1
|
Karaduman T, Özcan Türkmen M, Ozer ES, Ergin B, Saglam B, Erdem Tuncdemir B, Mergen H. Functional analysis of AQP2 mutants found in patients with diabetes insipidus. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Bissonnette P, Lussier Y, Matar J, Leduc‐Nadeau A, Da Cal S, Arthus M, Unwin RJ, Steinke J, Rangaswamy D, Bichet DG. Further evidence for functional recovery of AQP2 mutations associated with nephrogenic diabetes insipidus. Physiol Rep 2021; 9:e14866. [PMID: 34120413 PMCID: PMC8198467 DOI: 10.14814/phy2.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Aquaporin-2 (AQP2) is a homotetrameric water channel responsible for the final water reuptake in the kidney. Disease-causing AQP2 mutations induce nephrogenic diabetes insipidus (NDI), a condition that challenges the bodily water balance by producing large urinary volumes. In this study, we characterize three new AQP2 mutations identified in our lab from NDI patients (A120D, A130V, T179N) along the previously reported A47V variant. Using Xenopus oocytes, we compared the key functional and biochemical features of these mutations against classical recessive (R187C) and dominant (R254Q) forms, and once again found clear functional recovery features (increased protein stability and function) for all mutations under study. This behaviour, attributed to heteromerization to wt-AQP2, challenge the classical model to NDI which often depicts recessive mutations as ill-structured proteins unable to oligomerize. Consequently, we propose a revised model to the cell pathophysiology of AQP2-related NDI which accounts for the functional recovery of recessive AQP2 mutations.
Collapse
Affiliation(s)
- Pierre Bissonnette
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQCCanada
| | - Yoann Lussier
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQCCanada
| | - Jessica Matar
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQCCanada
| | | | - Sandra Da Cal
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQCCanada
| | | | - Robert J. Unwin
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Julia Steinke
- Division of Pediatric NephrologyHelen DeVos Children’s Hospital and ClinicsGrand RapidsMIUSA
| | - Dharshan Rangaswamy
- Department of NephrologyKasturba Medical CollegeKasturba HospitalManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Daniel G. Bichet
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQCCanada
- Centre de RechercheHôpital du Sacré‐Cœur de MontréalMontréalQCCanada
| |
Collapse
|
3
|
AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions. Cells 2020; 9:cells9102172. [PMID: 32993088 PMCID: PMC7599609 DOI: 10.3390/cells9102172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
, the molecular defects in the AVPR2 and AQP2 mutants, post-translational modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and degradation of AQP2.
Collapse
|
4
|
Peces R, Mena R, Peces C, Santos-Simarro F, Fernández L, Afonso S, Lapunzina P, Selgas R, Nevado J. Severe congenital nephrogenic diabetes insipidus in a compound heterozygote with a new large deletion of the AQP2 gene. A case report. Mol Genet Genomic Med 2019; 7:e00568. [PMID: 30784238 PMCID: PMC6465731 DOI: 10.1002/mgg3.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/28/2018] [Accepted: 12/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background Congenital nephrogenic diabetes insipidus (NDI) is a rare condition characterized by severe polyuria, due to the inability of the kidneys to concentrate urine in response to arginine vasopressin (AVP). In the majority of the cases, the disease shows an X‐linked inherited pattern, although an autosomal recessive inheritance was also observed. Methods We report a patient with a severe NDI diagnosed during the neonatal period. Because the patient was female without a family history of congenital NDI, her disease was thought to exhibit an autosomal recessive form. Results A full mutation analysis of AVP receptor 2 (AVPR2; MIM#300538) gene showed no mutations. However, direct Sanger sequencing of the aquaporin 2 (AQP2) revealed an apparently homozygous mutation at nucleotide position NM_000486.5:c.374C>T (p.Thr125Met) in exon 2. Further customized multiplex ligation‐dependent probe amplification (MLPA), single‐nucleotide polymorphism (SNP) array analysis, and long‐range polymerase chain reaction (PCR) followed by Sanger sequencing showed a heterozygous exonic deletion comprising exons 2, 3, and partially 4 of AQP2. Conclusion This is the first case of a compound heterozygote patient with a missense mutation involving NM_000486.5:exon2:c.374C>T (p.Thr125Met) and a gross deletion of at least exons 2, 3, and partially 4 on the AQP2 to present with a severe NDI phenotype.
Collapse
Affiliation(s)
- Ramón Peces
- Nephrology Department, La Paz University Hospital, IdiPAZ, Autonomous University, Madrid, Spain
| | - Rocío Mena
- La Paz University Hospital, Medical and Molecular Genetics Institute (INGEMM), IdiPAZ, Madrid, Spain.,Basic Research Center in the Rare Diseases Network (CIBERER), Madrid, Spain
| | - Carlos Peces
- Information Technology Area, SESCAM, Toledo, Spain
| | - Fernando Santos-Simarro
- La Paz University Hospital, Medical and Molecular Genetics Institute (INGEMM), IdiPAZ, Madrid, Spain.,Basic Research Center in the Rare Diseases Network (CIBERER), Madrid, Spain
| | - Luis Fernández
- La Paz University Hospital, Medical and Molecular Genetics Institute (INGEMM), IdiPAZ, Madrid, Spain.,Basic Research Center in the Rare Diseases Network (CIBERER), Madrid, Spain
| | - Sara Afonso
- Nephrology Department, La Paz University Hospital, IdiPAZ, Autonomous University, Madrid, Spain
| | - Pablo Lapunzina
- La Paz University Hospital, Medical and Molecular Genetics Institute (INGEMM), IdiPAZ, Madrid, Spain.,Basic Research Center in the Rare Diseases Network (CIBERER), Madrid, Spain
| | - Rafael Selgas
- Nephrology Department, La Paz University Hospital, IdiPAZ, Autonomous University, Madrid, Spain
| | - Julián Nevado
- La Paz University Hospital, Medical and Molecular Genetics Institute (INGEMM), IdiPAZ, Madrid, Spain.,Basic Research Center in the Rare Diseases Network (CIBERER), Madrid, Spain
| |
Collapse
|
5
|
Milano S, Carmosino M, Gerbino A, Svelto M, Procino G. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. Int J Mol Sci 2017; 18:ijms18112385. [PMID: 29125546 PMCID: PMC5713354 DOI: 10.3390/ijms18112385] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| |
Collapse
|
6
|
Abstract
Diabetes insipidus is a disease characterized by polyuria and polydipsia due to inadequate release of arginine vasopressin from the posterior pituitary gland (neurohypophyseal diabetes insipidus) or due to arginine vasopressin insensitivity by the renal distal tubule, leading to a deficiency in tubular water reabsorption (nephrogenic diabetes insipidus). This article reviews the genetics of diabetes insipidus in the context of its diagnosis, clinical presentation, and therapy.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria; Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Anton Luger
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|
7
|
Functional Recovery of AQP2 Recessive Mutations Through Hetero-Oligomerization with Wild-Type Counterpart. Sci Rep 2016; 6:33298. [PMID: 27641679 PMCID: PMC5027563 DOI: 10.1038/srep33298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
Aquaporin-2 (AQP2) is a homotetrameric water channel responsible for the final water reuptake in the kidney. Mutations in the protein induce nephrogenic diabetes insipidus (NDI), which challenges the water balance by producing large urinary volumes. Although recessive AQP2 mutations are believed to generate non-functional and monomeric proteins, the literature identifies several mild mutations which suggest the existence of mixed wt/mut tetramers likely to carry function in heterozygotes. Using Xenopus oocytes, we tested this hypothesis and found that mild mutants (V24A, D150E) can associate with wt-AQP2 in mixed heteromers, providing clear functional gain in the process (62 ± 17% and 63 ± 17% increases, respectively), conversely to the strong monomeric R187C mutant which fails to associate with wt-AQP2. In kidney cells, both V24A and D150E display restored targeting while R187C remains in intracellular stores. Using a collection of mutations to expand recovery analyses, we demonstrate that inter-unit contacts are central to this recovery process. These results not only present the ground data for the functional recovery of recessive AQP2 mutants through heteromerization, which prompt to revisit the accepted NDI model, but more importantly describe a general recovery process that could impact on all multimeric systems where recessive mutations are found.
Collapse
|
8
|
|
9
|
Pattnaik BR, Tokarz S, Asuma MP, Schroeder T, Sharma A, Mitchell JC, Edwards AO, Pillers DAM. Snowflake vitreoretinal degeneration (SVD) mutation R162W provides new insights into Kir7.1 ion channel structure and function. PLoS One 2013; 8:e71744. [PMID: 23977131 PMCID: PMC3747230 DOI: 10.1371/journal.pone.0071744] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023] Open
Abstract
Snowflake Vitreoretinal Degeneration (SVD) is associated with the R162W mutation of the Kir7.1 inwardly-rectifying potassium channel. Kir7.1 is found at the apical membrane of Retinal Pigment Epithelial (RPE) cells, adjacent to the photoreceptor neurons. The SVD phenotype ranges from RPE degeneration to an abnormal b-wave to a liquid vitreous. We sought to determine how this mutation alters the structure and function of the human Kir7.1 channel. In this study, we expressed a Kir7.1 construct with the R162W mutation in CHO cells to evaluate function of the ion channel. Compared to the wild-type protein, the mutant protein exhibited a non-functional Kir channel that resulted in depolarization of the resting membrane potential. Upon co-expression with wild-type Kir7.1, R162W mutant showed a reduction of IKir7.1 and positive shift in ‘0’ current potential. Homology modeling based on the structure of a bacterial Kir channel protein suggested that the effect of R162W mutation is a result of loss of hydrogen bonding by the regulatory lipid binding domain of the cytoplasmic structure.
Collapse
Affiliation(s)
- Bikash R. Pattnaik
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| | - Sara Tokarz
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Matti P. Asuma
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tyler Schroeder
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anil Sharma
- Department of Experimental Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julie C. Mitchell
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Albert O. Edwards
- Institute for Molecular Biology, University of Oregon, and Oregon Retina, Eugene, Oregon, United States of America
| | - De-Ann M. Pillers
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
11
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
12
|
Bichet DG, El Tarazi A, Matar J, Lussier Y, Arthus MF, Lonergan M, Bockenhauer D, Bissonnette P. Aquaporin-2: new mutations responsible for autosomal-recessive nephrogenic diabetes insipidus-update and epidemiology. Clin Kidney J 2012; 5:195-202. [PMID: 26069764 PMCID: PMC4400507 DOI: 10.1093/ckj/sfs029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 11/14/2022] Open
Abstract
It is clinically useful to distinguish between two types of hereditary nephrogenic diabetes insipidus (NDI): a ‘pure’ type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients with congenital NDI bearing mutations in the vasopressin 2 receptor gene, AVPR2, or in the aquaporin-2 gene, AQP2, have a pure NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride and calcium. Patients with hereditary hypokalemic salt-losing tubulopathies have a complex phenotype with loss of water and ions. They have polyhydramnios, hypercalciuria and hypo- or isosthenuria and were found to bear KCNJ1 (ROMK) and SLC12A1 (NKCC2) mutations. Patients with polyhydramnios, profound polyuria, hyponatremia, hypochloremia, metabolic alkalosis and sensorineural deafness were found to bear BSND mutations. These clinical phenotypes demonstrate the critical importance of the proteins ROMK, NKCC2 and Barttin to transfer NaCl in the medullary interstitium and thereby to generate, together with urea, a hypertonic milieu. This editorial describes two new developments: (i) the genomic information provided by the sequencing of the AQP2 gene is key to the routine care of these patients, and, as in other genetic diseases, reduces health costs and provides psychological benefits to patients and families and (ii) the expression of AQP2 mutants in Xenopus oocytes and in polarized renal tubular cells recapitulates the clinical phenotypes and reveals a continuum from severe loss of function with urinary osmolalities <150 mOsm/kg H2O to milder defects with urine osmolalities >200 mOsm/kg H2O.
Collapse
Affiliation(s)
- Daniel G Bichet
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada ; Centre de Recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Abdulah El Tarazi
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Jessica Matar
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Yoann Lussier
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Michèle Lonergan
- Centre de Recherche, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Detlef Bockenhauer
- Institute of Child Health, University College London, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Pierre Bissonnette
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Liberatore Junior RD, Carneiro JG, Leidenz FB, Melilo-Carolino R, Sarubi HC, De Marco L. Novel compound aquaporin 2 mutations in nephrogenic diabetes insipidus. Clinics (Sao Paulo) 2012; 67:79-82. [PMID: 22249485 PMCID: PMC3248606 DOI: 10.6061/clinics/2012(01)13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Affiliation(s)
- Hanne B Moeller
- Water and Salt Research Center, Department of Anatomy, Building 1233, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|