1
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
3
|
Gao J, Yin H, Dong Y, Wang X, Liu Y, Wang K. A Novel Role of Uricosuric Agent Benzbromarone in BK Channel Activation and Reduction of Airway Smooth Muscle Contraction. Mol Pharmacol 2023; 103:241-254. [PMID: 36669879 DOI: 10.1124/molpharm.122.000638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
The uricosuric drug benzbromarone, widely used for treatment of gout, hyperpolarizes the membrane potential of airway smooth muscle cells, but how it works remains unknown. Here we show a novel role of benzbromarone in activation of large conductance calcium-activated K+ channels. Benzbromarone results in dose-dependent activation of macroscopic big potassium (BK) currents about 1.7- to 14.5-fold with an EC50 of 111 μM and shifts the voltage-dependent channel activation to a more hyperpolarizing direction about 10 to 54 mV in whole-cell patch clamp recordings. In single-channel recordings, benzbromarone decreases single BKα channel closed dwell time and increases the channel open probability. Coexpressing β1 subunit also enhances BK activation by benzbromarone with an EC50 of 67 μM and a leftward shift of conductance-voltage (G-V) curve about 44 to 138 mV. Site-directed mutagenesis reveals that a motif of three amino acids 329RKK331 in the cytoplasmic linker between S6 and C-terminal regulator of potassium conductance (RCK) gating ring mediates the pharmacological activation of BK channels by benzbromarone. Further ex vivo assay shows that benzbromarone causes reduction of tracheal strip contraction. Taken together, our findings demonstrate that uricosuric benzbromarone activates BK channels through molecular mechanism of action involving the channel RKK motif of S6-RCK linker. Pharmacological activation of BK channel by benzbromarone causes reduction of tracheal strip contraction, holding a repurposing potential for asthma and pulmonary arterial hypertension or BK channelopathies. SIGNIFICANCE STATEMENT: We describe a novel role of uricosuric agent benzbromarone in big potassium (BK) channel activation and relaxation of airway smooth muscle contraction. In this study, we find that benzbromarone is an activator of the large-conductance Ca2+- and voltage-activated K+ channel (BK channel), which serves numerous cellular functions, including control of smooth muscle contraction. Pharmacological activation of BK channel by the FDA-approved drug benzbromarone may hold repurposing potential for treatment of asthma and pulmonary arterial hypertension or BK channelopathies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Hao Yin
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yanqun Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xintong Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
4
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Invertebrate neurons as a simple model to study the hyperexcitable state of epileptic disorders in single cells, monosynaptic connections, and polysynaptic circuits. Biophys Rev 2022; 14:553-568. [PMID: 35528035 PMCID: PMC9043075 DOI: 10.1007/s12551-022-00942-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by a hyperexcitable state in neurons from different brain regions. Much is unknown about epilepsy and seizures development, depicting a growing field of research. Animal models have provided important clues about the underlying mechanisms of seizure-generating neuronal circuits. Mammalian complexity still makes it difficult to define some principles of nervous system function, and non-mammalian models have played pivotal roles depending on the research question at hand. Mollusks and the Helix land snail have been used to study epileptic-like behavior in neurons. Neurons from these organisms confer advantages as single-cell identification, isolation, and culture, either as single cells or as physiological relevant monosynaptic or polysynaptic circuits, together with amenability to different protocols and treatments. This review's purpose consists in presenting relevant papers in order to gain a better understanding of Helix neurons, their characteristics, uses, and capabilities for studying the fundamental mechanisms of epileptic disorders and their treatment, to facilitate their more expansive use in epilepsy research.
Collapse
|
6
|
Dong P, Zhang Y, Hunanyan AS, Mikati MA, Cui J, Yang H. Neuronal mechanism of a BK channelopathy in absence epilepsy and dyskinesia. Proc Natl Acad Sci U S A 2022; 119:e2200140119. [PMID: 35286197 PMCID: PMC8944272 DOI: 10.1073/pnas.2200140119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of gain-of-function (GOF) BK channelopathies have been identified in patients with epilepsy and movement disorders. Nevertheless, the underlying pathophysiology and corresponding therapeutics remain obscure. Here, we utilized a knock-in mouse model carrying human BK-D434G channelopathy to investigate the neuronal mechanism of BK GOF in the pathogenesis of epilepsy and dyskinesia. The BK-D434G mice manifest the clinical features of absence epilepsy and exhibit severe motor deficits and dyskinesia-like behaviors. The cortical pyramidal neurons and cerebellar Purkinje cells from the BK-D434G mice show hyperexcitability, which likely contributes to the pathogenesis of absence seizures and paroxysmal dyskinesia. A BK channel blocker, paxilline, potently suppresses BK-D434G–induced hyperexcitability and effectively mitigates absence seizures and locomotor deficits in mice. Our study thus uncovered a neuronal mechanism of BK GOF in absence epilepsy and dyskinesia. Our findings also suggest that BK inhibition is a promising therapeutic strategy for mitigating BK GOF-induced neurological disorders.
Collapse
Affiliation(s)
- Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Arsen S. Hunanyan
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Mohamad A. Mikati
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO 63130
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
7
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|
8
|
Kratschmer P, Lowe SA, Buhl E, Chen K, Kullmann DM, Pittman A, Hodge JJ, Jepson JE. Impaired Pre-Motor Circuit Activity and Movement in a Drosophila Model of KCNMA1-Linked Dyskinesia. Mov Disord 2021; 36:1158-1169. [PMID: 33449381 PMCID: PMC8248399 DOI: 10.1002/mds.28479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre-motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain-of-function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. OBJECTIVES We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre-motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. METHODS We generated a knock-in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium-imaging to assess AP shape, neurotransmission, and the activity of the larval pre-motor central pattern generator (CPG). We used video-tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. RESULTS Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium-dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia-like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. CONCLUSION Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick Kratschmer
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Simon A. Lowe
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Ko‐Fan Chen
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Alan Pittman
- Genetics Research Centre, St George'sUniversity of LondonLondonUnited Kingdom
| | - James J.L. Hodge
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - James E.C. Jepson
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
9
|
Cheung TP, Choe JY, Richmond JE, Kim H. BK channel density is regulated by endoplasmic reticulum associated degradation and influenced by the SKN-1A/NRF1 transcription factor. PLoS Genet 2020; 16:e1008829. [PMID: 32502151 PMCID: PMC7299407 DOI: 10.1371/journal.pgen.1008829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Ion channels are present at specific levels within subcellular compartments of excitable cells. The regulation of ion channel trafficking and targeting is an effective way to control cell excitability. The BK channel is a calcium-activated potassium channel that serves as a negative feedback mechanism at presynaptic axon terminals and sites of muscle excitation. The C. elegans BK channel ortholog, SLO-1, requires an endoplasmic reticulum (ER) membrane protein for efficient anterograde transport to these locations. Here, we found that, in the absence of this ER membrane protein, SLO-1 channels that are seemingly normally folded and expressed at physiological levels undergo SEL-11/HRD1-mediated ER-associated degradation (ERAD). This SLO-1 degradation is also indirectly regulated by a SKN-1A/NRF1-mediated transcriptional mechanism that controls proteasome levels. Therefore, our data indicate that SLO-1 channel density is regulated by the competitive balance between the efficiency of ER trafficking machinery and the capacity of ERAD. Excitable cells, such as neurons and muscles, are essential for the movement and behavior of animals. These cells express a set of specific types of ion channels that allow the selective passage of ions across the plasma membrane. The alteration in the levels of these ion channels influences cell excitability and the function of excitable cells. The regulation of ion channel trafficking and targeting is an effective way to control the function of excitable cells. The BK SLO-1 channel is a calcium-activated potassium channel that reduces excitability at presynaptic axon terminals and sites of muscle excitation. In a C. elegans genetic study, authors found that the delayed exit of SLO-1 channels from the ER causes their degradation by a mechanism called ER-associated degradation (ERAD). Interestingly, the same components that directly mediate SLO-1 ERAD also process a key transcriptional factor that maintains proteasome levels, thus indirectly influencing SLO-1 degradation. These data show that the levels of SLO-1 channels are regulated by the competitive balance between the efficiency of ER trafficking machinery and the capacity of ERAD.
Collapse
Affiliation(s)
- Timothy P. Cheung
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
| | - Jun-Yong Choe
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois United States of America
| | - Janet E. Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hongkyun Kim
- Center for Cancer Cell Biology, Immunology, and Infection, Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- School of Graduate & Postdoctoral Studies, Rosalind Franklin University of Medicine & Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liu X, Tao J, Zhang S, Lan W, Wang C, Ji Y, Cao C. Selective Blockade of Neuronal BK (α + β4) Channels Preventing Epileptic Seizure. J Med Chem 2019; 63:216-230. [DOI: 10.1021/acs.jmedchem.9b01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xinlian Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Science, No. 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jie Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Putuo District, Shanghai 200062, China
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
| | - Shuzhang Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, 99 Shangda Road,
BaoShan District, Shanghai 200444, China
- Xinhua Hospital (Chongming) Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, 25 Nanmen Port Street, Chongming Branch, Shanghai 202150, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Science, No. 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
- Institute of Drug Discovery Technology, Ningbo University, No 818 Fenghua Road, Ningbo, Zhejiang 313211, China
| |
Collapse
|
11
|
Plante AE, Lai MH, Lu J, Meredith AL. Effects of Single Nucleotide Polymorphisms in Human KCNMA1 on BK Current Properties. Front Mol Neurosci 2019; 12:285. [PMID: 31849601 PMCID: PMC6901604 DOI: 10.3389/fnmol.2019.00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
BK Ca2+-activated K+ channels are important regulators of membrane excitability. Multiple regulatory mechanisms tailor BK current properties across tissues, such as alternative splicing, posttranslational modifications, and auxiliary subunits. Another potential mechanism for modulating BK channel activity is genetic variation due to single nucleotide polymorphisms (SNPs). The gene encoding the human BK α subunit, KCNMA1, contains hundreds of SNPs. However, the variation in BK channel activity due to SNPs is not well studied. Here, we screened the effects of four SNPs (A138V, C495G, N599D, and R800W) on BK currents in HEK293T cells, selected based on predicted protein pathogenicity or disease linkage. We found that the SNPs C495G and R800W had the largest effects on BK currents, affecting the conductance-voltage relationship across multiple Ca2+ conditions in the context of two BK channel splice variants. In symmetrical K+, C495G shifted the V1/2 to more hyperpolarized potentials (by -15 to -20 mV) and accelerated activation, indicating C495G confers some gain-of-function properties. R800W shifted the V1/2 to more depolarized potentials (+15 to +35 mV) and slowed activation, conferring loss-of-function properties. Moreover, the C495G and R800W effects on current properties were found to persist with posttranslational modifications. In contrast, A138V and N599D had smaller and more variable effects on current properties. Neither application of alkaline phosphatase to patches, which results in increased BK channel activity attributed to channel dephosphorylation, nor bidirectional redox modulations completely abrogated SNP effects on BK currents. Lastly, in physiological K+, C495G increased the amplitude of action potential (AP)-evoked BK currents, while R800W had a more limited effect. However, the introduction of R800W in parallel with the epilepsy-linked mutation D434G (D434G/R800W) decreased the amplitude of AP-evoked BK currents compared with D434G alone. These results suggest that in a physiological context, C495G could increase BK activation, while the effects of the loss-of-function SNP R800W could oppose the gain-of-function effects of an epilepsy-linked mutation. Together, these results implicate naturally occurring human genetic variation as a potential modifier of BK channel activity across a variety of conditions.
Collapse
Affiliation(s)
| | | | | | - Andrea L. Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Imari K, Harada Y, Zhang J, Mori Y, Hayashi Y. KCNMB3 in spinal microglia contributes to the generation and maintenance of neuropathic pain in mice. Int J Mol Med 2019; 44:1585-1593. [PMID: 31364720 DOI: 10.3892/ijmm.2019.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/01/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is one of most intense types of chronic pain. Numerous studies investigating neuropathic pain have described the critical involvement of microglia in the spinal cord. Previous studies have indicated that activation of large conductance Ca2+‑activated K+ (BK) channels contributes to microglial activation in the spinal dorsal horn (SDH) and the generation of neuropathic pain. However, the specific role of BK channels in spinal microglia in neuropathic pain has not been fully addressed in previous studies, as BK channel inhibitors were used to inhibit microglial BK channel based on their inhibitory kinetics. We previously identified that Ca2+‑activated K+ channel β3 auxiliary subunit (KCNMB3), which is an auxiliary subunit of BK channels and regulates gating properties of the channel, is exclusively expressed in microglia in the spinal cord. The present study analyzed the role of BK channels in spinal microglia in neuropathic pain using a spinal microglia‑specific BK channel knockdown method, with intrathecal injection of KCNMB3 small interfering RNA. Neuropathic pain was significantly attenuated in KCNMB3 knockdown mice. Increases in the number of microglia in the SDH following nerve injury were attenuated by KCNMB3 knockdown. Furthermore, increased levels of pain‑associated molecules in the SDH were attenuated in KCNMB3 knockdown mice. Attempts were also made to analyze the effects of KCNMB3 knockdown on chronic pain. KCNMB3 knockdown ameliorated chronic pain and inhibited the expression levels of pain‑associated molecules in the SDH. The results from the present study suggested that BK channels modulated the activation state of spinal microglia, and that KCNMB3 is a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Kazuhisa Imari
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yuka Harada
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Jing Zhang
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshihide Mori
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinori Hayashi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
13
|
Liu Y, Wang K. Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handb Exp Pharmacol 2019; 260:187-205. [PMID: 31820177 DOI: 10.1007/164_2019_333] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ion channels are macromolecular proteins that form water-filled pores in cell membranes and they are critical for a variety of physiological and pharmacological functions. Dysfunctional ion channels can cause diseases known as channelopathies. Ion channels are encoded by approximately 400 genes, representing the second largest class of proven drug targets for therapeutic areas including neuropsychiatric disorders, cardiovascular and metabolic diseases, immunological diseases, nephrological diseases, gastrointestinal diseases, pulmonary/respiratory diseases, and many cancers. With more ion channel structures are being solved and functional robust assays are being developed, there are tremendous opportunities for identifying specific modulators targeting ion channels for new therapy.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China.
| |
Collapse
|
14
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
15
|
Zhang G, Geng Y, Jin Y, Shi J, McFarland K, Magleby KL, Salkoff L, Cui J. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels. J Gen Physiol 2017; 149:373-387. [PMID: 28196879 PMCID: PMC5339509 DOI: 10.1085/jgp.201611646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/28/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Both cellular depolarization and intracellular Ca2+ can gate open large conductance Ca2+-activated K+ channels. Zhang et al. show that the intracellular gating ring, which forms the Ca2+-sensing machinery of the channel, is also required for activated voltage sensors to effectively gate open the pore. Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+. The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca2+ activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA. http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca2+ sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel’s β1 and β2 subunits.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yakang Jin
- Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou 215123, China
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Kelli McFarland
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130
| | - Karl L Magleby
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Lawrence Salkoff
- Department of Anatomy and Neurobiology (Department of Neuroscience), Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130 .,Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou 215123, China
| |
Collapse
|
16
|
Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: Channelopathies, synaptopathies, and transportopathies. Mov Disord 2017; 32:310-318. [PMID: 28090678 DOI: 10.1002/mds.26901] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Historically, the syndrome of primary paroxysmal dyskinesias was considered a group of disorders as a result of ion channel dysfunction. This proposition was primarily based on the discovery of mutations in ion channels, which caused other episodic neurological disorders such as epilepsy and migraine and also supported by the frequent association between paroxysmal dyskinesias and epilepsy. However, the discovery of the genes responsible for the 3 classic forms of paroxysmal dyskinesias disproved this ion channel theory. On the other hand, novel gene mutations implicating ion channels have been recently reported to produce episodic movement disorders clinically similar to the classic paroxysmal dyskinesias. Here, we review the clinical and pathophysiological aspects of the paroxysmal dyskinesias, further proposing a pathophysiological framework according to which they can be classified as synaptopathies (proline-rich transmembrane protein 2 and myofibrillogenesis regulator gene), channelopathies (calcium-activated potassium channel subunit alpha-1 and voltage-gated sodium channel type 8), or transportopathies (solute carrier family 2 member 1). This proposal might serve to explain similarities and differences among the various paroxysmal dyskinesias in terms of clinical features, treatment response, and natural history. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London, UK
| | - Alberto J Espay
- Gardner Neuroscience Institute, Department of Neurology, Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| |
Collapse
|
17
|
Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol Rev 2017; 97:39-87. [DOI: 10.1152/physrev.00001.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Large-conductance Ca2+- and voltage-activated K+ (BK) channels play many physiological roles ranging from the maintenance of smooth muscle tone to hearing and neurosecretion. BK channels are tetramers in which the pore-forming α subunit is coded by a single gene ( Slowpoke, KCNMA1). In this review, we first highlight the physiological importance of this ubiquitous channel, emphasizing the role that BK channels play in different channelopathies. We next discuss the modular nature of BK channel-forming protein, in which the different modules (the voltage sensor and the Ca2+ binding sites) communicate with the pore gates allosterically. In this regard, we review in detail the allosteric models proposed to explain channel activation and how the models are related to channel structure. Considering their extremely large conductance and unique selectivity to K+, we also offer an account of how these two apparently paradoxical characteristics can be understood consistently in unison, and what we have learned about the conduction system and the activation gates using ions, blockers, and toxins. Attention is paid here to the molecular nature of the voltage sensor and the Ca2+ binding sites that are located in a gating ring of known crystal structure and constituted by four COOH termini. Despite the fact that BK channels are coded by a single gene, diversity is obtained by means of alternative splicing and modulatory β and γ subunits. We finish this review by describing how the association of the α subunit with β or with γ subunits can change the BK channel phenotype and pharmacology.
Collapse
Affiliation(s)
- Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Romina V. Sepulveda
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gonzalez-Nilo
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Doctorado en Ciencias Mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad Andres Bello, Facultad de Ciencias Biologicas, Center for Bioinformatics and Integrative Biology, Avenida Republica 239, Santiago, Chile and Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Griguoli M, Sgritta M, Cherubini E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol 2016; 594:3489-500. [PMID: 26969302 DOI: 10.1113/jp271841] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca(2+) sensitivity, voltage dependence and gating properties. Abundantly expressed in the CNS, they have the peculiar characteristic of being activated by both voltage and intracellular calcium rise. The increase in intracellular calcium via voltage-dependent calcium channels (Cav ) during spiking triggers conformational changes and BK channel opening. This narrows the action potential and induces a fast after-hyperpolarization that shuts calcium channels. The tight coupling between BK and Cav channels at presynaptic active zones makes them particularly suitable for regulating calcium entry and neurotransmitter release. While in most synapses, BK channels exert a negative control on transmitter release under basal conditions, in others they do so only under pathological conditions, serving as an emergency brake to protect against hyperactivity. In particular cases, by interacting with other channels (i.e. limiting the activation of the delayed rectifier and the inactivation of Na(+) channels), BK channels induce spike shortening, increase in firing rate and transmitter release. Changes in transmitter release following BK channel dysfunction have been implicated in several neurological disorders including epilepsy, schizophrenia, fragile X syndrome, mental retardation and autism. In particular, two mutations, one in the α and one in the β3 subunit, resulting in a gain of function have been associated with epilepsy. Hence, these discoveries have allowed identification of BK channels as new drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Martina Sgritta
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
19
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
20
|
Pethő Z, Tanner MR, Tajhya RB, Huq R, Laragione T, Panyi G, Gulko PS, Beeton C. Different expression of β subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Res Ther 2016; 18:103. [PMID: 27165430 PMCID: PMC4863321 DOI: 10.1186/s13075-016-1003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA-FLS) contribute to joint inflammation and damage characteristic of the disease. RA-FLS express KCa1.1 (BK, Slo1, MaxiK, KCNMA1) as their major plasma membrane potassium channel. Blocking KCa1.1 reduces the invasive phenotype of RA-FLS and attenuates disease severity in animal models of RA. This channel has therefore emerged as a promising therapeutic target in RA. However, the pore-forming α subunit of KCa1.1 is widely distributed in the body, and blocking it induces severe side effects, thus limiting its value as a therapeutic target. On the other hand, KCa1.1 channels can also contain different accessory subunits with restricted tissue distribution that regulate channel kinetics and pharmacology. Identification of the regulatory subunits of KCa1.1 expressed by RA-FLS may therefore provide the opportunity for generating a selective target for RA treatment. Methods Highly invasive RA-FLS were isolated from patients with RA, and FLS from patients with osteoarthritis (OA) were used as minimally invasive controls. The β subunit expression by FLS was assessed by quantitative reverse transcription polymerase chain reactions, Western blotting, and patch-clamp electrophysiology combined with pharmacological agents. FLS were sorted by flow cytometry on the basis of their CD44 expression level for comparison of their invasiveness and with their expression of KCa1.1 α and β subunits. β1 and β3 subunit expression was reduced with small interfering RNA (siRNA) to assess their specific role in KCa1.1α expression and function and in FLS invasiveness. Results We identified functional β1 and β3b regulatory subunits in RA-FLS. KCa1.1 β3b subunits were expressed by 70 % of the cells and were associated with highly invasive CD44high RA-FLS, whereas minimally invasive CD44low RA-FLS and OA-FLS expressed either β1 subunit. Furthermore, we found that silencing the β3 but not the β1 subunit with siRNA reduced KCa1.1 channel density at the plasma membrane of RA-FLS and inhibited RA-FLS invasiveness. Conclusions Our findings suggest the KCa1.1 channel composed of α and β3b subunits as an attractive target for the therapy of RA.
Collapse
Affiliation(s)
- Zoltán Pethő
- Department of Molecular Physiology and Biophysics, Mail Stop BCM335, Room S409A, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Mail Stop BCM335, Room S409A, Baylor College of Medicine, Houston, TX, 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Mail Stop BCM335, Room S409A, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Mail Stop BCM335, Room S409A, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Pércio S Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Mail Stop BCM335, Room S409A, Baylor College of Medicine, Houston, TX, 77030, USA. .,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Villa C, Combi R. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview. Front Cell Neurosci 2016; 10:81. [PMID: 27064559 PMCID: PMC4811893 DOI: 10.3389/fncel.2016.00081] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca Monza, Italy
| |
Collapse
|
22
|
Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion Channels in Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:97-136. [DOI: 10.1016/bs.apcsb.2015.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Protein Network Interacting with BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:127-61. [DOI: 10.1016/bs.irn.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Knock-down of synapsin alters cell excitability and action potential waveform by potentiating BK and voltage-gated Ca(2+) currents in Helix serotonergic neurons. Neuroscience 2015; 311:430-43. [PMID: 26522789 DOI: 10.1016/j.neuroscience.2015.10.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
Synapsins (Syns) are an evolutionarily conserved family of presynaptic proteins crucial for the fine-tuning of synaptic function. A large amount of experimental evidences has shown that Syns are involved in the development of epileptic phenotypes and several mutations in Syn genes have been associated with epilepsy in humans and animal models. Syn mutations induce alterations in circuitry and neurotransmitter release, differentially affecting excitatory and inhibitory synapses, thus causing an excitation/inhibition imbalance in network excitability toward hyperexcitability that may be a determinant with regard to the development of epilepsy. Another approach to investigate epileptogenic mechanisms is to understand how silencing Syn affects the cellular behavior of single neurons and is associated with the hyperexcitable phenotypes observed in epilepsy. Here, we examined the functional effects of antisense-RNA inhibition of Syn expression on individually identified and isolated serotonergic cells of the Helix land snail. We found that Helix synapsin silencing increases cell excitability characterized by a slightly depolarized resting membrane potential, decreases the rheobase, reduces the threshold for action potential (AP) firing and increases the mean and instantaneous firing rates, with respect to control cells. The observed increase of Ca(2+) and BK currents in Syn-silenced cells seems to be related to changes in the shape of the AP waveform. These currents sustain the faster spiking in Syn-deficient cells by increasing the after hyperpolarization and limiting the Na(+) and Ca(2+) channel inactivation during repetitive firing. This in turn speeds up the depolarization phase by reaching the AP threshold faster. Our results provide evidence that Syn silencing increases intrinsic cell excitability associated with increased Ca(2+) and Ca(2+)-dependent BK currents in the absence of excitatory or inhibitory inputs.
Collapse
|
25
|
Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 2015; 19:911-26. [DOI: 10.1517/14728222.2015.1026258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels. J Neurosci 2015; 34:12280-8. [PMID: 25209270 DOI: 10.1523/jneurosci.1174-14.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coupling between the activation gate and sensors of physiological stimuli during ion channel activation is an important, but not well-understood, molecular process. One difficulty in studying sensor-gate coupling is to distinguish whether a structural perturbation alters the function of the sensor, the gate, or their coupling. BK channels are activated by membrane voltage and intracellular Ca(2+) via allosteric mechanisms with coupling among the activation gate and sensors quantitatively defined, providing an excellent model system for studying sensor-gate coupling. By studying BK channels expressed in Xenopus oocytes, here we show that mutation E219R in S4 alters channel function by two independent mechanisms: one is to change voltage sensor activation, shifting voltage dependence, and increase valence of gating charge movements; the other is to regulate coupling among the activation gate, voltage sensor, and Ca(2+) binding via electrostatic interactions with E321/E324 located in the cytosolic side of S6 in a neighboring subunit, resulting in a shift of the voltage dependence of channel opening and increased Ca(2+) sensitivity. These results suggest a structural arrangement of the inner pore of BK channels differing from that in other voltage gated channels.
Collapse
|
27
|
Wang B, Jaffe DB, Brenner R. Current understanding of iberiotoxin-resistant BK channels in the nervous system. Front Physiol 2014; 5:382. [PMID: 25346692 PMCID: PMC4190997 DOI: 10.3389/fphys.2014.00382] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called “type II” subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these channels.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David B Jaffe
- Department of Biology and the UTSA Neurosciences Institute, University of Texas at San Antonio San Antonio, TX, USA
| | - Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
28
|
N'Gouemo P. BKCa channel dysfunction in neurological diseases. Front Physiol 2014; 5:373. [PMID: 25324781 PMCID: PMC4179377 DOI: 10.3389/fphys.2014.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
The large conductance, Ca2+-activated K+ channels (BKCa, KCa1.1) are expressed in various brain neurons where they play important roles in regulating action potential duration, firing frequency and neurotransmitter release. Membrane potential depolarization and rising levels of intracellular Ca2+ gated BKCa channels, which in turn results in an outward K+ flux that re/hyperpolarizes the membrane. The sensitivity of BKCa channels to Ca2+ provides an important negative-feedback system for Ca2+ entry into brain neurons and suppresses repetitive firing. Thus, BKCa channel loss-of-function gives rise to neuronal hyperexcitability, which can lead to seizures. Evidence also indicates that BKCa channels can facilitate high-frequency firing (gain-of-function) in some brain neurons. Interestingly, both gain-of-function and loss-of-function mutations of genes encoding for various BKCa channel subunits have been associated with the development of neuronal excitability disorders, such as seizure disorders. The role of BKCa channels in the etiology of some neurological diseases raises the possibility that these channels can be used as molecular targets to prevent and suppress disease phenotypes.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
29
|
Abstract
Over the last decades, cardiovascular disease has become the primary cause of death in the Western world, and this trend is expanding throughout the world. In particular, atherosclerosis and the subsequent vessel obliterations are the primary cause of ischemic disease (stroke and coronary heart disease). Excess calcium influx into the cells is one of the major pathophysiological mechanisms important for ischemic injury in the brain and heart in humans. The large-conductance calcium-activated K+ channels (BK) are thus interesting candidates to protect against excess calcium influx and the events leading to ischemic injury. Indeed, the mitochondrial BK channels (mitoBK) have recently been shown to play a protective function against ischemia-reperfusion injury both in vitro and in animal models, although the exact mechanism of this protection is still under scrutiny. In addition, in both the plasma membrane and mitochondrial BK channel, the α-subunit itself is sensitive to hypoxia. This sensitivity is tissue specific and conferred by a highly conserved motif within an alternatively spliced cysteine-rich insert (STREX) in the intracellular C terminus of the channel. This review describes recent developments of the increasing relevance of BK channels in hypoxia and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jean-Yves Tano
- Experimental and Clinical Research Center (a Joint Institution Between the Charité University Medicine and Max Delbrück Center for Molecular Medicine), Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center (a Joint Institution Between the Charité University Medicine and Max Delbrück Center for Molecular Medicine), Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| |
Collapse
|
30
|
Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. J Membr Biol 2014; 247:1083-127. [DOI: 10.1007/s00232-014-9716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
|
31
|
Persistent modification of Nav1.9 following chronic exposure to insecticides and pyridostigmine bromide. Toxicol Appl Pharmacol 2014; 277:298-309. [DOI: 10.1016/j.taap.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
32
|
Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry 2014; 19:504-10. [PMID: 22965006 PMCID: PMC3966080 DOI: 10.1038/mp.2012.126] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) depends on a clinical interview with no biomarkers to aid diagnosis. The current investigation interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE) database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular processes and develop a diagnostic test. This test was then applied to two independent samples from the Simons Foundation Autism Research Initiative (SFARI) and Wellcome Trust 1958 normal birth cohort (WTBC) for validation. Using AGRE SNP data from a Central European (CEU) cohort, we created a genetic diagnostic classifier consisting of 237 SNPs in 146 genes that correctly predicted ASD diagnosis in 85.6% of CEU cases. This classifier also predicted 84.3% of cases in an ethnically related Tuscan cohort; however, prediction was less accurate (56.4%) in a genetically dissimilar Han Chinese cohort (HAN). Eight SNPs in three genes (KCNMB4, GNAO1, GRM5) had the largest effect in the classifier with some acting as vulnerability SNPs, whereas others were protective. Prediction accuracy diminished as the number of SNPs analyzed in the model was decreased. Our diagnostic classifier correctly predicted ASD diagnosis with an accuracy of 71.7% in CEU individuals from the SFARI (ASD) and WTBC (controls) validation data sets. In conclusion, we have developed an accurate diagnostic test for a genetically homogeneous group to aid in early detection of ASD. While SNPs differ across ethnic groups, our pathway approach identified cellular processes common to ASD across ethnicities. Our results have wide implications for detection, intervention and prevention of ASD.
Collapse
Affiliation(s)
- E Skafidas
- Centre for Neural Engineering, The University
of Melbourne, Parkville, VIC, Australia
| | - R Testa
- Melbourne Neuropsychiatry Centre, Department
of Psychiatry, The University of Melbourne & Melbourne Health,
Parkville, VIC, Australia,Department of Psychology, Monash
University, Clayton, VIC, Australia
| | - D Zantomio
- Department of Haematology, Austin
Health, Heidelberg, VIC, Australia
| | - G Chana
- Department of Psychiatry, The University of
Melbourne, Parkville, Victoria,
Australia
| | - I P Everall
- Department of Psychiatry, The University of
Melbourne, Parkville, Victoria,
Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department
of Psychiatry, The University of Melbourne & Melbourne Health,
Parkville, VIC, Australia,Department of Psychiatry, The University of
Melbourne, Parkville, Victoria,
Australia,National Neuroscience Facility (NNF), Level 3, 161
Barry Street, Carlton South, VIC
3053, Australia. E-mail:
| |
Collapse
|
33
|
Li M, Chang S, Yang L, Shi J, McFarland K, Yang X, Moller A, Wang C, Zou X, Chi C, Cui J. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions. J Biol Chem 2014; 289:4735-42. [PMID: 24398688 DOI: 10.1074/jbc.m113.535898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.
Collapse
Affiliation(s)
- Min Li
- From the Institute of Protein Research, Tongji University, Shanghai 200092, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
35
|
D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia M. K(+) channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci 2013; 7:134. [PMID: 24062639 PMCID: PMC3772396 DOI: 10.3389/fncel.2013.00134] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022] Open
Abstract
K(+) channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K(+) channels as primary targets of genetic variations or perturbations in K(+)-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K(+) channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K(+) channels defects underlying distinct epilepsies as "K(+) channelepsies," and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K(+) channel classification, which could be also adopted to easily identify other channelopathies involving Na(+) (e.g., Nav x.y-phenotype), Ca(2+) (e.g., Cav x.y-phenotype), and Cl(-) channels. Furthermore, we discuss novel genetic defects in K(+) channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K(+) channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.
Collapse
Key Words
- Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), KCa1.1, Kvβ1, Kvβ2, KChIP LGI1, Kir1-Kir7 (GIRK, KATP)]
- autism–epilepsy
- channelopathies
- temporal lobe epilepsy
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Faculty of Medicine, Section of Human Physiology, Department of Internal Medicine, University of Perugia Perugia, Italy ; Istituto Euro Mediterraneo di Scienza e Tecnologia, IEMEST Palermo, Italy
| | | | | | | | | |
Collapse
|
36
|
Zheng YM, Park SW, Stokes L, Tang Q, Xiao JH, Wang YX. Distinct activity of BK channel β1-subunit in cerebral and pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2013; 304:C780-9. [PMID: 23426969 DOI: 10.1152/ajpcell.00006.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study was designed to test a hypothesis that the functional activity of big-conductance, Ca(2+)-activated K(+) (BK) channels is different in cerebral and pulmonary artery smooth muscle cells (CASMCs and PASMCs). Using patch-clamp recordings, we found that the activity of whole cell and single BK channels were significantly higher in CASMCs than in PASMCs. The voltage and Ca(2+) sensitivity of BK channels were greater in CASMCs than in PASMCs. Targeted gene knockout of β(1)-subunits significantly reduced BK currents in CASMCs but had no effect in PASMCs. Western blotting experiments revealed that BK channel α-subunit protein expression level was comparable in CASMCs and PASMCs; however, β(1)-subunit protein expression level was higher in CASMCs than in PASMCs. Inhibition of BK channels by the specific blocker iberiotoxin enhanced norepinephrine-induced increase in intracellular calcium concentration in CASMCs but not in PASMCs. Systemic artery blood pressure was elevated in β(1)(-/-) mice. In contrast, pulmonary artery blood pressure was normal in β(1)(-/-) mice. These findings provide the first evidence that the activity of BK channels is higher in cerebral than in PASMCs. This heterogeneity is primarily determined by the differential β(1)-subunit function and contributes to diverse cellular responses in these two distinct types of cells.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Ramírez-Latorre JA. Functional upregulation of Ca(2+)-activated K(+) channels in the development of substantia nigra dopamine neurons. PLoS One 2012; 7:e51610. [PMID: 23284723 PMCID: PMC3527479 DOI: 10.1371/journal.pone.0051610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Many connections in the basal ganglia are made around birth when animals are exposed to a host of new affective, cognitive, and sensori-motor stimuli. It is thought that dopamine modulates cortico-striatal synapses that result in the strengthening of those connections that lead to desired outcomes. We propose that there must be a time before which stimuli cannot be processed into functional connections, otherwise it would imply an effective link between stimulus, response, and reward in uterus. Consistent with these ideas, we present evidence that early in development dopamine neurons are electrically immature and do not produce high-frequency firing in response to salient stimuli. We ask first, what makes dopamine neurons immature? and second, what are the implications of this immaturity for the basal ganglia? As an answer to the first question, we find that at birth the outward current is small (3nS-V), insensitive to Ca(2+), TEA, BK, and SK blockers. Rapidly after birth, the outward current increases to 15nS-V and becomes sensitive to Ca(2+), TEA, BK, and SK blockers. We make a detailed analysis of the kinetics of the components of the outward currents and produce a model for BK and SK channels that we use to reproduce the outward current, and to infer the geometrical arrangement of BK and Ca(2+) channels in clusters. In the first cluster, T-type Ca(2+) and BK channels are coupled within distances of ~20 nm (200 Å). The second cluster consists of L-type Ca(2+) and BK channels that are spread over distances of at least 60 nm. As for the second question, we propose that early in development, the mechanism of action selection is in a "locked-in" state that would prevent dopamine neurons from reinforcing cortico-striatal synapses that do not have a functional experiential-based value.
Collapse
|
38
|
Modulation of BK channel voltage gating by different auxiliary β subunits. Proc Natl Acad Sci U S A 2012; 109:18991-6. [PMID: 23112204 DOI: 10.1073/pnas.1216953109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca(2+) sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K(+) current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps.
Collapse
|
39
|
Sun X, Zaydman MA, Cui J. Regulation of Voltage-Activated K(+) Channel Gating by Transmembrane β Subunits. Front Pharmacol 2012; 3:63. [PMID: 22529812 PMCID: PMC3328208 DOI: 10.3389/fphar.2012.00063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023] Open
Abstract
Voltage-activated K+ (KV) channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD) surrounded by four voltage-sensing domains (VSDs). The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM) segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK) channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening, and VSD–PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Biomedical Engineering, Washington University Saint Louis, MO, USA
| | | | | |
Collapse
|
40
|
Abstract
INTRODUCTION Epilepsies are disorders of neuronal excitability characterized by spontaneous and recurrent seizures. Ion channels are critical for regulating neuronal excitability and, therefore, can contribute significantly to epilepsy pathophysiology. In particular, large conductance, Ca2+-activated K+ (BKCa) channels play an important role in seizure etiology. These channels are activated by both membrane depolarization and increased intracellular Ca2+. This unique coupling of Ca2+ signaling to membrane depolarization is important in controlling neuronal hyperexcitability, as outward K+ current through BKCa channels hyperpolarizes neurons. AREAS COVERED BKCa channel structure-function and the role of these channels in epilepsy pathophysiology. EXPERT OPINION Loss-of-function BKCa channel mutations contribute to neuronal hyperexcitability that can lead to temporal lobe epilepsy, tonic-clonic seizures and alcohol withdrawal seizures. Similarly, BKCa channel blockade can trigger seizures and status epilepticus. Paradoxically, some mutations in BKCa channel subunit can give rise to channel gain-of-function that leads to development of idiopathic epilepsy (primarily absence epilepsy). Seizures themselves also enhance BKCa channel currents associated with neuronal hyperexcitability, and blocking BKCa channels suppresses generalized tonic-clonic seizures. Thus, both loss-of-function and gain-of-function BKCa channels might serve as molecular targets for drugs to suppress certain seizure phenotypes including temporal lobe seizures and absence seizures, respectively.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Georgetown University Medical Center, Interdisciplinary Program in Neuroscience and Department of Pediatrics, Washington, DC 20057, USA.
| |
Collapse
|
41
|
Yang J, Delaloye K, Lee US, Cui J. Patch clamp and perfusion techniques for studying ion channels expressed in Xenopus oocytes. J Vis Exp 2011:2269. [PMID: 21248703 DOI: 10.3791/2269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The protocol presented here is designed to study the activation of the large conductance, voltage- and Ca(2+)-activated K(+) (BK) channels. The protocol may also be used to study the structure-function relationship for other ion channels and neurotransmitter receptors. BK channels are widely expressed in different tissues and have been implicated in many physiological functions, including regulation of smooth muscle contraction, frequency tuning of inner hair cells and regulation of neurotransmitter release. BK channels are activated by membrane depolarization and by intracellular Ca(2+) and Mg(2+). Therefore, the protocol is designed to control both the membrane voltage and the intracellular solution. In this protocol, messenger RNA of BK channels is injected into Xenopus laevis oocytes (stage V-VI) followed by 2-5 days of incubation at 18°C. Membrane patches that contain single or multiple BK channels are excised with the inside-out configuration using patch clamp techniques. The intracellular side of the patch is perfused with desired solutions during recording so that the channel activation under different conditions can be examined. To summarize, the mRNA of BK channels is injected into Xenopus laevis oocytes to express channel proteins on the oocyte membrane; patch clamp techniques are used to record currents flowing through the channels under controlled voltage and intracellular solutions.
Collapse
Affiliation(s)
- Junqiu Yang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, USA
| | | | | | | |
Collapse
|
42
|
Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1. J Neurosci 2011; 30:16170-9. [PMID: 21123563 DOI: 10.1523/jneurosci.2323-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Large-conductance, Ca(2+)- and voltage-sensitive K(+) (BK) channels regulate neuronal functions such as spike frequency adaptation and transmitter release. BK channels are composed of four Slo1 subunits, which contain the voltage-sensing and pore-gate domains in the membrane and Ca(2+) binding sites in the cytoplasmic domain, and accessory β subunits. Four types of BK channel β subunits (β1-β4) show differential tissue distribution and unique functional modulation, resulting in diverse phenotypes of BK channels. Previous studies show that both the β1 and β2 subunits increase Ca(2+) sensitivity, but different mechanisms may underline these modulations. However, the structural domains in Slo1 that are critical for Ca(2+)-dependent activation and targeted by these β subunits are not known. Here, we report that the N termini of both the transmembrane (including S0) and cytoplasmic domains of Slo1 are critical for β2 modulation based on the study of differential effects of the β2 subunit on two orthologs, mouse Slo1 and Drosophila Slo1. The N terminus of the cytoplasmic domain of Slo1, including the AC region (βA-αC) of the RCK1 (regulator of K(+) conductance) domain and the peptide linking it to S6, both of which have been shown previously to mediate the coupling between Ca(2+) binding and channel opening, is specifically required for the β2 but not for the β1 modulation. These results suggest that the β2 subunit modulates the coupling between Ca(2+) binding and channel opening, and, although sharing structural homology, the BK channel β subunits interact with structural domains in the Slo1 subunit differently to enhance channel activity.
Collapse
|
43
|
Lee US, Cui J. BK channel activation: structural and functional insights. Trends Neurosci 2010; 33:415-23. [PMID: 20663573 DOI: 10.1016/j.tins.2010.06.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 01/26/2023]
Abstract
The voltage- and Ca(2+)-activated K(+) (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K(+) channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first glimpse into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated.
Collapse
Affiliation(s)
- Urvi S Lee
- Department of Biomedical Engineering and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
44
|
Abstract
BK-type K(+) channels are activated by voltage and intracellular Ca(2+), which is important in modulating muscle contraction, neural transmission, and circadian pacemaker output. Previous studies suggest that the cytosolic domain of BK channels contains two different Ca(2+) binding sites, but the molecular composition of one of the sites is not completely known. Here we report, by systematic mutagenesis studies, the identification of E535 as part of this Ca(2+) binding site. This site is specific for binding to Ca(2+) but not Cd(2+). Experimental results and molecular modeling based on the X-ray crystallographic structures of the BK channel cytosolic domain suggest that the binding of Ca(2+) by the side chains of E535 and the previously identified D367 changes the conformation around the binding site and turns the side chain of M513 into a hydrophobic core, providing a basis to understand how Ca(2+) binding at this site opens the activation gate of the channel that is remotely located in the membrane.
Collapse
|
45
|
Phase-resetting curve determines how BK currents affect neuronal firing. J Comput Neurosci 2010; 30:211-23. [PMID: 20517708 DOI: 10.1007/s10827-010-0246-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
BK channels are large conductance potassium channels gated by calcium and voltage. Paradoxically, blocking these channels has been shown experimentally to increase or decrease the firing rate of neurons, depending on the neural subtype and brain region. The mechanism for how this current can alter the firing rates of different neurons remains poorly understood. Using phase-resetting curve (PRC) theory, we determine when BK channels increase or decrease the firing rates in neural models. The addition of BK currents always decreases the firing rate when the PRC has only a positive region. When the PRC has a negative region (type II), BK currents can increase the firing rate. The influence of BK channels on firing rate in the presence of other conductances, such as I(m) and I(h), as well as with different amplitudes of depolarizing input, were also investigated. These results provide a formal explanation for the apparently contradictory effects of BK channel antagonists on firing rates.
Collapse
|