 consecutive patients assessed with depth EEG electrodes and attached microelectrodes. RESULTS A total of 66 neurons were recorded during IEDs and 151 during SPES. We have found essentially similar patterns of neuronal firing during IEDs and after SPES, namely: (a) a burst of high frequency firing lasting less than 100 ms (in 39% and 25% of local neurons, respectively for IED and SPES); (b) a period of suppression in firing lasting around 100-1300 ms (in 19% and 14%, respectively); (c) a burst followed by suppression (in 10% and 12%, respectively); (d) no-change (in 32% and 50%, respectively). CONCLUSIONS The similarities in neuronal firing patterns associated with IEDs and SPES suggest that, although both phenomena are initiated differently, they result in the activation of a common cortical mechanism, probably initiated by brief synchronised burst firing in some cells followed by long inhibition. SIGNIFICANCE The findings provide direct in vivo human evidence to further comprehend the pathophysiology of human focal epilepsy.
Collapse
Affiliation(s)
- Gonzalo Alarcón
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun J, Kapur J. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission. J Physiol 2012; 590:3953-64. [PMID: 22674722 DOI: 10.1113/jphysiol.2012.235820] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Jianli Sun
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA
| | | |
Collapse
|
41
|
Nowacki J, Osinga HM, Tsaneva-Atanasova K. Dynamical systems analysis of spike-adding mechanisms in transient bursts. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2012; 2:7. [PMID: 22655748 PMCID: PMC3497719 DOI: 10.1186/2190-8567-2-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/13/2012] [Indexed: 05/03/2023]
Abstract
Transient bursting behaviour of excitable cells, such as neurons, is a common feature observed experimentally, but theoretically, it is not well understood. We analyse a five-dimensional simplified model of after-depolarisation that exhibits transient bursting behaviour when perturbed with a short current injection. Using one-parameter continuation of the perturbed orbit segment formulated as a well-posed boundary value problem, we show that the spike-adding mechanism is a canard-like transition that has a different character from known mechanisms for periodic burst solutions. The biophysical basis of the model gives a natural time-scale separation, which allows us to explain the spike-adding mechanism using geometric singular perturbation theory, but it does not involve actual bifurcations as for periodic bursts. We show that unstable sheets of the critical manifold, formed by saddle equilibria of the system that only exist in a singular limit, are responsible for the spike-adding transition; the transition is organised by the slow flow on the critical manifold near folds of this manifold. Our analysis shows that the orbit segment during the spike-adding transition includes a fast transition between two unstable sheets of the slow manifold that are of saddle type. We also discuss a different parameter regime where the presence of additional saddle equilibria of the full system alters the spike-adding mechanism.
Collapse
Affiliation(s)
- Jakub Nowacki
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Queen’s Building, University Walk, Bristol, BS8 1TR, United Kingdom
| | - Hinke M Osinga
- Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Queen’s Building, University Walk, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|
42
|
Petrovic MM, Nowacki J, Olivo V, Tsaneva-Atanasova K, Randall AD, Mellor JR. Inhibition of post-synaptic Kv7/KCNQ/M channels facilitates long-term potentiation in the hippocampus. PLoS One 2012; 7:e30402. [PMID: 22348007 PMCID: PMC3278412 DOI: 10.1371/journal.pone.0030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/20/2011] [Indexed: 12/02/2022] Open
Abstract
Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.
Collapse
Affiliation(s)
- Milos M. Petrovic
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Institute of Medical Physiology, School of Medicine, Belgrade University, Beograd, Serbia
| | - Jakub Nowacki
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Valeria Olivo
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Randall
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Jack R. Mellor
- Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Steinert JR, Robinson SW, Tong H, Haustein MD, Kopp-Scheinpflug C, Forsythe ID. Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron 2011; 71:291-305. [PMID: 21791288 PMCID: PMC3245892 DOI: 10.1016/j.neuron.2011.05.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 02/07/2023]
Abstract
Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.
Collapse
Affiliation(s)
- Joern R Steinert
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
44
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
45
|
Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD. Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer's disease. Neurobiol Aging 2011; 32:2109.e1-14. [PMID: 21794952 DOI: 10.1016/j.neurobiolaging.2011.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/20/2011] [Accepted: 05/30/2011] [Indexed: 01/13/2023]
Abstract
Transgenic mice that overproduce beta-amyloid (Aβ) peptides can exhibit central nervous system network hyperactivity. Patch clamp measurements from CA1 pyramidal cells of PSAPP and wild type mice were employed to investigate if altered intrinsic excitability could contribute to such network hyperfunction. At approximately 10 months, when PSAPP mice have a substantial central nervous system Aβ load, resting potential and input resistance were genotype-independent. However, PSAPP mice exhibited a substantially more prominent action potential (AP) burst close to the onset of weak depolarizing current stimuli. The spike afterdepolarization (ADP) was also larger in PSAPP mice. The rate of rise, width and height of APs were reduced in PSAPP animals; AP threshold was unaltered. Voltage-clamp recordings from nucleated macropatches revealed that somatic Na(+) current density was depressed by approximately 50% in PSAPP mice. K(+) current density was unaltered. All genotype-related differences were absent in PSAPP mice aged 5-7 weeks which lack a substantial Aβ load. We conclude that intrinsic neuronal hyperexcitability and changes to AP waveforms may contribute to neurophysiological deficits that arise as a consequence of Aβ accumulation.
Collapse
Affiliation(s)
- Jon T Brown
- Pfizer Applied Neurophysiology Group, University of Bristol School of Physiology and Pharmacology, Bristol, UK
| | | | | | | | | |
Collapse
|
46
|
Neuronal activity causes rapid changes of lateral amygdala neuronal membrane properties and reduction of synaptic integration and synaptic plasticity in vivo. J Neurosci 2011; 31:6108-20. [PMID: 21508236 DOI: 10.1523/jneurosci.0690-11.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal membrane properties dictate neuronal responsiveness. Plasticity of membrane properties alters neuronal function and can arise in response to robust neuronal activity. Despite the potential for great impact, there is little evidence for a rapid effect of activity-dependent changes of membrane properties on many neuronal functions in vivo in mammalian brain. In this study it was tested whether periods of neuronal firing lead to a rapid change of membrane properties in neurons of a rat brain region important for some forms of learning, the lateral nucleus of the amygdala, using in vivo intracellular recordings. Our results demonstrate that rapid plasticity of membrane properties occurs in vivo, in response to action potential firing. This plasticity of membrane properties leads to changes of synaptic integration and subsequent synaptic plasticity. These changes require Ca(2+) and hyperpolarization-activated ion channels, but are NMDA independent. Furthermore, the parameters and time course of these changes would not have been predicted from most in vitro studies. The plasticity of membrane properties demonstrated here may represent a basic form of in vivo short-term plasticity that modifies neuronal function.
Collapse
|
47
|
Sabeti J. Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma-1 receptor activation in hippocampal CA1 neurons. Alcohol Clin Exp Res 2011; 35:885-904. [PMID: 21314692 PMCID: PMC3083503 DOI: 10.1111/j.1530-0277.2010.01419.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND We demonstrated previously that rats exposed to chronic intermittent ethanol (CIE) vapors in early adolescence show increased magnitudes of long-term potentiation (LTP) of excitatory transmission when recorded at dendritic synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated by sigma-1 receptors; however, not yet addressed is the role of sigma-1 receptors in modulating the intrinsic properties of neurons to alter their action potential firing during LTP. METHODS Activity-induced plasticity of spike firing was investigated using rat hippocampal slice recordings to measure changes in both field excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes) concomitantly at dendritic inputs and soma of CA1 pyramidal neurons, respectively. RESULTS We observed unique modifications in plasticity of action potential firing in hippocampal slices from CIE exposed adolescent rats, where the induction of large amplitude LTP by 100 Hz stimulations was accompanied by reduced CA1 neuronal excitability--reflected as decreased pop. spike efficacy and impaired activity-induced fEPSP-to-spike (E-S) potentiation. In contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation. E-S potentiation impairments emerged at 24 hours after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist d-AP5. Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition. CONCLUSIONS Results here suggest that acute withdrawal from adolescent CIE exposure triggers sigma-1 receptors that act to depress the efficacy of excitatory inputs in triggering action potentials during LTP. Such withdrawal-induced depression of E-S plasticity in hippocampus probably entails sigma-1 receptor modulation of 1 or several voltage-gated ion channels controlling the neuronal input-output dynamics.
Collapse
Affiliation(s)
- Jilla Sabeti
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
48
|
Brown JT, Booth CA, Randall AD. Synaptic activation of mGluR1 generates persistent depression of a fast after-depolarizing potential in CA3 pyramidal neurons. Eur J Neurosci 2011; 33:879-89. [PMID: 21269340 DOI: 10.1111/j.1460-9568.2010.07565.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Burst firing is an important property of hippocampal pyramidal neurons. Group I metabotropic glutamate receptors (mGluRs) produce a multitude of effects on both the synaptic and intrinsic properties of neurons. We investigated whether brief activation of these receptors results in persistent modifications to the intrinsic excitability of rat hippocampal CA3 pyramidal cells (CA3-PCs). In whole-cell current-clamp recordings, current stimuli consisting of filtered, pseudo-random noise produced action potential firing with a mean frequency of ∼1.5-2 Hz. Analysis of spike intervals revealed that this firing included a substantial component (∼20%) of high-frequency (∼100 Hz) bursting activity. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine [(S)-DHPG] selectively eliminated the high-frequency bursts, an effect that persisted > 30 min after (S)-DHPG washout. The fast after-depolarizing potential (ADP) of CA3-PCs is known to be important for generating high-frequency action potential bursting. This ADP was persistently depressed following a short application of (S)-DHPG. This effect was blocked by the mGluR1 antagonist, (S)-(+)-α-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385). In contrast, the depression was resistant to the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, N-methyl-D-aspartate (NMDA) and γ-aminobutyric acid (GABA)(A) antagonists. Unlike other manipulations that generate persistent depression of the ADP in CA3-PCs, DHPG-mediated ADP depression was insensitive to the Kv7 channel inhibitor 10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) and strong intracellular Ca(2+) buffering by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Synaptic activation of mGluRs in the associational-commissural pathway also resulted in persistent depression of the ADP in postsynaptic CA3-PCs, which was blocked by LY367385. These data represent the first evidence that synaptic activation of mGluR1 can modulate the intrinsic excitability properties of hippocampal neurons.
Collapse
Affiliation(s)
- Jon T Brown
- Pfizer Applied Neurophysiology Group, MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
49
|
Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport. J Neurosci 2010; 30:12996-3004. [PMID: 20881117 DOI: 10.1523/jneurosci.1847-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synapses formed by the mossy fiber (MF) axons of hippocampal dentate gyrus granule neurons onto CA3 pyramidal neurons exhibit an intriguing form of experience-dependent synaptic plasticity that is induced and expressed presynaptically. In contrast to most other CNS synapses, long-term potentiation (LTP) at the MF-CA3 synapse is readily induced even during blockade of postsynaptic glutamate receptors. Furthermore, blocking voltage-gated Ca(2+) channels prevents MF-LTP, supporting an involvement of presynaptic Ca(2+) signaling via voltage-gated Ca(2+) channels in MF-LTP induction. We examined the contribution of activity in both dentate granule cell somata and MF terminals to MF-LTP. We found that the induction of stable MF-LTP requires tetanization-induced action potentials not only at MF boutons, but also at dentate granule cell somata. Similarly, blocking Ca(2+) influx via voltage-gated Ca(2+) channels only at the granule cell soma was sufficient to disrupt MF-LTP. Finally, blocking protein synthesis or blocking fast axonal transport mechanisms via disruption of axonal tubulin filaments resulted in decremental MF-LTP. Collectively, these data suggest that-in addition to Ca(2+) influx at the MF terminals-induction of MF synaptic plasticity requires action potential-dependent Ca(2+) signaling at granule cell somata, protein synthesis, and fast axonal transport along MFs. A parsimonious interpretation of these results is that somatic activity triggers protein synthesis at the soma; newly synthesized proteins are then transported to MF terminals, where they contribute to the stabilization of MF-LTP. Finally, the present data imply that synaptic plasticity at the MF-CA3 synapse can be affected by local modulation of somatic and presynaptic Ca(2+) channel activity.
Collapse
|
50
|
Nowacki J, Osinga HM, Brown JT, Randall AD, Tsaneva-Atanasova K. A unified model of CA1/3 pyramidal cells: an investigation into excitability. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:34-48. [PMID: 20887748 DOI: 10.1016/j.pbiomolbio.2010.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/06/2010] [Accepted: 09/18/2010] [Indexed: 11/18/2022]
Abstract
After-depolarisation is a hallmark of excitability in hippocampal pyramidal cells of CA1 and CA3 regions, because it constitutes the subthreshold relation between inward and outward ionic currents. This relationship determines the nominal response to stimuli and provides the necessary conditions for firing a spike or a burst of action potentials. Nevertheless, after-depolarisation is an inherently transient phenomenon that is not very well understood. We study after-depolarisation using a single-compartment pyramidal-cell model based on recent voltage- and current-clamp experimental data. We systematically investigate CA1 and CA3 behaviour and show that changes to maximal conductances of T-type Ca(2+)-current and muscarinic-sensitive and delayed rectifier K(+)-currents are sufficient to switch the behaviour of the model from a CA3 to a CA1 neuron. We use model analysis to define after-depolarisation and bursting threshold. We also explain the influence of particular ionic currents on this phenomenon. This study ends with a sensitivity analysis that demonstrates the influence of specific currents on excitability. Counter-intuitively, we find that a decrease of Na(+)-current could cause an increase in excitability. Our analysis suggests that a change of high-voltage activated Ca(2+)-current can have a similar effect.
Collapse
Affiliation(s)
- Jakub Nowacki
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK
| | | | | | | | | |
Collapse
|