1
|
Bocchero U, Pahlberg J. Origin of Discrete and Continuous Dark Noise in Rod Photoreceptors. eNeuro 2023; 10:ENEURO.0390-23.2023. [PMID: 37973380 PMCID: PMC10687842 DOI: 10.1523/eneuro.0390-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The detection of a single photon by a rod photoreceptor is limited by two sources of physiological noise, called discrete and continuous noise. Discrete noise occurs as intermittent current deflections with a waveform very similar to that of the single-photon response to real light and is thought to be produced by spontaneous activation of rhodopsin. Continuous noise occurs as random and continuous fluctuations in outer-segment current and is usually attributed to some intermediate in the phototransduction cascade. To confirm the origin of these noise sources, we have recorded from retinas of mouse lines with rods having reduced levels of rhodopsin, transducin, or phosphodiesterase. We show that the rate of discrete noise is diminished in proportion to the decrease in rhodopsin concentration, and that continuous noise is independent of transducin concentration but clearly elevated when the level of phosphodiesterase is reduced. Our experiments provide new molecular evidence that discrete noise is indeed produced by rhodopsin itself, and that continuous noise is generated by spontaneous activation of phosphodiesterase resulting in random fluctuations in outer-segment current.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510
| |
Collapse
|
2
|
Griffis KG, Fehlhaber KE, Rieke F, Sampath AP. Light Adaptation of Retinal Rod Bipolar Cells. J Neurosci 2023; 43:4379-4389. [PMID: 37208176 PMCID: PMC10278674 DOI: 10.1523/jneurosci.0444-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
The sensitivity of retinal cells is altered in background light to optimize the detection of contrast. For scotopic (rod) vision, substantial adaptation occurs in the first two cells, the rods and rod bipolar cells (RBCs), through sensitivity adjustments in rods and postsynaptic modulation of the transduction cascade in RBCs. To study the mechanisms mediating these components of adaptation, we made whole-cell, voltage-clamp recordings from retinal slices of mice from both sexes. Adaptation was assessed by fitting the Hill equation to response-intensity relationships with the parameters of half-maximal response (I1/2 ), Hill coefficient (n), and maximum response amplitude (Rmax ). We show that rod sensitivity decreases in backgrounds according to the Weber-Fechner relation with an I1/2 of ∼50 R* s-1 The sensitivity of RBCs follows a near-identical function, indicating that changes in RBC sensitivity in backgrounds bright enough to adapt the rods are mostly derived from the rods themselves. Backgrounds too dim to adapt the rods can however alter n, relieving a synaptic nonlinearity likely through entry of Ca2+ into the RBCs. There is also a surprising decrease of Rmax , indicating that a step in RBC synaptic transduction is desensitized or that the transduction channels became reluctant to open. This effect is greatly reduced after dialysis of BAPTA at a membrane potential of +50 mV to impede Ca2+ entry. Thus the effects of background illumination in RBCs are in part the result of processes intrinsic to the photoreceptors and in part derive from additional Ca2+-dependent processes at the first synapse of vision.SIGNIFICANCE STATEMENT Light adaptation adjusts the sensitivity of vision as ambient illumination changes. Adaptation for scotopic (rod) vision is known to occur partly in the rods and partly in the rest of the retina from presynaptic and postsynaptic mechanisms. We recorded light responses of rods and rod bipolar cells to identify different components of adaptation and study their mechanisms. We show that bipolar-cell sensitivity largely follows adaptation of the rods but that light too dim to adapt the rods produces a linearization of the bipolar-cell response and a surprising decrease in maximum response amplitude, both mediated by a change in intracellular Ca2+ These findings provide a new understanding of how the retina responds to changing illumination.
Collapse
Affiliation(s)
- Khris G Griffis
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Katherine E Fehlhaber
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
3
|
Divergent outer retinal circuits drive image and non-image visual behaviors. Cell Rep 2022; 39:111003. [PMID: 35767957 PMCID: PMC9400924 DOI: 10.1016/j.celrep.2022.111003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Image- and non-image-forming vision are essential for animal behavior. Here we use genetically modified mouse lines to examine retinal circuits driving image- and non-image-functions. We describe the outer retinal circuits underlying the pupillary light response (PLR) and circadian photoentrainment, two non-image-forming behaviors. Rods and cones signal light increments and decrements through the ON and OFF pathways, respectively. We find that the OFF pathway drives image-forming vision but cannot drive circadian photoentrainment or the PLR. Cone light responses drive image formation but fail to drive the PLR. At photopic levels, rods use the primary and secondary rod pathways to drive the PLR, whereas at the scotopic and mesopic levels, rods use the primary pathway to drive the PLR, and the secondary pathway is insufficient. Circuit dynamics allow rod ON pathways to drive two non-image-forming behaviors across a wide range of light intensities, whereas the OFF pathway is potentially restricted to image formation.
Collapse
|
4
|
Information in Explaining Cognition: How to Evaluate It? PHILOSOPHIES 2022. [DOI: 10.3390/philosophies7020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The claims that “The brain processes information” or “Cognition is information processing” are accepted as truisms in cognitive science. However, it is unclear how to evaluate such claims absent a specification of “information” as it is used by neurocognitive theories. The aim of this article is, thus, to identify the key features of information that information-based neurocognitive theories posit. A systematic identification of these features can reveal the explanatory role that information plays in specific neurocognitive theories, and can, therefore, be both theoretically and practically important. These features can be used, in turn, as desiderata against which candidate theories of information may be evaluated. After discussing some characteristics of explanation in cognitive science and their implications for “information”, three notions are briefly introduced: natural, sensory, and endogenous information. Subsequently, six desiderata are identified and defended based on cognitive scientific practices. The global workspace theory of consciousness is then used as a specific case study that arguably posits either five or six corresponding features of information.
Collapse
|
5
|
Hays CL, Sladek AL, Field GD, Thoreson WB. Properties of multivesicular release from mouse rod photoreceptors support transmission of single-photon responses. eLife 2021; 10:67446. [PMID: 33769285 PMCID: PMC8032395 DOI: 10.7554/elife.67446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 01/18/2023] Open
Abstract
Vision under starlight requires rod photoreceptors to transduce and transmit single-photon responses to the visual system. Small single-photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring two to three times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single-photon responses to post-synaptic rod-bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.
Collapse
Affiliation(s)
- Cassandra L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Cellular and Integrative Physiology, Omaha, United States
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, Omaha, United States
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Pharmacology and Experimental Neuroscience, Omaha, United States
| |
Collapse
|
6
|
Ingram NT, Sampath AP, Fain GL. Membrane conductances of mouse cone photoreceptors. J Gen Physiol 2020; 152:e201912520. [PMID: 31986199 PMCID: PMC7054858 DOI: 10.1085/jgp.201912520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Vertebrate photoreceptor cells respond to light through a closure of CNG channels located in the outer segment. Multiple voltage-sensitive channels in the photoreceptor inner segment serve to transform and transmit the light-induced outer-segment current response. Despite extensive studies in lower vertebrates, we do not know how these channels produce the photoresponse of mammalian photoreceptors. Here we examined these ionic conductances recorded from single mouse cones in unlabeled, dark-adapted retinal slices. First, we show measurements of the voltage dependence of the light response. After block of voltage-gated Ca2+ channels, the light-dependent current was nearly linear within the physiological range of voltages with constant chord conductance and a reversal potential similar to that previously determined in lower vertebrate photoreceptors. At a dark resting membrane potential of -45 mV, cones maintain a standing Ca2+ current (iCa) between 15 and 20 pA. We characterized the time and voltage dependence of iCa and a calcium-activated anion channel. After constitutive closure of the CNG channels by the nonhydrolysable analogue GTP-γ-S, we observed a light-dependent increase in iCa followed by a Ca2+-activated K+ current, both probably the result of feedback from horizontal cells. We also recorded the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance (ih) and measured its current-voltage relationship and reversal potential. With small hyperpolarizations, ih activated with a time constant of 25 ms; activation was speeded with larger hyperpolarizations. Finally, we characterized two voltage-gated K+-conductances (iK). Depolarizing steps beginning at -10 mV activated a transient, outwardly rectifying iK blocked by 4-AP and insensitive to TEA. A sustained iK isolated through subtraction was blocked by TEA but was insensitive to 4-AP. The sustained iK had a nearly linear voltage dependence throughout the physiological voltage range of the cone. Together these data constitute the first comprehensive study of the channel conductances of mouse photoreceptors.
Collapse
Affiliation(s)
- Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| |
Collapse
|
7
|
Ingram NT, Sampath AP, Fain GL. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. J Gen Physiol 2019; 151:1287-1299. [PMID: 31562185 PMCID: PMC6829558 DOI: 10.1085/jgp.201912419] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
We describe the first extensive study of voltage-clamp current responses of cone photoreceptors in unlabeled, dark-adapted mouse retina using only the position and appearance of cone somata as a guide. Identification was confirmed from morphology after dye filling. Photocurrents recorded from wild-type mouse cones were biphasic with a fast cone component and a slower rod component. The rod component could be eliminated with dim background light and was not present in mouse lines lacking the rod transducin-α subunit (Gnat1-/- ) or connexin 36 (Cx36-/- ). Cones from Gnat1-/- or Cx36-/- mice had resting membrane potentials between -45 and -55 mV, peak photocurrents of 20-25 picoamps (pA) at a membrane potential Vm = -50 mV, sensitivities 60-70 times smaller than rods, and a total membrane capacitance two to four times greater than rods. The rate of activation (amplification constant) was largely independent of the brightness of the flash and was 1-2 s-2, less than half that of rods. The role of Ca2+-dependent transduction modulation was investigated by recording from cones in mice lacking rod transducin (Gnat1), recoverin, and/or the guanylyl-cyclase-activating proteins (GCAPs). In confirmation of previous results, responses of Gnat1-/- ;Gcaps-/- cones and triple-mutant Gnat1-/- ;Gcaps-/- ;Rv-/- cones recovered more slowly both to light flashes and steps and were more sensitive than cones expressing the GCAPs. Cones from all four mouse lines showed significant recovery and escaped saturation even in bright background light. This recovery occurred too rapidly to be caused by pigment bleaching or metaII decay and appears to reflect some modulation of response inactivation in addition to those produced by recoverin and the GCAPs. Our experiments now make possible a more detailed understanding of the cellular physiology of mammalian cone photoreceptors and the role of conductances in the inner and outer segment in producing cone light responses.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Abstract
G protein-coupled receptor (GPCR) signaling is crucial for many physiological processes. A signature of such pathways is high amplification, a concept originating from retinal rod phototransduction, whereby one photoactivated rhodopsin molecule (Rho*) was long reported to activate several hundred transducins (GT*s), each then activating a cGMP-phosphodiesterase catalytic subunit (GT*·PDE*). This high gain at the Rho*-to-GT* step has been challenged more recently, but estimates remain dispersed and rely on some nonintact rod measurements. With two independent approaches, one with an extremely inefficient mutant rhodopsin and the other with WT bleached rhodopsin, which has exceedingly weak constitutive activity in darkness, we obtained an estimate for the electrical effect from a single GT*·PDE* molecular complex in intact mouse rods. Comparing the single-GT*·PDE* effect to the WT single-photon response, both in Gcaps-/- background, gives an effective gain of only ∼12-14 GT*·PDE*s produced per Rho*. Our findings have finally dispelled the entrenched concept of very high gain at the receptor-to-G protein/effector step in GPCR systems.
Collapse
|
9
|
Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J Neurosci 2019; 39:3041-3056. [PMID: 30737308 DOI: 10.1523/jneurosci.1404-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual system operates over an extended range of ambient light levels by switching between rod and cone photoreceptors. Rod-driven vision is sluggish, highly sensitive, and operates in dim or scotopic lights, whereas cone-driven vision is brisk, less sensitive, and operates in bright or photopic lights. At intermediate or mesopic lights, vision transitions seamlessly from rod-driven to cone-driven, despite the profound differences in rod and cone response dynamics. The neural mechanisms underlying such a smooth handoff are not understood. Using an operant behavior assay, electrophysiological recordings, and mathematical modeling we examined the neural underpinnings of the mesopic visual transition in mice of either sex. We found that rods, but not cones, drive visual sensitivity to temporal light variations over much of the mesopic range. Surprisingly, speeding up rod photoresponse recovery kinetics in transgenic mice improved visual sensitivity to slow temporal variations, in the range where perceptual sensitivity is governed by Weber's law of sensation. In contrast, physiological processes acting downstream from phototransduction limit sensitivity to high frequencies and temporal resolution. We traced the paradoxical control of visual temporal sensitivity to rod photoresponses themselves. A scenario emerges where perceptual sensitivity is limited by: (1) the kinetics of neural processes acting downstream from phototransduction in scotopic lights, (2) rod response kinetics in mesopic lights, and (3) cone response kinetics as light levels rise into the photopic range.SIGNIFICANCE STATEMENT Our ability to detect flickering lights is constrained by the dynamics of the slowest step in the visual pathway. Cone photoresponse kinetics limit visual temporal sensitivity in bright (photopic) lights, whereas mechanisms in the inner retina limit sensitivity in dim (scotopic) lights. The neural mechanisms underlying the transition between scotopic and photopic vision in mesopic lights, when both rods are cones are active, are unknown. This study provides a missing link in this mechanism by establishing that rod photoresponse kinetics limit temporal sensitivity during the mesopic transition. Surprisingly, this range is where Weber's Law of Sensation governs temporal contrast sensitivity in mouse. Our results will help guide future studies of complex and dynamic interactions between rod-cone signals in the mesopic retina.
Collapse
|
10
|
Field GD, Uzzell V, Chichilnisky EJ, Rieke F. Temporal resolution of single-photon responses in primate rod photoreceptors and limits imposed by cellular noise. J Neurophysiol 2018; 121:255-268. [PMID: 30485153 DOI: 10.1152/jn.00683.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sensory receptor noise corrupts sensory signals, contributing to imperfect perception and dictating central processing strategies. For example, noise in rod phototransduction limits our ability to detect light, and minimizing the impact of this noise requires precisely tuned nonlinear processing by the retina. But detection sensitivity is only one aspect of night vision: prompt and accurate behavior also requires that rods reliably encode the timing of photon arrivals. We show here that the temporal resolution of responses of primate rods is much finer than the duration of the light response and identify the key limiting sources of transduction noise. We also find that the thermal activation rate of rhodopsin is lower than previous estimates, implying that other noise sources are more important than previously appreciated. A model of rod single-photon responses reveals that the limiting noise relevant for behavior depends critically on how rod signals are pooled by downstream neurons. NEW & NOTEWORTHY Many studies have focused on the visual system's ability to detect photons, but not on its ability to encode the relative timing of detected photons. Timing is essential for computations such as determining the velocity of moving objects. Here we examine the timing precision of primate rod photoreceptor responses and show that it is more precise than previously appreciated. This motivates an evaluation of whether scotopic vision approaches limits imposed by rod temporal resolution.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine , Durham, North Carolina
| | - Valerie Uzzell
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies , La Jolla, California
| | - E J Chichilnisky
- Stanford University, Departments of Neurosurgery and Ophthalmology , Stanford, California
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| |
Collapse
|
11
|
Sarria I, Cao Y, Wang Y, Ingram NT, Orlandi C, Kamasawa N, Kolesnikov AV, Pahlberg J, Kefalov VJ, Sampath AP, Martemyanov KA. LRIT1 Modulates Adaptive Changes in Synaptic Communication of Cone Photoreceptors. Cell Rep 2018; 22:3562-3573. [PMID: 29590623 PMCID: PMC5902029 DOI: 10.1016/j.celrep.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors scale dynamically the sensitivity of responses to maintain responsiveness across wide range of changes in luminance. Synaptic changes contribute to this adaptation, but how this process is coordinated at the molecular level is poorly understood. Here, we report that a cell adhesion-like molecule, LRIT1, is enriched selectively at cone photoreceptor synapses where it engages in a trans-synaptic interaction with mGluR6, the principal receptor in postsynaptic ON-bipolar cells. The levels of LRIT1 are regulated by the neurotransmitter release apparatus that controls photoreceptor output. Knockout of LRIT1 in mice increases the sensitivity of cone synaptic signaling while impairing its ability to adapt to background light without overtly influencing the morphology or molecular composition of photoreceptor synapses. Accordingly, mice lacking LRIT1 show visual deficits under conditions requiring temporally challenging discrimination of visual signals in steady background light. These observations reveal molecular mechanisms involved in scaling synaptic communication in the retina.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Norianne T Ingram
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Johan Pahlberg
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
12
|
Field GD, Sampath AP. Behavioural and physiological limits to vision in mammals. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0072. [PMID: 28193817 DOI: 10.1098/rstb.2016.0072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Human vision is exquisitely sensitive-a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alapakkam P Sampath
- Stein Eye Institute, Department of Ophthalmology, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Pahlberg J, Frederiksen R, Pollock GE, Miyagishima KJ, Sampath AP, Cornwall MC. Voltage-sensitive conductances increase the sensitivity of rod photoresponses following pigment bleaching. J Physiol 2017; 595:3459-3469. [PMID: 28168711 DOI: 10.1113/jp273398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/29/2017] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Following substantial bleaching of the visual pigment, the desensitization of the rod photovoltage is not as substantial as the desensitization of the rod outer segment photocurrent. The block of cation conductances during the internal dialysis of Cs+ further desensitizes the photovoltage thereby eliminating its difference in desensitization with the rod outer segment photocurrent. Bleached visual pigment produced an acceleration of the rod photovoltage with respect to the outer segment photocurrent, which is eliminated upon internal dialysis of Cs+ . ABSTRACT A majority of our visual experience occurs during the day when a substantial fraction of the visual pigment in our photoreceptor cells is bleached. Under these conditions it is widely believed that rods are saturated and do not contribute substantially to downstream signalling. However, behavioural experiments on subjects with only rod function reveals that these individuals unexpectedly retain substantial vision in daylight. We sought to understand this discrepancy by characterizing the sensitivity of rod photoresponses following exposure to bright bleaching light. Measurements of the rod outer segment photocurrent in transgenic mice, which have only rod function, revealed the well-studied reduction in the sensitivity of rod photoresponses following pigment bleaching. However, membrane voltage measurements showed that the desensitization of the photovoltage was considerably less than that of the outer segment photocurrent following equivalent pigment bleaching. This discrepancy was largely eliminated during the blockade of cation channels due to the internal dialysis of Cs+ , which increased the bleach-induced desensitization of the photovoltage and slowed its temporal characteristics. Thus, sensitization of the photovoltage by rod inner segment conductances appears to extend the operating range of rod phototransduction following pigment bleaching.
Collapse
Affiliation(s)
- Johan Pahlberg
- Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Rikard Frederiksen
- Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gabriel E Pollock
- Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Kiyoharu J Miyagishima
- Unit on Retinal Neurophysiology, National Eye Institute Intramural Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alapakkam P Sampath
- Ophthalmology, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - M Carter Cornwall
- Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
14
|
Peinado Allina G, Fortenbach C, Naarendorp F, Gross OP, Pugh EN, Burns ME. Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9. J Gen Physiol 2017; 149:443-454. [PMID: 28302678 PMCID: PMC5379920 DOI: 10.1085/jgp.201611692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
Peinado Allina et al. measure rod responses in living mice across a wide range of flash strengths and find that responses are much faster in vivo than ex vivo, though the biochemical mechanisms underlying the kinetics appear to be the same in both cases. Although RGS9 overexpression sped recovery from bright flashes, faster rod recovery did not improve the temporal resolution of scotopic vision. The temporal resolution of scotopic vision is thought to be constrained by the signaling kinetics of retinal rods, which use a highly amplified G-protein cascade to transduce absorbed photons into changes in membrane potential. Much is known about the biochemical mechanisms that determine the kinetics of rod responses ex vivo, but the rate-limiting mechanisms in vivo are unknown. Using paired flash electroretinograms with improved signal-to-noise, we have recorded the amplitude and kinetics of rod responses to a wide range of flash strengths from living mice. Bright rod responses in vivo recovered nearly twice as fast as all previous recordings, although the kinetic consequences of genetic perturbations previously studied ex vivo were qualitatively similar. In vivo, the dominant time constant of recovery from bright flashes was dramatically reduced by overexpression of the RGS9 complex, revealing G-protein deactivation to be rate limiting for recovery. However, unlike previous ex vivo recordings, dim flash responses in vivo were relatively unaffected by RGS9 overexpression, suggesting that other mechanisms, such as calcium feedback dynamics that are strongly regulated by the restricted subretinal microenvironment, act to determine rod dim flash kinetics. To assess the consequences for scotopic vision, we used a nocturnal wheel-running assay to measure the ability of wild-type and RGS9-overexpressing mice to detect dim flickering stimuli and found no improvement when rod recovery was speeded by RGS9 overexpression. These results are important for understanding retinal circuitry, in particular as modeled in the large literature that addresses the relationship between the kinetics and sensitivity of retinal responses and visual perception.
Collapse
Affiliation(s)
| | | | | | - Owen P Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Edward N Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618.,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618
| | - Marie E Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618 .,Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA 95618.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618
| |
Collapse
|
15
|
Abstract
It is sometimes said that 'our eyes can see single photons'. This article begins by finding a more precise version of that claim and reviewing evidence gathered for it up to around 1985 in two distinct realms, those of human psychophysics and single-cell physiology. Finding a single framework that accommodates both kinds of result is then a nontrivial challenge, and one that sets severe quantitative constraints on any model of dim-light visual processing. This article presents one such model and compares it to a recent experiment.
Collapse
|
16
|
Reingruber J, Holcman D, Fain GL. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception. Bioessays 2015; 37:1243-52. [PMID: 26354340 DOI: 10.1002/bies.201500081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rod photoreceptors are among the most sensitive light detectors in nature. They achieve their remarkable sensitivity across a wide variety of species through a number of essential adaptations: a specialized cellular geometry, a G-protein cascade with an unusually stable receptor molecule, a low-noise transduction mechanism, a nearly perfect effector enzyme, and highly evolved mechanisms of feedback control and receptor deactivation. Practically any change in protein expression, enzyme activity, or feedback control can be shown to impair photon detection, either by decreasing sensitivity or signal-to-noise ratio, or by reducing temporal resolution. Comparison of mammals to amphibians suggests that rod outer-segment morphology and the molecules and mechanism of transduction may have evolved together to optimize light sensitivity in darkness, which culminates in the extraordinary ability of these cells to respond to single photons at the ultimate limit of visual perception.
Collapse
Affiliation(s)
- Jürgen Reingruber
- IBENS, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, Paris, France.,INSERM U1024, Paris, France
| | - David Holcman
- IBENS, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, Paris, France.,Department of Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, Terasaki Life Sciences, University of California, Los Angeles, CA, USA.,Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Exchange of Cone for Rod Phosphodiesterase 6 Catalytic Subunits in Rod Photoreceptors Mimics in Part Features of Light Adaptation. J Neurosci 2015; 35:9225-35. [PMID: 26085644 DOI: 10.1523/jneurosci.3563-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Despite the expression of homologous phototransduction components, the molecular basis for differences in light-evoked responses between rod and cone photoreceptors remains unclear. We examined the role of cGMP phosphodiesterase (PDE6) in this difference by expressing cone PDE6 (PDE6C) in rd1/rd1 rods lacking rod PDE6 (PDE6AB) using transgenic mice. The expression of PDE6C rescues retinal degeneration observed in rd1/rd1 rods. Double-transgenic rods (PDE6C++) were compared with rd1/+ rods based on similar PDE6 expression. PDE6C increased the basal PDE activity and speeded the rate-limiting step for phototransduction deactivation, causing rod photoresponses to appear light adapted, with reduced dark current and sensitivity and faster response kinetics. When PDE6C++ and rd1/+ rods were exposed to similar background light, rd1/+ rods displayed greater desensitization. These results indicate an increased spontaneous activity and faster deactivation of PDE6C compared with PDE6AB in darkness, but that background light increases steady PDE6C activity to a lesser extent. In addition to accelerating the recovery of the photoresponse, faster PDE6C deactivation may blunt the rise in background-induced steady PDE6C activity. Therefore, higher basal PDE6C activity and faster deactivation together partially account for faster and less sensitive cone photoresponses in darkness, whereas a reduced rise of steady PDE6C activity in background light may allow cones to avoid saturation. SIGNIFICANCE STATEMENT Cones are the primary photoreceptors responsible for most of our visual experience. Cone light responses are less sensitive and display speeded responses compared with rods. Despite the fact that rods and cones use a G-protein signaling cascade with similar organization, the mechanistic basis for these differences remains unclear. Here, we examined the role of distinct isoforms of PDE6, the effector enzyme in phototransduction, in these differences. We developed a transgenic mouse model that expresses cone PDE6 in rods and show that the cone PDE6 isoform is partially responsible for the difference in sensitivity and response kinetics between rods and cones.
Collapse
|
18
|
Asteriti S, Grillner S, Cangiano L. A Cambrian origin for vertebrate rods. eLife 2015; 4. [PMID: 26095697 PMCID: PMC4502669 DOI: 10.7554/elife.07166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022] Open
Abstract
Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod photoreceptor at an unknown stage preceding the last common ancestor of extant jawed vertebrates (∼420 million years ago Ma). The jawless lampreys provide a unique opportunity to constrain the timing of this advance, as their line diverged ∼505 Ma and later displayed high-morphological stability. We recorded with patch electrodes the inner segment photovoltages and with suction electrodes the outer segment photocurrents of Lampetra fluviatilis retinal photoreceptors. Several key functional features of jawed vertebrate rods are present in their phylogenetically homologous photoreceptors in lamprey: crucially, the efficient amplification of the effect of single photons, measured by multiple parameters, and the flow of rod signals into cones. These results make convergent evolution in the jawless and jawed vertebrate lines unlikely and indicate an early origin of rods, implying strong selective pressure toward dim-light vision in Cambrian ecosystems. DOI:http://dx.doi.org/10.7554/eLife.07166.001 The eyes of humans and many other animals with backbones contain two different types of cells that can detect light, which are known as rod and cone cells. Rod cells are much more sensitive to light than cone cells. The rods allow us to see in dim light by amplifying weak light signals and transmitting information to other cells, including the cones themselves. It is thought that the rod cell evolved from the cone cell in the common ancestors of mammals, fish, and other animals with backbones and jaws at least 420 million years ago. Lampreys are jawless fish that diverged from the ancestors of jawed animals around 505 million years ago, in the middle of a period of great evolutionary innovation called the Cambrian. They have changed relatively little since that time so they provide a snapshot of what our ancestors' eyes might have been like back then. Like the rod and cone cells of jawed animals, the eyes of adult lampreys also have two types of photoreceptors. However, it was not clear whether the lamprey photoreceptor cells work in a similar way to rod and cone cells. Asteriti et al. collected lampreys in Sweden and France during their breeding season and used patch and suction electrodes to measure the activity of their photoreceptor cells. The experiments show that the short photoreceptor cells are more sensitive to light than the long photoreceptors and are able to amplify weak light signals. Also, the short photoreceptors send signals to the long photoreceptors in a similar way to how rod cells send information to cone cells. The similarities between lamprey photoreceptor cells and those of jawed animals support the idea that they have a common origin in evolutionary history. Therefore, Asteriti et al. conclude that the ability to see in low light evolved before these groups of animals diverged about 505 million years ago. The picture that emerges is one in which our remote ancestors inhabiting the Cambrian seas already possessed dim-light vision. This would have allowed them to colonize deep waters or to move at twilight, an adaptation suggestive of intense competition or predation from other life forms. DOI:http://dx.doi.org/10.7554/eLife.07166.002
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Jin NG, Chuang AZ, Masson PJ, Ribelayga CP. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina. J Physiol 2015; 593:1597-631. [PMID: 25616058 PMCID: PMC4386962 DOI: 10.1113/jphysiol.2014.284919] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/19/2015] [Indexed: 11/08/2022] Open
Abstract
Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods.
Collapse
Affiliation(s)
- Nan Ge Jin
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Alice Z Chuang
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
| | - Philippe J Masson
- Department of Mechanical Engineering, Cullen College of Engineering, University of HoustonN207 Engineering Building 1, Suite W204, Houston, TX, 77204, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, Medical School, The University of Texas Health Science Centre at Houston6431 Fannin Street, Suite MSB 7.024, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Centre at Houston, 6767 Bertner Avenue, Mitchell BuildingBSRB Suite 3.8344, Houston, TX, 77030, USA
- Neuroscience Graduate Program, The University of Texas Health Science Centre at Houston, Medical School6431 Fannin Street, Suite MSB 7.262, Houston, TX, 77030, USA
- Neuroscience Research Centre, The University of Texas Health Science Centre at HoustonHouston, 6431 Fannin Street, Suite MSB 7.046, TX, 77030, USA
| |
Collapse
|
20
|
Long JH, Arshavsky VY, Burns ME. Absence of synaptic regulation by phosducin in retinal slices. PLoS One 2014; 8:e83970. [PMID: 24376776 PMCID: PMC3869837 DOI: 10.1371/journal.pone.0083970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/18/2013] [Indexed: 11/24/2022] Open
Abstract
Phosducin is an abundant photoreceptor protein that binds G-protein βγ subunits and plays a role in modulating synaptic transmission at photoreceptor synapses under both dark-adapted and light-adapted conditions in vivo. To examine the role of phosducin at the rod-to-rod bipolar cell (RBC) synapse, we used whole-cell voltage clamp recordings to measure the light-evoked currents from both wild-type (WT) and phosducin knockout (Pd−/−) RBCs, in dark- and light-adapted retinal slices. Pd−/−RBCs showed smaller dim flash responses and steeper intensity-response relationships than WT RBCs, consistent with the smaller rod responses being selectively filtered out by the non-linear threshold at the rod-to-rod bipolar synapse. In addition, Pd−/− RBCs showed a marked delay in the onset of the light-evoked currents, similar to that of a WT response to an effectively dimmer flash. Comparison of the changes in flash sensitivity in the presence of steady adapting light revealed that Pd−/− RBCs desensitized less than WT RBCs to the same intensity. These results are quantitatively consistent with the smaller single photon responses of Pd−/− rods, owing to the known reduction in rod G-protein expression levels in this line. The absence of an additional synaptic phenotype in these experiments suggests that the function of phosducin at the photoreceptor synapse is abolished by the conditions of retinal slice recordings.
Collapse
Affiliation(s)
- James H. Long
- Center for Neuroscience University of California Davis, Davis, California, United States of America
| | - Vadim Y. Arshavsky
- Depts of Ophthalmology and Pharmacology, Duke University Eye Center; Durham, North Carolina, United States of America
| | - Marie E. Burns
- Center for Neuroscience University of California Davis, Davis, California, United States of America
- Depts. of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Amphibian and mammalian rods can both detect single photons of light even though they differ greatly in physical dimensions, mammalian rods being much smaller in diameter than amphibian rods. To understand the changes in physiology and biochemistry required by such large differences in outer segment geometry, we developed a computational approach, taking into account the spatial organization of the outer segment divided into compartments, together with molecular dynamics simulations of the signaling cascade. We generated simulations of the single-photon response together with intrinsic background fluctuations in toad and mouse rods. Combining this computational approach with electrophysiological data from mouse rods, we determined key biochemical parameters. On average around one phosphodiesterase (PDE) molecule is spontaneously active per mouse compartment, similar to the value for toad, which is unexpected due to the much smaller diameter in mouse. A larger number of spontaneously active PDEs decreases dark noise, thereby improving detection of single photons; it also increases cGMP turnover, which accelerates the decay of the light response. These constraints explain the higher PDE density in mammalian compared with amphibian rods that compensates for the much smaller diameter of mammalian disks. We further find that the rate of cGMP hydrolysis by light-activated PDE is diffusion limited, which is not the case for spontaneously activated PDE. As a consequence, in the small outer segment of a mouse rod only a few activated PDEs are sufficient to generate a signal that overcomes noise, which permits a shorter lifetime of activated rhodopsin and greater temporal resolution.
Collapse
|
22
|
Mao W, Miyagishima KJ, Yao Y, Soreghan B, Sampath AP, Chen J. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity. J Biol Chem 2013; 288:5257-67. [PMID: 23288843 DOI: 10.1074/jbc.m112.430058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The signaling cascades mediated by G protein-coupled receptors (GPCRs) exhibit a wide spectrum of spatial and temporal response properties to fulfill diverse physiological demands. However, the mechanisms that shape the signaling response of the GPCR are not well understood. In this study, we replaced cone transducin α (cTα) for rod transducin α (rTα) in rod photoreceptors of transgenic mice, which also express S opsin, to evaluate the role of Gα subtype on signal amplification from different GPCRs in the same cell; such analysis may explain functional differences between retinal rod and cone photoreceptors. We showed that ectopically expressed cTα 1) forms a heterotrimeric complex with rod Gβ(1)γ(1), 2) substitutes equally for rTα in generating photoresponses initiated by either rhodopsin or S-cone opsin, and 3) exhibited similar light-activated translocation as endogenous rTα in rods and endogenous cTα in cones. Thus, rTα and cTα appear functionally interchangeable. Interestingly, light sensitivity appeared to correlate with the concentration of cTα when expression is reduced below 35% of normal. However, quantification of endogenous cTα concentration in cones showed a higher level to rTα in rods. Thus, reduced sensitivity in cones cannot be explained by reduced coupling efficiency between the GPCR and G protein or a lower concentration of G protein in cones versus rods.
Collapse
Affiliation(s)
- Wen Mao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gross OP, Pugh EN, Burns ME. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. Neuron 2012; 76:370-82. [PMID: 23083739 PMCID: PMC3594095 DOI: 10.1016/j.neuron.2012.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/26/2022]
Abstract
Rod photoreceptors generate amplified, reproducible responses to single photons via a G protein signaling cascade. Surprisingly, genetic perturbations that dramatically alter the deactivation of the principal signal amplifier, the GPCR rhodopsin (R∗), do not much alter the amplitude of single-photon responses (SPRs). These same perturbations, when crossed into a line lacking calcium feedback regulation of cGMP synthesis, produced much larger alterations in SPR amplitudes. Analysis of SPRs from rods with and without feedback reveal that the consequences of trial-to-trial fluctuations in R∗ lifetime in normal rods are also dampened by feedback regulation of cGMP synthesis. Thus, calcium feedback trumps the mechanisms of R∗ deactivation in determining the SPR amplitude, attenuating responses arising from longer R∗ lifetimes to a greater extent than those arising from shorter ones. As a result, rod SPRs achieve a more stereotyped amplitude, a characteristic considered important for reliable transmission through the visual system.
Collapse
Affiliation(s)
- Owen P. Gross
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Edward N. Pugh
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95618, USA
- Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
24
|
Gross OP, Pugh EN, Burns ME. Spatiotemporal cGMP dynamics in living mouse rods. Biophys J 2012; 102:1775-84. [PMID: 22768933 DOI: 10.1016/j.bpj.2012.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022] Open
Abstract
Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ~2 μm.
Collapse
Affiliation(s)
- Owen P Gross
- Center for Neuroscience, University of California, Davis, California, USA
| | | | | |
Collapse
|
25
|
Cangiano L, Asteriti S, Cervetto L, Gargini C. The photovoltage of rods and cones in the dark-adapted mouse retina. J Physiol 2012; 590:3841-55. [PMID: 22641773 DOI: 10.1113/jphysiol.2011.226878] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Research on photoreceptors has led to important insights into how light signals are detected and processed in the outer retina. Most information about photoreceptor function, however, comes from lower vertebrates. The large majority of mammalian studies are based on suction pipette recordings of outer segment currents, a technique that doesn't allow examination of phenomena occurring downstream of phototransduction. Only a small number of whole-cell recordings have been made, mainly in the macaque. Due to the growing importance of the mouse in vision research, we have optimized a retinal slice preparation that allows the reliable collection of perforated-patch recordings from light responding rods and cones. Unexpectedly, the frequency of cone recordings was much higher than their numeric proportion of ∼3%. This allowed us to obtain direct functional evidence suggestive of rod–cone coupling in the mouse. Moreover, rods had considerably larger single photon responses than previously published for mammals (3.44 mV, SD 1.37, n = 19 at 24°C; 2.46 mV, SD 1.08, n = 10 at 36°C), and a relatively high signal/noise ratio (6.4, SD 1.8 at 24°C; 6.8, SD 2.8 at 36°C). Both findings imply a more favourable transmission at the rod–rod bipolar cell synapse. Accordingly, relatively few photoisomerizations were sufficient to elicit a half-maximal response (6.7, SD 2.7, n = 5 at 24°C; 10.6, SD 1.7, n = 3 at 36°C), leading to a narrow linear response range. Our study demonstrates new features of mammalian photoreceptors and opens the way for further investigations into photoreceptor function using retinas from mutant mouse models.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Department of Physiological Sciences, University of Pisa, Via San Zeno 31, I-56123 Pisa, Italy.
| | | | | | | |
Collapse
|
26
|
Regulators of G protein signaling RGS7 and RGS11 determine the onset of the light response in ON bipolar neurons. Proc Natl Acad Sci U S A 2012; 109:7905-10. [PMID: 22547806 DOI: 10.1073/pnas.1202332109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The time course of signaling via heterotrimeric G proteins is controlled through their activation by G-protein coupled receptors and deactivation through the action of GTPase accelerating proteins (GAPs). Here we identify RGS7 and RGS11 as the key GAPs in the mGluR6 pathway of retinal rod ON bipolar cells that set the sensitivity and time course of light-evoked responses. We showed using electroretinography and single cell recordings that the elimination of RGS7 did not influence dark-adapted light-evoked responses, but the concurrent elimination of RGS11 severely reduced their magnitude and dramatically slowed the onset of the response. In RGS7/RGS11 double-knockout mice, light-evoked responses in rod ON bipolar cells were only observed during persistent activation of rod photoreceptors that saturate rods. These observations are consistent with persistently high G-protein activity in rod ON bipolar cell dendrites caused by the absence of the dominant GAP, biasing TRPM1 channels to the closed state.
Collapse
|
27
|
Gap-junctional coupling of mammalian rod photoreceptors and its effect on visual detection. J Neurosci 2012; 32:3552-62. [PMID: 22399777 DOI: 10.1523/jneurosci.2144-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of gap junctions between rods in mammalian retina suggests a role for rod-rod coupling in human vision. Rod coupling is known to reduce response variability, but because junctional conductances are not known, the downstream effects on visual performance are uncertain. Here we assessed rod coupling in guinea pig retina by measuring: (1) the variability in responses to dim flashes, (2) Neurobiotin tracer coupling, and (3) junctional conductances. Results were consolidated into an electrical network model and a model of human psychophysical detection. Guinea pig rods form tracer pools of 1 to ∼20 rods, with junctional conductances averaging ∼350 pS. We calculate that coupling will reduce human dark-adapted sensitivity ∼10% by impairing the noise filtering of the synapse between rods and rod bipolar cells. However, coupling also mitigates synaptic saturation and is thus calculated to improve sensitivity when stimuli are spatially restricted or are superimposed over background illumination.
Collapse
|
28
|
Schmitz F, Natarajan S, Venkatesan JK, Wahl S, Schwarz K, Grabner CP. EF hand-mediated Ca- and cGMP-signaling in photoreceptor synaptic terminals. Front Mol Neurosci 2012; 5:26. [PMID: 22393316 PMCID: PMC3289946 DOI: 10.3389/fnmol.2012.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022] Open
Abstract
Photoreceptors, the light-sensitive receptor neurons of the retina, receive and transmit a plethora of visual informations from the surrounding world. Photoreceptors capture light and convert this energy into electrical signals that are conveyed to the inner retina. For synaptic communication with the inner retina, photoreceptors make large active zones that are marked by synaptic ribbons. These unique synapses support continuous vesicle exocytosis that is modulated by light-induced, graded changes of membrane potential. Synaptic transmission can be adjusted in an activity-dependent manner, and at the synaptic ribbons, Ca2+- and cGMP-dependent processes appear to play a central role. EF-hand-containing proteins mediate many of these Ca2+- and cGMP-dependent functions. Since continuous signaling of photoreceptors appears to be prone to malfunction, disturbances of Ca2+- and cGMP-mediated signaling in photoreceptors can lead to visual defects, retinal degeneration (rd), and even blindness. This review summarizes aspects of signal transmission at the photoreceptor presynaptic terminals that involve EF-hand-containing Ca2+-binding proteins.
Collapse
Affiliation(s)
- Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University Saarland, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Arman AC, Sampath AP. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina. J Neurophysiol 2012; 107:2649-59. [PMID: 22338022 DOI: 10.1152/jn.01202.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.
Collapse
Affiliation(s)
- A Cyrus Arman
- Neurosciences Graduate Program, Department of Physiology and Biophysics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
30
|
Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J Neurosci 2011; 31:7670-81. [PMID: 21613480 DOI: 10.1523/jneurosci.0629-11.2011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The retina uses two photoreceptor types to encode the wide range of light intensities in the natural environment. Rods mediate vision in dim light, whereas cones mediate vision in bright light. Mouse photoreceptors include only 3% cones, and the majority of these coexpress two opsins (short- and middle-wavelength sensitive, S and M), with peak sensitivity to either ultraviolet (360 nm) or green light (508 nm). The M/S-opsin ratio varies across the retina but has not been characterized functionally, preventing quantitative study of cone-mediated vision. Furthermore, physiological and behavioral measurements suggested that mouse retina supports relatively slow temporal processing (peak sensitivity, ∼ 2-5 Hz) compared to primates; however, past studies used visible wavelengths that are inefficient at stimulating mouse S-opsin. Here, we measured the M/S-opsin expression ratio across the mouse retina, as reflected by ganglion cell responses in vitro, and probed cone-mediated ganglion cell temporal properties using ultraviolet light stimulation and linear systems analysis. From recordings in mice lacking rod function (Gnat1(-/-), Rho(-/-)), we estimate ∼ 70% M-opsin expression in far dorsal retina, dropping to <5% M-opsin expression throughout ventral retina. In mice lacking cone function (Gnat2(cpfl3)), light-adapted rod-mediated responses peaked at ∼ 5-7 Hz. In wild-type mice, cone-mediated responses peaked at ∼ 10 Hz, with substantial responsiveness up to ∼ 30 Hz. Therefore, despite the small percentage of cones, cone-mediated responses in mouse ganglion cells are fast and robust, similar to those in primates. These measurements enable quantitative analysis of cone-mediated responses at all levels of the visual system.
Collapse
|
31
|
Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 2011; 31:3670-82. [PMID: 21389222 DOI: 10.1523/jneurosci.4750-10.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vision in dim light, when photons are scarce, requires reliable signaling of the arrival of single photons. Rod photoreceptors accomplish this task through the use of a G-protein-coupled transduction cascade that amplifies the activity of single active rhodopsin molecules. This process is one of the best understood signaling cascades in biology, yet quantitative measurements of the amplitude and kinetics of the rod's response in mice vary by a factor of ∼ 2 across studies. What accounts for these discrepancies? We used several experimental approaches to reconcile differences in published properties of rod responses. First, we used suction electrode recordings from single rods to compare measurements across a range of recording conditions. Second, we compared measurements of single-cell photocurrents to estimates of rod function from in vitro electroretinograms. Third, we assayed the health of the post-receptor retinal tissue in these different conditions. Several salient points emerge from these experiments: (1) recorded responses can be altered dramatically by how the retina is stored; (2) the kinetics of the recovery of responses to bright but not dim flashes are strongly sensitive to the extracellular concentration of magnesium; (3) experimental conditions that produce very different single-photon responses measured in single rods produce near identical derived rod responses from the electroretinogram. The dependence of rod responses on experimental conditions will be a key consideration in efforts to extract general principles of G-protein signaling from studies of phototransduction and to relate these signals to downstream mechanisms that facilitate visual sensitivity.
Collapse
|
32
|
Pahlberg J, Sampath AP. Visual threshold is set by linear and nonlinear mechanisms in the retina that mitigate noise: how neural circuits in the retina improve the signal-to-noise ratio of the single-photon response. Bioessays 2011; 33:438-47. [PMID: 21472740 DOI: 10.1002/bies.201100014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In sensory biology, a major outstanding question is how sensory receptor cells minimize noise while maximizing signal to set the detection threshold. This optimization could be problematic because the origin of both the signals and the limiting noise in most sensory systems is believed to lie in stimulus transduction. Signal processing in receptor cells can improve the signal-to-noise ratio. However, neural circuits can further optimize the detection threshold by pooling signals from sensory receptor cells and processing them using a combination of linear and nonlinear filtering mechanisms. In the visual system, noise limiting light detection has been assumed to arise from stimulus transduction in rod photoreceptors. In this context, the evolutionary optimization of the signal-to-noise ratio in the retina has proven critical in allowing visual sensitivity to approach the limits set by the quantal nature of light. Here, we discuss how noise in the mammalian retina is mitigated to allow for highly sensitive night vision.
Collapse
Affiliation(s)
- Johan Pahlberg
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
33
|
Okawa H, Pahlberg J, Rieke F, Birnbaumer L, Sampath AP. Coordinated control of sensitivity by two splice variants of Gα(o) in retinal ON bipolar cells. ACTA ACUST UNITED AC 2010; 136:443-54. [PMID: 20837674 PMCID: PMC2947061 DOI: 10.1085/jgp.201010477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high sensitivity of scotopic vision depends on the efficient retinal processing of single photon responses generated by individual rod photoreceptors. At the first synapse in the mammalian retina, rod outputs are pooled by a rod “ON” bipolar cell, which uses a G-protein signaling cascade to enhance the fidelity of the single photon response under conditions where few rods absorb light. Here we show in mouse rod bipolar cells that both splice variants of the Go α subunit, Gαo1 and Gαo2, mediate light responses under the control of mGluR6 receptors, and their coordinated action is critical for maximizing sensitivity. We found that the light response of rod bipolar cells was primarily mediated by Gαo1, but the loss of Gαo2 caused a reduction in the light sensitivity. This reduced sensitivity was not attributable to the reduction in the total number of Go α subunits, or the altered balance of expression levels between the two splice variants. These results indicate that Gαo1 and Gαo2 both mediate a depolarizing light response in rod bipolar cells without occluding each other’s actions, suggesting they might act independently on a common effector. Thus, Gαo2 plays a role in improving the sensitivity of rod bipolar cells through its action with Gαo1. The coordinated action of two splice variants of a single Gα may represent a novel mechanism for the fine control of G-protein activity.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|