1
|
Dutta Banik D, Medler KF. Defining the role of TRPM4 in broadly responsive taste receptor cells. Front Cell Neurosci 2023; 17:1148995. [PMID: 37032837 PMCID: PMC10073513 DOI: 10.3389/fncel.2023.1148995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Peripheral taste receptor cells use multiple signaling pathways to transduce taste stimuli into output signals that are sent to the brain. We have previously identified a subpopulation of Type III taste cells that are broadly responsive (BR) and respond to multiple taste stimuli including bitter, sweet, umami, and sour. These BR cells use a PLCβ3/IP3R1 signaling pathway to detect bitter, sweet, and umami stimuli and use a separate pathway to detect sour. Currently, the downstream targets of the PLCβ3 signaling pathway are unknown. Here we identify TRPM4, a monovalent selective TRP channel, as an important downstream component in this signaling pathway. Using live cell imaging on isolated taste receptor cells from mice, we show that inhibition of TRPM4 abolished the taste-evoked sodium responses and significantly reduced the taste-evoked calcium responses in BR cells. Since BR cells are a subpopulation of Type III taste cells, they have conventional chemical synapses that require the activation of voltage-gated calcium channels (VGCCs) to cause neurotransmitter release. We found that TRPM4-dependent membrane depolarization selectively activates L-type VGCCs in these cells. The calcium influx through L-type VGCCs also generates a calcium-induced calcium release (CICR) via ryanodine receptors that enhances TRPM4 activity. Together these signaling events amplify the initial taste response to generate an appropriate output signal.
Collapse
|
2
|
von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021; 15:667709. [PMID: 34239428 PMCID: PMC8258107 DOI: 10.3389/fnhum.2021.667709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Sweetness is the preferred taste of humans and many animals, likely because sugars are a primary source of energy. In many mammals, sweet compounds are sensed in the tongue by the gustatory organ, the taste buds. Here, a group of taste bud cells expresses a canonical sweet taste receptor, whose activation induces Ca2+ rise, cell depolarization and ATP release to communicate with afferent gustatory nerves. The discovery of the sweet taste receptor, 20 years ago, was a milestone in the understanding of sweet signal transduction and is described here from a historical perspective. Our review briefly summarizes the major findings of the canonical sweet taste pathway, and then focuses on molecular details, about the related downstream signaling, that are still elusive or have been neglected. In this context, we discuss evidence supporting the existence of an alternative pathway, independent of the sweet taste receptor, to sense sugars and its proposed role in glucose homeostasis. Further, given that sweet taste receptor expression has been reported in many other organs, the physiological role of these extraoral receptors is addressed. Finally, and along these lines, we expand on the multiple direct and indirect effects of sugars on the brain. In summary, the review tries to stimulate a comprehensive understanding of how sweet compounds signal to the brain upon taste bud cells activation, and how this gustatory process is integrated with gastro-intestinal sugar sensing to create a hedonic and metabolic representation of sugars, which finally drives our behavior. Understanding of this is indeed a crucial step in developing new strategies to prevent obesity and associated diseases.
Collapse
Affiliation(s)
- Elena von Molitor
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | | | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| |
Collapse
|
3
|
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch 2020; 472:1667-1691. [PMID: 33030576 DOI: 10.1007/s00424-020-02467-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Sweet substances are detected by taste-bud cells upon binding to the sweet-taste receptor, a T1R2/T1R3 heterodimeric G protein-coupled receptor. In addition, experiments with mouse models lacking the sweet-taste receptor or its downstream signaling components led to the proposal of a parallel "alternative pathway" that may serve as metabolic sensor and energy regulator. Indeed, these mice showed residual nerve responses and behavioral attraction to sugars and oligosaccharides but not to artificial sweeteners. In analogy to pancreatic β cells, such alternative mechanism, to sense glucose in sweet-sensitive taste cells, might involve glucose transporters and KATP channels. Their activation may induce depolarization-dependent Ca2+ signals and release of GLP-1, which binds to its receptors on intragemmal nerve fibers. Via unknown neuronal and/or endocrine mechanisms, this pathway may contribute to both, behavioral attraction and/or induction of cephalic-phase insulin release upon oral sweet stimulation. Here, we critically review the evidence for a parallel sweet-sensitive pathway, involved signaling mechanisms, neural processing, interactions with endocrine hormonal mechanisms, and its sensitivity to different stimuli. Finally, we propose its physiological role in detecting the energy content of food and preparing for digestion.
Collapse
|
4
|
Dutta Banik D, Benfey ED, Martin LE, Kay KE, Loney GC, Nelson AR, Ahart ZC, Kemp BT, Kemp BR, Torregrossa AM, Medler KF. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genet 2020; 16:e1008925. [PMID: 32790785 PMCID: PMC7425866 DOI: 10.1371/journal.pgen.1008925] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCβ signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCβ3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCβ3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression. We use our taste system to decide if we are going to consume or reject a potential food item. This is critical for survival, as we need energy to live but also need to avoid potentially toxic compounds. Therefore, it is important to understand how the taste cells in our mouth detect the chemicals in food and send a message to our brain. Signals from the taste cells form a code that conveys information about the nature of the potential food item to the brain. How this taste coding works is not well understood. Currently, it is thought that taste cells are primarily selective for each taste stimuli and only detect either bitter, sweet, sour, salt, or umami (amino acids) compounds. Our study describes a new population of taste cells that can detect multiple types of stimuli, including chemicals from different taste qualities. Thus, taste cells can be either selective or generally responsive to stimuli which is similar to the cells in the brain that process taste information. The presence of these broadly responsive taste cells provides new insight into how taste information is sent to the brain for processing.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Eric D. Benfey
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Laura E. Martin
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristen E. Kay
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Gregory C. Loney
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Amy R. Nelson
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Zachary C. Ahart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Barrett T. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Bailey R. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
6
|
Ahart ZC, Martin LE, Kemp BR, Banik DD, Roberts SG, Torregrossa AM, Medler KF. Differential Effects of Diet and Weight on Taste Responses in Diet-Induced Obese Mice. Obesity (Silver Spring) 2020; 28:284-292. [PMID: 31891242 PMCID: PMC6981059 DOI: 10.1002/oby.22684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/21/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Previous studies have reported that individuals with obesity have reduced taste perception, but the relationship between obesity and taste is poorly understood. Earlier work has demonstrated that diet-induced obesity directly impairs taste. Currently, it is not clear whether these changes to taste are due to obesity or to the high-fat diet exposure. The goal of the current study was to determine whether diet or excess weight is responsible for the taste deficits induced by diet-induced obesity. METHODS C57BL/6 mice were placed on either high-fat or standard chow in the presence or absence of captopril. Mice on captopril did not gain weight when exposed to a high-fat diet. Changes in the responses to different taste stimuli were evaluated using live cell imaging, brief-access licking, immunohistochemistry, and real-time polymerase chain reaction. RESULTS Diet and weight gain each affected taste responses, but their effects varied by stimulus. Two key signaling proteins, α-gustducin and phospholipase Cβ2, were significantly reduced in the mice on the high-fat diet with and without weight gain, identifying a potential mechanism for the reduced taste responsiveness to some stimuli. CONCLUSIONS Our data indicate that, for some stimuli, diet alone can cause taste deficits, even without the onset of obesity.
Collapse
Affiliation(s)
- Zachary C. Ahart
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Laura E. Martin
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bailey R. Kemp
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Stefan G.E. Roberts
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
7
|
Gao Y, Dutta Banik D, Muna MM, Roberts SG, Medler KF. The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells. Life Sci Alliance 2019; 2:2/3/e201800287. [PMID: 31167803 PMCID: PMC6555901 DOI: 10.26508/lsa.201800287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The WT1/BASP1 complex is important to maintain taste receptor cells in their terminally differentiated state. WT1 is a transcriptional activator that controls the boundary between multipotency and differentiation. The transcriptional cofactor BASP1 binds to WT1, forming a transcriptional repressor complex that drives differentiation in cultured cells; however, this proposed mechanism has not been demonstrated in vivo. We used the peripheral taste system as a model to determine how BASP1 regulates the function of WT1. During development, WT1 is highly expressed in the developing taste cells while BASP1 is absent. By the end of development, BASP1 and WT1 are co-expressed in taste cells, where they both occupy the promoter of WT1 target genes. Using a conditional BASP1 mouse, we demonstrate that BASP1 is critical to maintain the differentiated state of adult taste cells and that loss of BASP1 expression significantly alters the composition and function of these cells. This includes the de-repression of WT1-dependent target genes from the Wnt and Shh pathways that are normally only transcriptionally activated by WT1 in the undifferentiated taste cells. Our results uncover a central role for the WT1–BASP1 complex in maintaining cell differentiation in vivo.
Collapse
Affiliation(s)
- Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Mutia M Muna
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefan Ge Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA .,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Liu T, Zhao J, Ibarra C, Garcia MU, Uhlén P, Nistér M. Glycosylation controls sodium-calcium exchanger 3 sub-cellular localization during cell cycle. Eur J Cell Biol 2018. [PMID: 29526322 DOI: 10.1016/j.ejcb.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The Na+/Ca2+ exchanger (NCX) is a membrane antiporter that has been identified in the plasma membrane, the inner membrane of the nuclear envelope and in the membrane of the endoplasmic reticulum (ER). In humans, three genes have been identified, encoding unique NCX proteins. Although extensively studied, the NCX's sub-cellular localization and mechanisms regulating the activity of different subtypes are still ambiguous. Here we investigated the subcellular localization of the NCX subtype 3 (NCX3) and its impact on the cell cycle. Two phenotypes, switching from one to the other during the cell cycle, were detected. One phenotype was NCX3 in the plasma membrane during S and M phase, and the other was NCX3 in the ER membrane during resting and interphase. Glycosylation of NCX3 at the N45 site was required for targeting the protein to the plasma membrane, and the N45 site functioned as an on-off switch for the translocation of NCX3 to either the plasma membrane or the membrane of the ER. Introduction of an N-glycosylation deficient NCX3 mutant led to an arrest of cells in the G0/G1 phase of the cell cycle. This was accompanied by accumulation of de-glycosylated NCX3 in the cytosol (that is in the ER), where it transported calcium ions (Ca2+) from the cytosol to the ER. These results, obtained in transfected HEK293T and HeLa and confirmed endogenously in SH-SY5Y cells, suggest that cells can use a dynamic Ca2+ signaling toolkit in which the NCX3 sub-cellular localization changes in synchrony with the cell cycle.
Collapse
Affiliation(s)
- Tong Liu
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | - Cristian Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Maxime U Garcia
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
9
|
Shandilya J, Gao Y, Nayak TK, Roberts SGE, Medler KF. AP1 transcription factors are required to maintain the peripheral taste system. Cell Death Dis 2016; 7:e2433. [PMID: 27787515 PMCID: PMC5133999 DOI: 10.1038/cddis.2016.343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 01/07/2023]
Abstract
The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.
Collapse
Affiliation(s)
- Jayasha Shandilya
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Tapan K Nayak
- Department of Physiology & Biophysics, University at Buffalo, Buffalo, NY 14214, USA
| | - Stefan G E Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
10
|
Medler KF. Calcium signaling in taste cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2025-32. [PMID: 25450977 DOI: 10.1016/j.bbamcr.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
11
|
Iguchi N, Ohkuri T, Slack JP, Zhong P, Huang L. Sarco/Endoplasmic reticulum Ca2+-ATPases (SERCA) contribute to GPCR-mediated taste perception. PLoS One 2011; 6:e23165. [PMID: 21829714 PMCID: PMC3149081 DOI: 10.1371/journal.pone.0023165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/13/2011] [Indexed: 02/01/2023] Open
Abstract
The sense of taste is important for providing animals with valuable information about the qualities of food, such as nutritional or harmful nature. Mammals, including humans, can recognize at least five primary taste qualities: sweet, umami (savory), bitter, sour, and salty. Recent studies have identified molecules and mechanisms underlying the initial steps of tastant-triggered molecular events in taste bud cells, particularly the requirement of increased cytosolic free Ca(2+) concentration ([Ca(2+)](c)) for normal taste signal transduction and transmission. Little, however, is known about the mechanisms controlling the removal of elevated [Ca(2+)](c) from the cytosol of taste receptor cells (TRCs) and how the disruption of these mechanisms affects taste perception. To investigate the molecular mechanism of Ca(2+) clearance in TRCs, we sought the molecules involved in [Ca(2+)](c) regulation using a single-taste-cell transcriptome approach. We found that Serca3, a member of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) family that sequesters cytosolic Ca(2+) into endoplasmic reticulum, is exclusively expressed in sweet/umami/bitter TRCs, which rely on intracellular Ca(2+) release for signaling. Serca3-knockout (KO) mice displayed significantly increased aversive behavioral responses and greater gustatory nerve responses to bitter taste substances but not to sweet or umami taste substances. Further studies showed that Serca2 was mainly expressed in the T1R3-expressing sweet and umami TRCs, suggesting that the loss of function of Serca3 was possibly compensated by Serca2 in these TRCs in the mutant mice. Our data demonstrate that the SERCA family members play an important role in the Ca(2+) clearance in TRCs and that mutation of these proteins may alter bitter and perhaps sweet and umami taste perception.
Collapse
Affiliation(s)
- Naoko Iguchi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Tadahiro Ohkuri
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Jay P. Slack
- Givaudan Flavors Corporation, Cincinnati, Ohio, United States of America
| | - Ping Zhong
- Givaudan Flavors Corporation, Cincinnati, Ohio, United States of America
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Rebello MR, Aktas A, Medler KF. Expression of calcium binding proteins in mouse type II taste cells. J Histochem Cytochem 2011; 59:530-9. [PMID: 21527586 DOI: 10.1369/0022155411402352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that calcium is a critical signaling molecule in the transduction of taste stimuli within the peripheral taste system. However, little is known about the regulation and termination of these calcium signals in the taste system. The authors used Western blot, immunocytochemical, and RT-PCR analyses to evaluate the expression of multiple calcium binding proteins in mouse circumvallate taste papillae, including parvalbumin, calbindin D28k, calretinin, neurocalcin, NCS-1 (or frequenin), and CaBP. They found that all of the calcium binding proteins they tested were expressed in mouse circumvallate taste cells with the exception of NCS-1. The authors correlated the expression patterns of these calcium binding proteins with a marker for type II cells and found that neurocalcin was expressed in 80% of type II cells, whereas parvalbumin was found in less than 10% of the type II cells. Calretinin, calbindin, and CaBP were expressed in about half of the type II cells. These data reveal that multiple calcium binding proteins are highly expressed in taste cells and have distinct expression patterns that likely reflect their different roles within taste receptor cells.
Collapse
Affiliation(s)
- Michelle R Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
13
|
Kondo Y, Nakamoto T, Mukaibo T, Kidokoro M, Masaki C, Hosokawa R. Cevimeline-induced monophasic salivation from the mouse submandibular gland: decreased Na+ content in saliva results from specific and early activation of Na+/H+ exchange. J Pharmacol Exp Ther 2011; 337:267-74. [PMID: 21239510 DOI: 10.1124/jpet.110.174946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cevimeline and pilocarpine are muscarinic agonists used clinically to treat dry mouth. In this study, we explored fluid secretion from mouse submandibular glands to determine the mechanism of cevimeline, pilocarpine, and an experimentally used agent carbachol. Cevimeline evoked almost the same amount of secretion at concentrations from 30 μM to 1 mM. Pilocarpine also induced secretion at a concentration as low as 1 μM and was the most powerful secretagogue at 10 μM. Secretion was induced by carbachol at 0.1 μM, with maximum secretion at 1.0 μM. Cevimeline induced monophasic secretion at all concentrations tested, whereas higher concentrations of pilocarpine and carbachol induced secretion with variable kinetics, i.e., an initial transient high flow rate, followed by decreased secretion after 2 to 3 min. In the presence of an epithelial Na(+) channel blocker, amiloride, neither carbachol nor pilocarpine affected the Na(+) level of secreted saliva; however, it significantly increased the Na(+) content of cevimeline-induced saliva. The intracellular Ca(2+) response of acinar cells was almost identical among all three agents, although recovery after drug removal was slower for cevimeline and pilocarpine. A profound decrease in intracellular pH was observed during pilocarpine and carbachol treatment, whereas intracellular acidification induced by cevimeline was only seen in the presence of a Na(+)/H(+) exchange inhibitor. When external HCO(3)(-) was removed, cevimeline-induced saliva significantly decreased. These findings suggest that cevimeline specifically activates Na(+)/H(+) exchange and may promote Na(+) reabsorption by stabilizing epithelial sodium channel activity.
Collapse
Affiliation(s)
- Yusuke Kondo
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental College, Kitakyushu City, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Medler KF. Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:831-46. [DOI: 10.1007/978-94-007-0265-3_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
Collapse
Affiliation(s)
- Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
16
|
Szebenyi SA, Laskowski AI, Medler KF. Sodium/calcium exchangers selectively regulate calcium signaling in mouse taste receptor cells. J Neurophysiol 2010; 104:529-38. [PMID: 20463203 DOI: 10.1152/jn.00118.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Taste cells use multiple signaling mechanisms to generate appropriate cellular responses to discrete taste stimuli. Some taste stimuli activate G protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). While the signaling mechanisms that initiate calcium signals have been described in taste cells, the calcium clearance mechanisms (CCMs) that contribute to the termination of these signals have not been identified. In this study, we used calcium imaging to define the role of sodium-calcium exchangers (NCXs) in the termination of evoked calcium responses. We found that NCXs regulate the calcium signals that rely on calcium influx at the plasma membrane but do not significantly contribute to the calcium signals that depend on calcium release from internal stores. Our data indicate that this selective regulation of calcium signals by NCXs is due primarily to their location in the cell rather than to the differences in cytosolic calcium loads. This is the first report to define the physiological role for any of the CCMs utilized by taste cells to regulate their evoked calcium responses.
Collapse
Affiliation(s)
- Steven A Szebenyi
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
17
|
Dando R. Examining the neglected side of calcium regulation in taste cells. J Physiol 2010; 587:5523-4. [PMID: 19959552 DOI: 10.1113/jphysiol.2009.181842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Robin Dando
- Department of Physiology & Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|