1
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Wang YJ, Yeh CJ, Gao ZH, Hwang E, Chen HH, Wu SN. Inhibitory Perturbations of Fluvastatin on Afterhyperpolarization Current, Erg-mediated K + Current, and Hyperpolarization-activated Cation Current in Both Pituitary GH 3 Cells and Primary Embryonic Mouse Cortical Neurons. Neuroscience 2023; 531:12-23. [PMID: 37661016 DOI: 10.1016/j.neuroscience.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Fluvastatin (FLV), the first synthetically derived 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is a potent inhibitor of cholesterol biosynthesis. While its primary mechanism of action is to reduce cholesterol levels, there is some evidence suggesting that it may also have effects on K+ channels. However, the overall effects of fluvastatin on ionic currents are not yet well understood. The whole-cell clamp recordings were applied to evaluate the ionic currents and action potentials of cells. Here, we have demonstrated that FLV can effectively inhibit the amplitude of erg-mediated K+ current (IK(erg)) in pituitary tumor (GH3) cells, with an IC50 of approximately 3.2 µM. In the presence of FLV, the midpoint in the activation curve of IK(erg) was distinctly shifted to a less negative potential by 10 mV, with minimal modification of the gating charge. However, the magnitude of hyperpolarization-activated cation current (Ih) elicited by long-lasting membrane hyperpolarization was progressively decreased, with an IC50 value of 8.7 µM, upon exposure to FLV. More interestingly, we also found that FLV (5 µM) could regulate the action potential and afterhyperpolarization properties in primary embryonic mouse cortical neurons. Our study presents compelling evidence indicating that FLV has the potential to impact both the amplitude and gating of the ion channels IK(erg) and Ih. We also provide credible evidence suggesting that this drug has the potential to modify the properties of action potentials and the afterhyperpolarization current in electrically excitable cells. However, the assumption that these findings translate to similar in-vivo results remains unclear.
Collapse
Affiliation(s)
- Ya-Jean Wang
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu, Taiwan.
| | - Che-Jui Yeh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hwei-Hisen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi University, Taipei, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research and Education, An Nan Hostpial, China Medical University Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
3
|
Kaczmarek LK. Modulation of potassium conductances optimizes fidelity of auditory information. Proc Natl Acad Sci U S A 2023; 120:e2216440120. [PMID: 36930599 PMCID: PMC10041146 DOI: 10.1073/pnas.2216440120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.
Collapse
Affiliation(s)
- Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
4
|
Tassano E, Uccella S, Ronchetto P, Martinheira Da Silva JS, Viaggi S, Mancardi M, Ramenghi L, Murri A, Biondi M, Gimelli G, Morerio C, Malacarne M, Coviello D. Interstitial 2q24.2q24.3 Microdeletion: Two New Cases with Similar Clinical Features with the Exception of Profound Deafness. Cytogenet Genome Res 2022; 162:132-139. [PMID: 35896065 DOI: 10.1159/000525181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Interstitial 2q24.2q24.3 microdeletions are rare cytogenetic aberrations associated with heterogeneous clinical features depending on the size of the deletion. Here, we describe 2 patients with overlapping de novo 2q24.2q24.3 deletions, characterized by array-CGH. This is the smallest 2q24.2q24.3 region of overlap described in the literature encompassing only 9 genes (SLC4A10, DPP4, GCG, FAP, IFIH1, GCA, KCNH7, FIGN, GRB14). We focused our attention on SLC4A10, DPP4, and KCNH7, genes associated with neurological features. Our patients presented similar features: intellectual disability, developmental and language delay, hypotonia, joint laxity, and dysmorphic features. Only patient 2 showed profound deafness and also carried a heterozygous mutation of the GJB2 gene responsible for autosomal recessive deafness 1A (DFNB1A: OMIM 220290). Could the disruption of a gene present in the 2q24.2q24.3 deleted region be responsible for her profound hearing loss?
Collapse
Affiliation(s)
- Elisa Tassano
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy,
| | - Sara Uccella
- Department of Medical and Surgical Neuroscience and Rehabilitation, University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Neonatolgy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Ronchetto
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Joana Soraia Martinheira Da Silva
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Silvia Viaggi
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,DISTAV, University of Genoa, Genoa, Italy
| | | | - Luca Ramenghi
- Neonatolgy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Murri
- Unità Operativa di Otorinolaringoiatria, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Marina Biondi
- Unità Operativa di Radiologia, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - Giorgio Gimelli
- Laboratory of Cytogenetics, IRCCS Giannina Gaslini, Genoa, Italy
| | - Cristina Morerio
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Malacarne
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
5
|
Sanchez-Conde FG, Jimenez-Vazquez EN, Auerbach DS, Jones DK. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front Mol Neurosci 2022; 15:890368. [PMID: 35600076 PMCID: PMC9113952 DOI: 10.3389/fnmol.2022.890368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The ERG1 potassium channel, encoded by KCNH2, has long been associated with cardiac electrical excitability. Yet, a growing body of work suggests that ERG1 mediates physiology throughout the human body, including the brain. ERG1 is a regulator of neuronal excitability, ERG1 variants are associated with neuronal diseases (e.g., epilepsy and schizophrenia), and ERG1 serves as a potential therapeutic target for neuronal pathophysiology. This review summarizes the current state-of-the-field regarding the ERG1 channel structure and function, ERG1’s relationship to the mammalian brain and highlights key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Eric N. Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David S. Auerbach
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States
- *Correspondence: David S. Auerbach,
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- David K. Jones,
| |
Collapse
|
6
|
The Effectiveness of Isoplumbagin and Plumbagin in Regulating Amplitude, Gating Kinetics, and Voltage-Dependent Hysteresis of erg-mediated K+ Currents. Biomedicines 2022; 10:biomedicines10040780. [PMID: 35453530 PMCID: PMC9029050 DOI: 10.3390/biomedicines10040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 μM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 μM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4′-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur.
Collapse
|
7
|
Effective Perturbations on the Amplitude and Hysteresis of Erg-Mediated Potassium Current Caused by 1-Octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino]-octanoate (SM-102), a Cationic Lipid. Biomedicines 2021; 9:biomedicines9101367. [PMID: 34680484 PMCID: PMC8533363 DOI: 10.3390/biomedicines9101367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino]-octanoate) is an amino cationic lipid that has been tailored for the formation of lipid nanoparticles and it is one of the essential ingredients present in the ModernaTM COVID-19 vaccine. However, to what extent it may modify varying types of plasmalemmal ionic currents remains largely uncertain. In this study, we investigate the effects of SM-102 on ionic currents either in two types of endocrine cells (e.g., rat pituitary tumor (GH3) cells and mouse Leydig tumor (MA-10) cells) or in microglial (BV2) cells. Hyperpolarization-activated K+ currents in these cells bathed in high-K+, Ca2+-free extracellular solution were examined to assess the effects of SM-102 on the amplitude and hysteresis of the erg-mediated K+ current (IK(erg)). The SM-102 addition was effective at blocking IK(erg) in a concentration-dependent fashion with a half-maximal concentration (IC50) of 108 μM, a value which is similar to the KD value (i.e., 134 μM) required for its accentuation of deactivation time constant of the current. The hysteretic strength of IK(erg) in response to the long-lasting isosceles-triangular ramp pulse was effectively decreased in the presence of SM-102. Cell exposure to TurboFectinTM 8.0 (0.1%, v/v), a transfection reagent, was able to inhibit hyperpolarization-activated IK(erg) effectively with an increase in the deactivation time course of the current. Additionally, in GH3 cells dialyzed with spermine (30 μM), the IK(erg) amplitude progressively decreased; moreover, a further bath application of SM-102 (100 μM) or TurboFectin (0.1%) diminished the current magnitude further. In MA-10 Leydig cells, the IK(erg) was also blocked by the presence of SM-102 or TurboFectin. The IC50 value for SM-102-induced inhibition of IK(erg) in MA-10 cells was 98 μM. In BV2 microglial cells, the amplitude of the inwardly rectifying K+ current was inhibited by SM-102. Taken together, the presence of SM-102 concentration-dependently inhibited IK(erg) in endocrine cells (e.g., GH3 or MA-10 cells), and such action may contribute to their functional activities, assuming that similar in vivo findings exist.
Collapse
|
8
|
Optimized Tuning of Auditory Inner Hair Cells to Encode Complex Sound through Synergistic Activity of Six Independent K + Current Entities. Cell Rep 2021; 32:107869. [PMID: 32640234 DOI: 10.1016/j.celrep.2020.107869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Auditory inner hair cells (IHCs) convert sound vibrations into receptor potentials that drive synaptic transmission. For the precise encoding of sound qualities, receptor potentials are shaped by K+ conductances tuning the properties of the IHC membrane. Using patch-clamp and computational modeling, we unravel this membrane specialization showing that IHCs express an exclusive repertoire of six voltage-dependent K+ conductances mediated by Kv1.8, Kv7.4, Kv11.1, Kv12.1, and BKCa channels. All channels are active at rest but are triggered differentially during sound stimulation. This enables non-saturating tuning over a far larger potential range than in IHCs expressing fewer current entities. Each conductance contributes to optimizing responses, but the combined activity of all channels synergistically improves phase locking and the dynamic range of intensities that IHCs can encode. Conversely, hypothetical simpler IHCs appear limited to encode only certain aspects (frequency or intensity). The exclusive channel repertoire of IHCs thus constitutes an evolutionary adaptation to encode complex sound through multifaceted receptor potentials.
Collapse
|
9
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Liu PY, Chang WT, Wu SN. Characterization of the Synergistic Inhibition of IK(erg) and IK(DR) by Ribociclib, a Cyclin-Dependent Kinase 4/6 Inhibitor. Int J Mol Sci 2020; 21:ijms21218078. [PMID: 33138174 PMCID: PMC7663338 DOI: 10.3390/ijms21218078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ribociclib (RIB, LE011, Kisqali®), an orally administered inhibitor of cyclin-dependent kinase-4/6 (CDK-4/6) complex, is clinically effective for the treatment of several malignancies, including advanced breast cancer. However, information regarding the effects of RIB on membrane ion currents is limited. In this study, the addition of RIB to pituitary tumor (GH3) cells decreased the peak amplitude of erg-mediated K+ current (IK(erg)), which was accompanied by a slowed deactivation rate of the current. The IC50 value for RIB-perturbed inhibition of deactivating IK(erg) in these cells was 2.7 μM. In continued presence of μM RIB, neither the subsequent addition of 17β-estradiol (30 μM), phorbol 12-myristate 13-acetate (10 μM), or transforming growth factor-β (1 μM) counteracted the inhibition of deactivating IK(erg). Its presence affected the decrease in the degree of voltage-dependent hysteresis for IK(erg) elicitation by long-duration triangular ramp voltage commands. The presence of RIB differentially inhibited the peak or sustained component of delayed rectifier K+ current (IK(DR)) with an effective IC50 of 28.7 or 11.4 μM, respectively, while it concentration-dependently decreased the amplitude of M-type K+ current with IC50 of 13.3 μM. Upon 10-s long membrane depolarization, RIB elicited a decrease in the IK(DR) amplitude, which was concomitant with an accelerated inactivation time course. However, the inability of RIB (10 μM) to modify the magnitude of the hyperpolarization-activated cation current was disclosed. The mean current–voltage relationship of IK(erg) present in HL-1 atrial cardiomyocytes was inhibited in the presence of RIB (10 μM). Collectively, the hyperpolarization-activated cation current was observed. RIB-mediated perturbations in ionic currents presented herein are upstream of its suppressive action on cytosolic CDK-4/6 activities and partly participates in its modulatory effects on the functional activities of pituitary tumor cells (e.g., GH3 cells) or cardiac myocytes (e.g., HL-1 cells).
Collapse
Affiliation(s)
- Pin-Yen Liu
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 704, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| |
Collapse
|
11
|
Characterization of Convergent Suppression by UCL-2077 (3-(Triphenylmethylaminomethyl)pyridine), Known to Inhibit Slow Afterhyperpolarization, of erg-Mediated Potassium Currents and Intermediate-Conductance Calcium-Activated Potassium Channels. Int J Mol Sci 2020; 21:ijms21041441. [PMID: 32093314 PMCID: PMC7073080 DOI: 10.3390/ijms21041441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023] Open
Abstract
UCL-2077 (triphenylmethylaminomethyl)pyridine) was previously reported to suppress slow afterhyperpolarization in neurons. However, the information with respect to the effects of UCL-2077 on ionic currents is quite scarce. The addition of UCL-2077 decreased the amplitude of erg-mediated K+ current (IK(erg)) together with an increased deactivation rate of the current in pituitary GH3 cells. The IC50 and KD values of UCL-2077-induced inhibition of IK(erg) were 4.7 and 5.1 μM, respectively. UCL-2077 (10 μM) distinctly shifted the midpoint in the activation curve of IK(erg) to less hyperpolarizing potentials by 17 mV. Its presence decreased the degree of voltage hysteresis for IK(erg) elicitation by long-lasting triangular ramp pulse. It also diminished the probability of the opening of intermediate-conductance Ca2+-activated K+ channels. In cell-attached current recordings, UCL-2077 raised the frequency of action currents. When KCNH2 mRNA was knocked down, a UCL-2077-mediated increase in AC firing was attenuated. Collectively, the actions elaborated herein conceivably contribute to the perturbating effects of this compound on electrical behaviors of excitable cells.
Collapse
|
12
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
13
|
Cakir Z, Yildirim C, Buran I, Önalan EE, Bal R. Acid-sensing ion channels (ASICs) influence excitability of stellate neurons in the mouse cochlear nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:769-781. [PMID: 31451914 DOI: 10.1007/s00359-019-01365-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent and proton-gated channels. In this study, we aimed to test the hypothesis whether ASICs might be involved in modifying the excitability of stellate cells in the cochlear nucleus (CN). We determined gene expressions of ASIC1, ASIC2 and ASIC3 in the CN of BALB/mice. ASIC currents in stellate cells were characterized by using whole-cell patch-clamp technique. In the voltage-clamp experiments, inward currents were recorded upon application of 2-[N-Morpholino ethanesulfonic acid]-normal artificial cerebrospinal fluid (MES-aCSF), whose pH 50 was 5.84. Amiloride inhibited the acid-induced currents in a dose-dependent manner. Inhibition of the ASIC currents by extracellular Ca2+ and Pb2+ (10 μM) was significant evidence for the existence of homomeric ASIC1a subunits. ASIC currents were increased by 20% upon extracellular application of Zn2+ (300 μM) (p < 0.05, n = 13). In current-clamp experiments, application of MES-aCSF resulted in the depolarization of stellate cells. The results show that the ASIC currents in stellate cells of the cochlear nucleus are carried largely by the ASIC1a and ASIC2a channels. ASIC channels affect the excitability of the stellate cells and therefore they appear to have a role in the processing of auditory information.
Collapse
Affiliation(s)
- Ziya Cakir
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Caner Yildirim
- Department of Physiology, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Ilay Buran
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Firat University, 23100, Elazig, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
14
|
Cui ED, Strowbridge BW. Selective attenuation of Ether-a-go-go related K + currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation. eLife 2019; 8:e44954. [PMID: 31032798 PMCID: PMC6488300 DOI: 10.7554/elife.44954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Most neurons do not simply convert inputs into firing rates. Instead, moment-to-moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-à-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties.
Collapse
Affiliation(s)
- Edward D Cui
- Department of NeurosciencesCase Western Reserve UniversityClevelandUnited States
| | - Ben W Strowbridge
- Department of NeurosciencesCase Western Reserve UniversityClevelandUnited States
| |
Collapse
|
15
|
Modulators of Kv3 Potassium Channels Rescue the Auditory Function of Fragile X Mice. J Neurosci 2019; 39:4797-4813. [PMID: 30936239 DOI: 10.1523/jneurosci.0839-18.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Fragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in vivo in mice lacking the gene (Fmr1 -/y ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in Fmr1 -/y animals, but only at high sound levels. In contrast, wave IV, which represents the activity of auditory brainstem nuclei is enhanced at all sound levels, suggesting that loss of FMRP alters the central processing of auditory signals. Current-clamp recordings of neurons in the medial nucleus of the trapezoid body in the auditory brainstem revealed that, in contrast to neurons from wild-type animals, sustained depolarization triggers repetitive firing rather than a single action potential. In voltage-clamp recordings, K+ currents that activate at positive potentials ("high-threshold" K+ currents), which are required for high-frequency firing and are carried primarily by Kv3.1 channels, are elevated in Fmr1 -/y mice, while K+ currents that activate near the resting potential and inhibit repetitive firing are reduced. We therefore tested the effects of AUT2 [((4-({5-[(4R)-4-ethyl-2,5-dioxo-1-imidazolidinyl]-2-pyridinyl}oxy)-2-(1-methylethyl) benzonitrile], a compound that modulates Kv3.1 channels. AUT2 reduced the high-threshold K+ current and increased the low-threshold K+ currents in neurons from Fmr1 -/y animals by shifting the activation of the high-threshold current to more negative potentials. This reduced the firing rate and, in vivo, restored wave IV of the ABR. Our results from animals of both sexes suggest that the modulation of the Kv3.1 channel may have potential for the treatment of sensory hypersensitivity in patients with FXS.SIGNIFICANCE STATEMENT mRNA encoding the Kv3.1 potassium channel was one of the first described targets of the fragile X mental retardation protein (FMRP). Fragile X syndrome is caused by loss of FMRP and, in humans and mice, causes hypersensitivity to auditory stimuli. We found that components of the auditory brain response (ABR) corresponding to auditory brainstem activity are enhanced in mice lacking FMRP. This is accompanied by hyperexcitability and altered potassium currents in auditory brainstem neurons. Treatment with a drug that alters the voltage dependence of Kv3.1 channels normalizes the imbalance of potassium currents, as well as ABR responses in vivo, suggesting that such compounds may be effective in treating some symptoms of fragile X syndrome.
Collapse
|
16
|
ERG Channels Regulate Excitability in Stellate and Bushy Cells of Mice Ventral Cochlear Nucleus. J Membr Biol 2018; 251:711-722. [DOI: 10.1007/s00232-018-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
17
|
Xiao K, Sun Z, Jin X, Ma W, Song Y, Lai S, Chen Q, Fan M, Zhang J, Yue W, Huang Z. ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice. J Physiol 2018; 596:4729-4752. [PMID: 30016551 DOI: 10.1113/jp275970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS ERG3 channels have a high expression level in the central nervous system. Knockdown of ERG3 channels enhances neuronal intrinsic excitability (caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials) in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. The expression of ERG3 protein is reduced in human and mouse hippocampal epileptogenic foci. Knockdown of ERG3 channels in hippocampus enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. The results provide strong evidence that ERG3 channels have a crucial role in the regulation of neuronal intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells and are critically involved in the onset and development of epilepsy. ABSTRACT The input-output relationship of neuronal networks depends heavily on the intrinsic properties of their neuronal elements. Profound changes in intrinsic properties have been observed in various physiological and pathological processes, such as learning, memory and epilepsy. However, the cellular and molecular mechanisms underlying acquired changes in intrinsic excitability are still not fully understood. Here, we demonstrate that ERG3 channels are critically involved in the regulation of intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Knock-down of ERG3 channels significantly increases neuronal intrinsic excitability, which is mainly caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials. Interestingly, the expression level of ERG3 protein is significantly reduced in human and mouse brain tissues with temporal lobe epilepsy. Moreover, ERG3 channel knockdown in hippocampus significantly enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. Taken together, our results suggest ERG3 channels play an important role in determining the excitability of hippocampal neurons and dysregulation of these channels may be involved in the generation of epilepsy. ERG3 channels may thus be a novel therapeutic target for the prevention of epilepsy.
Collapse
Affiliation(s)
- Kuo Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiming Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xueqin Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weining Ma
- Department of Neurology, Shengjing Hospital affiliated to China Medical University, Shenyang, 110000, China
| | - Yan Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Minghua Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Key Laboratory for Neuroscience, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
18
|
Zhao P, Mao B, Cai X, Jiang J, Liu Z, Lin J, He X. 2q24 deletion in a 9-month old girl with anal atresia, hearing impairment, and hypotonia. Int J Pediatr Otorhinolaryngol 2018; 109:96-100. [PMID: 29728193 DOI: 10.1016/j.ijporl.2018.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Deletion of 2q24.2 is a rare cytogenetic aberration in patients, exhibiting heterogeneous clinical features, and common phenotypes included developmental delay, intellectual disability, hypotonia, and mild dysmorphic features. Hearing impairment and anal atresia are rarely described. Here we described a 9-month-old female patient with hypotonia in all four limbs, developmental delay, and intellectual disability. In addition, congenital anal atresia was diagnosed and treated after birth, and hearing impairment was found in right ear. Single nucleotide polymorphisms (SNP) array detected a 5.2 Mb deletion on 2q24.2q24.3, including 19 genes (ITGB6; TBR1; SLC4A10; KCNH7 SCN3A; SCN2A et al.). Among these genes, it is affirmative that TBR1 is a causative gene for intellectual disability; however, the pathogenic genes of other phenotypes remain unclear. We briefly review the knowledge of genes likely involved in these clinical features, including hearing impairment, anal atresia, and developmental delay.
Collapse
Affiliation(s)
- Peiwei Zhao
- Clinical Research Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China; Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, China
| | - Xiaonan Cai
- Clinical Research Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Jun Jiang
- Department of Rehabilitation, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China; Department of Rehabilitation, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, China
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China; Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, China.
| | - Jun Lin
- EEG Room, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016, China.
| | - Xuelian He
- Clinical Research Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, China.
| |
Collapse
|
19
|
Bauer CK, Schwarz JR. Ether-à-go-go K + channels: effective modulators of neuronal excitability. J Physiol 2018; 596:769-783. [PMID: 29333676 DOI: 10.1113/jp275477] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Mammalian ether-à-go-go (EAG) channels are voltage-gated K+ channels. They are encoded by the KCNH gene family and divided into three subfamilies, eag (Kv10), erg (eag-related gene; Kv11) and elk (eag-like; Kv12). All EAG channel subtypes are expressed in the brain where they effectively modulate neuronal excitability. This Topical Review describes the biophysical properties of each of the EAG channel subtypes, their function in neurons and the neurological diseases induced by EAG channel mutations. In contrast to the function of erg currents in the heart, where they contribute to repolarization of the cardiac action potential, erg currents in neurons are involved in the maintenance of the resting potential, setting of action potential threshold and frequency accommodation. They can even support high frequency firing by preventing a depolarization-induced Na+ channel block. EAG channels are modulated differentially, e.g. eag channels by intracellular Ca2+ , erg channels by extracellular K+ and GPCRs, and elk channels by changes in pH. So far, only currents mediated by erg channels have been recorded in neurons with the help of selective blockers. Neuronal eag and elk currents have not been isolated due to the lack of suitable channel blockers. However, findings in KO mice indicate a physiological role of eag1 currents in synaptic transmission and an involvement of elk2 currents in cognitive performance. Human eag1 and eag2 gain-of-function mutations underlie syndromes associated with epileptic seizures.
Collapse
Affiliation(s)
- Christiane K Bauer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Institute of Molecular Neurogenetics, Center of Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Dierich M, Evers S, Wilke BU, Leitner MG. Inverse Modulation of Neuronal K v12.1 and K v11.1 Channels by 4-Aminopyridine and NS1643. Front Mol Neurosci 2018; 11:11. [PMID: 29440988 PMCID: PMC5797642 DOI: 10.3389/fnmol.2018.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023] Open
Abstract
The three members of the ether-à-go-go-gene-like (Elk; Kv12.1-Kv12.3) family of voltage-gated K+ channels are predominantly expressed in neurons, but only little information is available on their physiological relevance. It was shown that Kv12.2 channels modulate excitability of hippocampal neurons, but no native current could be attributed to Kv12.1 and Kv12.3 subunits yet. This may appear somewhat surprising, given high expression of their mRNA transcripts in several brain areas. Native Kv12 currents may have been overlooked so far due to limited knowledge on their biophysical properties and lack of specific pharmacology. Except for Kv12.2, appropriate genetically modified mouse models have not been described; therefore, identification of Kv12-mediated currents in native cell types must rely on characterization of unique properties of the channels. We focused on recombinant human Kv12.1 to identify distinct properties of these channels. We found that Kv12.1 channels exhibited significant mode shift of activation, i.e., stabilization of the voltage sensor domain in a “relaxed” open state after prolonged channel activation. This mode shift manifested by a slowing of deactivation and, most prominently, a significant shift of voltage dependence to hyperpolarized potentials. In contrast to related Kv11.1, mode shift was not sensitive to extracellular Na+, which allowed for discrimination between these isoforms. Sensitivity of Kv12.1 and Kv11.1 to the broad-spectrum K+ antagonist 4-aminopyridine was similar. However, 4-AP strongly activated Kv12.1 channels, but it was an inhibitor of Kv11 channels. Interestingly, the agonist of Kv11 channels NS1643 also differentially modulated the activity of these channels, i.e., NS1643 activated Kv11.1, but strongly inhibited Kv12.1 channels. Thus, these closely related channels are distinguished by inverse pharmacological profiles. In summary, we identified unique biophysical and pharmacological properties of Kv12.1 channels and established straightforward experimental protocols to characterize Kv12.1-mediated currents. Identification of currents in native cell types with mode shift that are activated through 4-AP and inhibited by NS1643 can provide strong evidence for contribution of Kv12.1 to whole cell currents.
Collapse
Affiliation(s)
- Marlen Dierich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Bettina U Wilke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Michael G Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany.,Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
21
|
Modulation of Ether-à-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells. J Neurosci 2017; 38:423-440. [PMID: 29175952 DOI: 10.1523/jneurosci.1774-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
While cholinergic receptor activation has long been known to dramatically enhance the excitability of cortical neurons, the cellular mechanisms responsible for this effect are not well understood. We used intracellular recordings in rat (both sexes) neocortical brain slices to assess the ionic mechanisms supporting persistent firing modes triggered by depolarizing stimuli following cholinergic receptor activation. We found multiple lines of evidence suggesting that a component of the underlying hyperexcitability associated with persistent firing reflects a reduction in the standing (leak) K+ current mediated by Ether-a-go-go-Related Gene (ERG) channels. Three chemically diverse ERG channel blockers (terfenadine, ErgToxin-1, and E-4031) abolished persistent firing and the underlying increase in input resistance in deep pyramidal cells in temporal and prefrontal association neocortex. Calcium accumulation during triggering stimuli appears to attenuate ERG currents, leading to membrane potential depolarization and increased input resistance, two critical elements generating persistent firing. Our results also suggest that ERG current normally governs cortical neuron responses to depolarizing stimuli by opposing prolonged discharges and by enhancing the poststimulus repolarization. The broad expression of ERG channels and the ability of ERG blocks to abolish persistent firing evoked by both synaptic and intracellular step stimuli suggest that modulation of ERG channels may underlie many forms of persistent activity observed in vivoSIGNIFICANCE STATEMENT Persistent activity, where spiking continues beyond the triggering stimulus, is a common phenomenon observed in many types of neurons. Identifying the mechanism underlying this elementary process of memory is a step forward in understanding higher cognitive function including short-term memory. Our results suggest that a reduction in the currents normally mediated by Ether-a-go-go-Related Gene (ERG) K+ channels contributes to persistent firing in neocortical pyramidal cells. ERG currents have been previously studied primarily in the heart; relatively little is known about ERG function in the brain, although mutations in ERG channels have recently been linked to schizophrenia. The present study is among the first to describe its role in neocortex in relation to biophysical correlates of memory function.
Collapse
|
22
|
Fischl MJ, Burger RM, Schmidt-Pauly M, Alexandrova O, Sinclair JL, Grothe B, Forsythe ID, Kopp-Scheinpflug C. Physiology and anatomy of neurons in the medial superior olive of the mouse. J Neurophysiol 2016; 116:2676-2688. [PMID: 27655966 PMCID: PMC5133312 DOI: 10.1152/jn.00523.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
Abstract
In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.
Collapse
Affiliation(s)
- Matthew J Fischl
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; and
| | - Myriam Schmidt-Pauly
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Olga Alexandrova
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - James L Sinclair
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ian D Forsythe
- Department of Neuroscience, Psychology, and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany;
| |
Collapse
|
23
|
Gentile S. hERG1 potassium channel in cancer cells: a tool to reprogram immortality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:649-655. [PMID: 27649700 DOI: 10.1007/s00249-016-1169-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.
Collapse
|
24
|
Sierksma MC, Tedja MS, Borst JGG. In vivo matching of postsynaptic excitability with spontaneous synaptic inputs during formation of the rat calyx of Held synapse. J Physiol 2016; 595:207-231. [PMID: 27426483 DOI: 10.1113/jp272780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons in the medial nucleus of the trapezoid body of anaesthetized rats of postnatal day (P)2-6 showed burst firing with a preferred interval of about 100 ms, which was stable, and a second preferred interval of 5-30 ms, which shortened during development. In 3 out of 132 cases, evidence for the presence of two large inputs was found. In vivo whole-cell recordings revealed that the excitability of the principal neuron and the size of its largest synaptic inputs were developmentally matched. At P2-4, action potentials were triggered by barrages of small synaptic events that summated to plateau potentials, while at later stages firing depended on a single, large and often prespike-associated input, which is probably the nascent calyx of Held. Simulations with a Hodgkin-Huxley-like model, which was based on fits of the intrinsic postsynaptic properties, suggested an essential role for the low-threshold potassium conductance in this transition. ABSTRACT In the adult, principal neurons of the medial nucleus of the trapezoid body (MNTB) are typically contacted by a single, giant terminal called the calyx of Held, whereas during early development a principal neuron receives inputs from many axons. How these changes in innervation impact the postsynaptic activity has not yet been studied in vivo. We therefore recorded spontaneous inputs and intrinsic properties of principal neurons in anaesthetized rat pups during the developmental period in which the calyx forms. A characteristic bursting pattern could already be observed at postnatal day (P)2, before formation of the calyx. At this age, action potentials (APs) were triggered by barrages of summating EPSPs causing plateau depolarizations. In contrast, at P5, a single EPSP reliably triggered APs, resulting in a close match between pre- and postsynaptic firing. Postsynaptic excitability and the size of the largest synaptic events were developmentally matched. The developmental changes in intrinsic properties were estimated by fitting in vivo current injections to a Hodgkin-Huxley-type model of the principal neuron. Our simulations indicated that the developmental increases in Ih , low-threshold K+ channels and leak currents contributed to the reduction in postsynaptic excitability, but that low-threshold K+ channels specifically functioned as a dampening influence in the near-threshold range, thus precluding small inputs from triggering APs. Together, these coincident changes help to propagate bursting activity along the auditory brainstem, and are essential steps towards establishing the relay function of the calyx of Held synapse.
Collapse
Affiliation(s)
- Martijn C Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Milly S Tedja
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Wu W, Gardner A, Sachse FB, Sanguinetti MC. Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels. Mol Pharmacol 2016; 90:469-82. [PMID: 27502018 DOI: 10.1124/mol.116.104091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/05/2016] [Indexed: 01/11/2023] Open
Abstract
Ginsenoside 20(S)-Rg3 (Rg3) is a steroid glycoside that induces human ether-à-go-go-related gene type 1 (hERG1, Kv11.1) channels to activate at more negative potentials and to deactivate more slowly than normal. However, it is unknown whether this action is unique to hERG1 channels. Here we compare and contrast the mechanisms of actions of Rg3 on hERG1 with three other members of the ether-à-go-go (EAG) K(+) channel gene family, including EAG1 (Kv10.1), ERG3 (Kv11.3), and ELK1 (Kv12.1). All four channel types were heterologously expressed in Xenopus laevis oocytes, and K(+) currents were measured using the two-microelectrode voltage-clamp technique. At a maximally effective concentration, Rg3 shifted the half-point of voltage-dependent activation of currents by -14 mV for ERG1 (EC50 = 414 nM), -20 mV for ERG3 (EC50 = 374 nM), -28 mV for EAG1 (EC50 = 1.18 μM), and more than -100 mV for ELK1 (EC50 = 197 nM) channels. Rg3 also induced slowing of ERG1, ERG3, and ELK1 channel deactivation and accelerated the rate of EAG1 channel activation. A Markov model was developed to simulate gating and the effects of Rg3 on the voltage dependence of activation of hELK1 channels. Understanding the mechanism underlying the action of Rg3 may facilitate the development of more potent and selective EAG family channel activators as therapies for cardiovascular and neural disorders.
Collapse
Affiliation(s)
- Wei Wu
- Nora Eccles Harrison Cardiovascular Research and Training Institute (W.W., A.G., F.B.S., M.C.S.), Department of Bioengineering (F.B.S.), Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah
| | - Alison Gardner
- Nora Eccles Harrison Cardiovascular Research and Training Institute (W.W., A.G., F.B.S., M.C.S.), Department of Bioengineering (F.B.S.), Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute (W.W., A.G., F.B.S., M.C.S.), Department of Bioengineering (F.B.S.), Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute (W.W., A.G., F.B.S., M.C.S.), Department of Bioengineering (F.B.S.), Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Brown MR, El-Hassar L, Zhang Y, Alvaro G, Large CH, Kaczmarek LK. Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons. J Neurophysiol 2016; 116:106-21. [PMID: 27052580 DOI: 10.1152/jn.00174.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 01/11/2023] Open
Abstract
Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which modulate Kv3.1 channels. Using Chinese hamster ovary cells stably expressing rat Kv3.1 channels, we found that lower concentrations of these compounds shift the voltage of activation of Kv3.1 currents toward negative potentials, increasing currents evoked by depolarization from typical neuronal resting potentials. Single-channel recordings also showed that AUT1 shifted the open probability of Kv3.1 to more negative potentials. Higher concentrations of AUT2 also shifted inactivation to negative potentials. The effects of lower and higher concentrations could be mimicked in numerical simulations by increasing rates of activation and inactivation respectively, with no change in intrinsic voltage dependence. In brain slice recordings of mouse MNTB neurons, both AUT1 and AUT2 modulated firing rate at high rates of stimulation, a result predicted by numerical simulations. Our results suggest that pharmaceutical modulation of Kv3.1 currents represents a novel avenue for manipulation of neuronal excitability and has the potential for therapeutic benefit in the treatment of hearing disorders.
Collapse
Affiliation(s)
- Maile R Brown
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Lynda El-Hassar
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Giuseppe Alvaro
- Autifony SRL, Verona, Italy; and Autifony Therapeutics Limited, Imperial College Incubator, London, United Kingdom
| | - Charles H Large
- Autifony SRL, Verona, Italy; and Autifony Therapeutics Limited, Imperial College Incubator, London, United Kingdom
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut;
| |
Collapse
|
27
|
Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. ACTA ACUST UNITED AC 2015; 218:526-36. [PMID: 25696816 DOI: 10.1242/jeb.110080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexandra S Martinson
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Layden
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Fortunay H Diatta
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna P Sberna
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - David K Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Timothy J Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Franzen DL, Gleiss SA, Berger C, Kümpfbeck FS, Ammer JJ, Felmy F. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons. J Neurophysiol 2015; 113:524-36. [DOI: 10.1152/jn.00601.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9–28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing.
Collapse
Affiliation(s)
- Delwen L. Franzen
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Sarah A. Gleiss
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska S. Kümpfbeck
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Julian J. Ammer
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- BioImaging Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
30
|
Genomic biomarkers of SUDEP in brain and heart. Epilepsy Behav 2014; 38:172-9. [PMID: 24139807 PMCID: PMC3989471 DOI: 10.1016/j.yebeh.2013.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 01/22/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality, but how to predict which patients are at risk and how to prevent it remain uncertain. The underlying pathomechanisms of SUDEP are still largely unknown, but the general consensus is that seizures somehow disrupt normal cardiac or respiratory physiology leading to death. However, the proportion of SUDEP cases exhibiting cardiac or respiratory dysfunction as a critical factor in the terminal cascade of events remains unresolved. Although many general risk factors for SUDEP have been identified, the development of reliable patient-specific biomarkers for SUDEP is needed to provide more accurate risk prediction and personalized patient management strategies. Studies in animal models and patient groups have revealed at least nine different brain-heart genes that may contribute to a genetic susceptibility for SUDEP, making them potentially useful as genomic biomarkers. This review summarizes data on the relationship between these neurocardiac genes and SUDEP, discussing their brain-heart expression patterns and genotype-phenotype correlations in mouse models and people with epilepsy. These neurocardiac genes represent good first candidates for evaluation as genomic biomarkers of SUDEP in future studies. The development of validated reliable genomic biomarkers for SUDEP has the potential to transform the clinical treatment of epilepsy by pinpointing patients at risk of SUDEP and allowing optimized, genotype-guided therapeutic and prevention strategies.
Collapse
|
31
|
Oak MH, Yi E. Voltage-gated K(+) channels contributing to temporal precision at the inner hair cell-auditory afferent nerve fiber synapses in the mammalian cochlea. Arch Pharm Res 2014; 37:821-33. [PMID: 24925343 DOI: 10.1007/s12272-014-0411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022]
Abstract
To perform auditory tasks such as sound localization in the space, auditory neurons in the brain must distinguish sub-millisecond temporal differences in signals from two ears. Such high temporal resolution is possible when each neuron in the ascending auditory pathway fires brief action potential at very accurate timing. Various pre- and postsynaptic machineries ensuring such high temporal precision of auditory synaptic transmission have been identified. Of particular, in this review, the role of K(+) channels in shortening the duration of synaptic potentials will be discussed. First, the contribution of K(+) channels to AP firing of general auditory neurons will be discussed. Then, the focus will be moved to the inner hair cell (IHC)-auditory afferent nerve fiber (ANF) synapses, the first synapses of ascending auditory pathway. Molecular and immunohistological techniques have revealed various K(+) channels in the cell bodies and their processes of ANFs. Since the development of patch-clamp recordings from the ANF dendrites in 2002, it became possible to monitor the IHC-ANF synaptic transmission in greater detail. As revealed in brain auditory synapses, several different K(+) channels appear to participate in reducing the duration of synaptic potentials at the IHC-ANF synapses. In addition, K(+) channels at the ANF dendrites might act as potential targets of efferent feedback from the brain. The hypothesis is that, upon loud sound exposure, efferent neurotransmitters released onto the ANF dendrites activate certain K(+) channels and prevent excitotoxicity of ANFs. Therefore, K(+) channels of the ANF dendrites might provide potential sites of pharmacological actions to prevent noise-induced hearing loss.
Collapse
Affiliation(s)
- Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeon, Muan, Jeonnam, 534-729, Republic of Korea
| | | |
Collapse
|
32
|
Kazmierczak M, Zhang X, Chen B, Mulkey DK, Shi Y, Wagner PG, Pivaroff-Ward K, Sassic JK, Bayliss DA, Jegla T. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor. ACTA ACUST UNITED AC 2013; 141:721-35. [PMID: 23712551 PMCID: PMC3664700 DOI: 10.1085/jgp.201210938] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo.
Collapse
Affiliation(s)
- Marcin Kazmierczak
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Erg potassium currents of neonatal mouse Purkinje cells exhibit fast gating kinetics and are inhibited by mGluR1 activation. J Neurosci 2013; 33:16729-40. [PMID: 24133274 DOI: 10.1523/jneurosci.5523-12.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.
Collapse
|
34
|
Abstract
To date, research on the human ether-a-go-go related gene (hERG) has focused on this potassium channel's role in cardiac repolarization and Long QT Syndrome (LQTS). However, growing evidence implicates hERG in a diversity of physiologic and pathological processes. Here we discuss these other functions of hERG, particularly their impact on diseases beyond cardiac arrhythmia.
Collapse
|
35
|
Fano S, Çalışkan G, Heinemann U. Differential effects of blockade of ERG channels on gamma oscillations and excitability in rat hippocampal slices. Eur J Neurosci 2012; 36:3628-35. [DOI: 10.1111/ejn.12015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Fano
- Institute for Neurophysiology; Charité Universitätsmedizin Berlin; Berlin; Germany
| | - Gürsel Çalışkan
- Institute for Neurophysiology; Charité Universitätsmedizin Berlin; Berlin; Germany
| | - Uwe Heinemann
- Institute for Neurophysiology; Charité Universitätsmedizin Berlin; Berlin; Germany
| |
Collapse
|
36
|
Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci 2012; 36:2906-16. [PMID: 22780096 PMCID: PMC4042402 DOI: 10.1111/j.1460-9568.2012.08190.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-à-go-go-related gene (ERG) K(+) channels are functionally significant. Here, electrophysiology with selective chemical and peptide ERG channel blockers (E-4031 and rBeKm-1) and computational methods were used to define the contribution made by ERG channels to the firing properties of midbrain dopamine neurons in vivo and in vitro. Selective ERG channel blockade increased the frequency of spontaneous activity as well as the response to depolarizing current pulses without altering spike frequency adaptation. ERG channel block also accelerated entry into depolarization inactivation during bursts elicited by virtual NMDA receptors generated with the dynamic clamp, and significantly prolonged the duration of the sustained depolarization inactivation that followed pharmacologically evoked bursts. In vivo, somatic ERG blockade was associated with an increase in bursting activity attributed to a reduction in doublet firing. Taken together, these results show that dopamine neuron ERG K(+) channels play a prominent role in limiting excitability and in minimizing depolarization inactivation. As the therapeutic actions of antipsychotic drugs are associated with depolarization inactivation of dopamine neurons and blockade of cardiac ERG channels is a prominent side effect of these drugs, ERG channels in the central nervous system may represent a novel target for antipsychotic drug development.
Collapse
Affiliation(s)
- Huifang Ji
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Kristal R. Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ilva Putzier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marco A. Huertas
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - John P. Horn
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Carmen C. Canavier
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Paul D. Shepard
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| |
Collapse
|
37
|
|
38
|
Glassmeier G, Hempel K, Wulfsen I, Bauer CK, Schumacher U, Schwarz JR. Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells. Pflugers Arch 2011; 463:365-76. [PMID: 22075718 PMCID: PMC3261411 DOI: 10.1007/s00424-011-1045-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 01/30/2023]
Abstract
HERG (human ether-à-go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15 mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about −45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth.
Collapse
Affiliation(s)
- Günter Glassmeier
- Institut für Zelluläre und Integrative Physiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Martinistr. 52, D-20246, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Brown MR, Kaczmarek LK. Potassium channel modulation and auditory processing. Hear Res 2011; 279:32-42. [PMID: 21414395 DOI: 10.1016/j.heares.2011.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 02/03/2023]
Abstract
For accurate processing of auditory information, neurons in auditory brainstem nuclei have to fire at high rates with high temporal accuracy. These two requirements can only be fulfilled when the intrinsic electrical properties of these neurons are matched to the pattern of incoming synaptic stimulation. This review article focuses on three families of potassium channels that are critical to shaping the firing pattern and accuracy of neurons. Changes in the auditory environment can trigger very rapid changes in the phosphorylation state of potassium channels in auditory brainstem nuclei. Longer lasting changes in the auditory environment produce changes in the rates of translation and transcription of genes encoding these channels. A key protein that plays a role in setting the overall sensitivity of the auditory system to sound stimuli is FMRP (Fragile X Mental Retardation Protein), which binds channels directly and also regulates the translation of mRNAs for the channels.
Collapse
Affiliation(s)
- Maile R Brown
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
40
|
Huang MH, Shen AY, Wang TS, Wu HM, Kang YF, Chen CT, Hsu TI, Chen BS, Wu SN. Inhibitory action of methadone and its metabolites on erg-mediated K+ current in GH₃ pituitary tumor cells. Toxicology 2010; 280:1-9. [PMID: 21094671 DOI: 10.1016/j.tox.2010.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 01/05/2023]
Abstract
Methadone (Mtd) is a widely used opioid drug associated with the side effect of hyperprolactinemia. The mechanism of how Mtd induces prolactin secretion remains unclear. The effects of Mtd and its two main metabolites (EDDP: (±)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium percholarate and EMDP: 2-ethyl-5-methyl-3,3-dipnehyl-1-pyrroline) on ion currents were investigated in GH₃ pituitary tumor cells. Hyperpolarization-elicited K+ currents in GH₃ cells bathed in a high-K(+), Ca(2+)-free solution were studied to evaluate the effects of Mtd and other related compounds on the ether-à-go-go-related-gene (erg) K(+) current (I(K(erg))). Mtd suppressed the amplitude of I(K(erg)) in a concentration-dependent manner with an IC(50) value of 10.4 μM. With the aid of a minimal binding scheme, the inhibitory action of Mtd on I(K(erg)) was estimated with a dissociation constant of 8.2 μM. Mtd tended to increase the rate of I(K(erg)) deactivation in a voltage-dependent fashion. EDDP (10 μM) had no effect on I(K(erg)), while EMDP (10μM) slightly suppressed it. In GH₃ cells incubated with naloxone (30 μM), the Mtd-induced inhibition of I(K(erg)) remained unaltered. Under cell-attached voltage-clamp recordings, Mtd increased the frequency of spontaneous action currents with no change in current amplitude. Similarly, Mtd can suppress I(K(erg)) in differentiated NG108-15 cells; dynorphin A(1-13) did not reverse Mtd-induced inhibition of I(K(erg)). This study shows that Mtd has a depressant effect on I(K(erg)), and suggests its ability to affect membrane excitability and prolactin secretion. The cyclization of Mtd, in which EDDP and EMDP are formed, tends to be critical in removal of the Mtd binding to erg K+ channel.
Collapse
Affiliation(s)
- Mei-Han Huang
- College of Medical and Health Sciences, Fooyin University, Ta-Liao, Kaohsiung County, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gazula VR, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. J Comp Neurol 2010; 518:3205-20. [PMID: 20575068 DOI: 10.1002/cne.22393] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Elimination of the Kv1.3 voltage-dependent potassium channel gene produces striking changes in the function of the olfactory bulb, raising the possibility that this channel also influences other sensory systems. We have examined the cellular and subcellular localization of Kv1.3 in the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem, a nucleus in which neurons fire at high rates with high temporal precision. A clear gradient of Kv1.3 immunostaining along the lateral to medial tonotopic axis of the MNTB was detected. Highest levels were found in the lateral region of the MNTB, which corresponds to neurons that respond selectively to low-frequency auditory stimuli. Previous studies have demonstrated that MNTB neurons and their afferent inputs from the cochlear nucleus express three other members of the Kv1 family, Kv1.1, Kv1.2, and Kv1.6. Nevertheless, confocal microscopy of MNTB sections coimmunostained for Kv1.3 with these subunits revealed that the distribution of Kv1.3 differed significantly from other Kv1 family subunits. In particular, no axonal staining of Kv1.3 was detected, and most prominent labeling was in structures surrounding the somata of the principal neurons, suggesting specific localization to the large calyx of Held presynaptic endings that envelop the principal cells. The presence of Kv1.3 in presynaptic terminals was confirmed by coimmunolocalization with the synaptic markers synaptophysin, syntaxin, and synaptotagmin and by immunogold electron microscopy. Kv1.3 immunogold particles in the terminals were arrayed along the plasma membrane and on internal vesicular structures. To confirm these patterns of staining, we carried out immunolabeling on sections from Kv1.3(-/-) mice. No immunoreactivity could be detected in Kv1.3(-/-) mice either at the light level or in immunogold experiments. The finding of a tonotopic gradient in presynaptic terminals suggests that Kv1.3 may regulate neurotransmitter release differentially in neurons that respond to different frequencies of sound.
Collapse
Affiliation(s)
- Valeswara-Rao Gazula
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnston J, Forsythe ID, Kopp-Scheinpflug C. Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 2010; 588:3187-200. [PMID: 20519310 DOI: 10.1113/jphysiol.2010.191973] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review we take a physiological perspective on the role of voltage-gated potassium channels in an identified neuron in the auditory brainstem. The large number of KCN genes for potassium channel subunits and the heterogeneity of the subunit combination into K(+) channels make identification of native conductances especially difficult. We provide a general pharmacological and biophysical profile to help identify the common voltage-gated K(+) channel families in a neuron. Then we consider the physiological role of each of these conductances from the perspective of the principal neuron in the medial nucleus of the trapezoid body (MNTB). The MNTB is an inverting relay, converting excitation generated by sound from one cochlea into inhibition of brainstem nuclei on the opposite side of the brain; this information is crucial for binaural comparisons and sound localization. The important features of MNTB action potential (AP) firing are inferred from its inhibitory projections to four key target nuclei involved in sound localization (which is the foundation of auditory scene analysis in higher brain centres). These are: the medial superior olive (MSO), the lateral superior olive (LSO), the superior paraolivary nucleus (SPN) and the nuclei of the lateral lemniscus (NLL). The Kv families represented in the MNTB each have a distinct role: Kv1 raises AP firing threshold; Kv2 influences AP repolarization and hyperpolarizes the inter-AP membrane potential during high frequency firing; and Kv3 accelerates AP repolarization. These actions are considered in terms of fidelity of transmission, AP duration, firing rates and temporal jitter. An emerging theme is activity-dependent phosphorylation of Kv channel activity and suggests that intracellular signalling has a dynamic role in refining neuronal excitability and homeostasis.
Collapse
Affiliation(s)
- Jamie Johnston
- MRC Toxicology Unit, University of Leicester, Leicester, LE1 9HN, UK
| | | | | |
Collapse
|
43
|
Atalar F, Acuner TT, Cine N, Oncu F, Yesilbursa D, Ozbek U, Turkcan S. Two four-marker haplotypes on 7q36.1 region indicate that the potassium channel gene HERG1 (KCNH2, Kv11.1) is related to schizophrenia: a case control study. Behav Brain Funct 2010; 6:27. [PMID: 20507645 PMCID: PMC2890623 DOI: 10.1186/1744-9081-6-27] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background The pathobiology of schizophrenia is still unclear. Its current treatment mainly depends on antipsychotic drugs. A leading adverse effect of these medications is the acquired long QT syndrome, which results from the blockade of cardiac HERG1 channels (human ether-a-go-go-related gene potassium channels 1) by antipsychotic agents. The HERG1 channel is encoded by HERG1 (KCNH2, Kv11.1) gene and is most highly expressed in heart and brain. Genetic variations in HERG1 predispose to acquired long QT syndrome. We hypothesized that the blockade of HERG1 channels by antipsychotics might also be significant for their therapeutic mode of action, indicating a novel mechanism in the pathogenesis of schizophrenia. Methods We genotyped four single nucleotide polymorphisms (SNPs) in 7q36.1 region (two SNPs, rs1805123 and rs3800779, located on HERG1, and two SNPs, rs885684 and rs956642, at the 3'-downstream intergenic region) and then performed single SNP and haplotype association analyses in 84 patients with schizophrenia and 74 healthy controls after the exclusion of individuals having prolonged or shortened QT interval on electrocardiogram. Results Our analyses revealed that both genotype and allele frequencies of rs3800779 (c.307+585G>T) were significantly different between populations (P = 0.023 and P = 0.018, respectively). We also identified that two previously undescribed four-marker haplotypes which are nearly allelic opposite of each other and located in chr7:150225599-150302147bp position encompassing HERG1 were either overrepresented (A-A-A-T, the at-risk haplotype, P = 0.0007) or underrepresented (C-A-C-G, the protective haplotype, P = 0.005) in patients compared to controls. Conclusions Our results indicate that the potassium channel gene HERG1 is related to schizophrenia. Our findings may also implicate the whole family of HERG channels (HERG1, HERG2 and HERG3) in the pathogenesis of psychosis and its treatment.
Collapse
Affiliation(s)
- Fatmahan Atalar
- Endocrinology Laboratory, Department of Growth, Development and Pediatric Endocrinology, Child Health Institute, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
44
|
Steinert JR, Postlethwaite M, Jordan MD, Chernova T, Robinson SW, Forsythe ID. NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. J Physiol 2009; 588:447-63. [PMID: 20008465 DOI: 10.1113/jphysiol.2009.184317] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NMDA receptors (NMDARs) mediate a slow EPSC at excitatory glutamatergic synapses throughout the brain. In many areas the magnitude of the NMDAR-mediated EPSC declines with development and is associated with changes in subunit composition, but the mature channel composition is often unknown. We have employed the calyx of Held terminal with its target, the principal neuron of the medial nucleus of the trapezoid body (MNTB), to examine the NMDAR-mediated EPSC during synapse maturation from P10 to P40. Our data show that the calyx has reached a mature state by around P18. The NMDAR-mediated EPSC amplitude (and dominant decay ) fell from around 5 nA (: 40-50 ms) at P10/11 to 0.3-0.5 nA (: 10-15 ms) by P18. The mature NMDAR-EPSC showed no sensitivity to ifenprodil, indicating lack of NR2B subunits, and no block by submicromolar concentrations of zinc, consistent with NR1-1b subunit expression. Additionally, from P11 to P18 there was a reduction in voltage-dependent block and the apparent dissociation constant for [Mg(2+)](o) (K(o)) changed from 7.5 to 14 mm. Quantitative PCR showed that the relative expression of NR2A and NR2C increased, while immunohistochemistry confirmed the presence of NR2A, NR2B and NR2C protein. Although the mature NMDAR-EPSC is small, it is well coupled to NO signalling, as indicated by DAR-4M imaging. We conclude that native mature NMDAR channels at the calyx of Held have a fast time course and reduced block by [Mg(2+)](o), consistent with dominance of NR2C subunits and functional exclusion of NR2B subunits. The pharmacology suggests a single channel type and we postulate that the mature NMDARs consist of heterotrimers of NR1-1b-NR2A-NR2C.
Collapse
Affiliation(s)
- Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Donata Oertel
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|